Skip to main content

Theory of GNSS Reflectometry

  • Chapter
  • First Online:
GNSS Remote Sensing

Part of the book series: Remote Sensing and Digital Image Processing ((RDIP,volume 19))

  • 3829 Accesses

Abstract

The GNSS-reflectometry works as a bi-static radar system in which the transmitter and the receiver are separated by a significant distance. This Chapter compiles different theoretical aspects to understand the GNSS signals after their reflection of the Earth surface, including multi-static system, specular and diffuse scattering, delay and doppler, reflectivity levels and polarization issues, scattering theories, noise and coherence Issues, systematic error and PARIS Interferometric technique (PIT).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bass FG, Fuks IM (1979) Wave scattering from statistically rough surfaces. International series in natural philosophy, vol 93. Pergamon, Oxford, p 537

    Google Scholar 

  • Beckmann P, Spizzichino A (1987) The scattering of electromagnetic waves from rough surfaces. Artech House, Inc., Norwood, p 511

    Google Scholar 

  • Blanch S, Aguasca A (2004) Seawater dielectric permittivity model from measurements at L band. In: Proceedings of 2004 IEEE international geoscience and remote sensing symposium, IGARSS’04, Anchorage, vol 2. IEEE, Piscataway, pp 1362–1365. doi:10.1109/IGARSS.2004.1368671

    Google Scholar 

  • Cardellach E (2002) Sea surface determination using GNSS reflected signals. Ph.D. Dissertation, Polytechnical University of Catalonia (UPC), Barcelona

    Google Scholar 

  • Cardellach E, Rius A (2008) A new technique to sense non-Gaussian features of the sea surface from L-band bi-static GNSS reflections. Remote Sens Environ 112:2927–2937. doi:10.1016/j.rse.2008.02.003

    Article  Google Scholar 

  • Cardellach E, Ruffini G, Pino D, Rius A, Komjathy A, Garrison JL (2003) Mediterranean balloon experiment: Ocean wind speed sensing from the stratosphere using GPS reflections. Remote Sens Environ 88:351–362

    Article  Google Scholar 

  • Cardellach E, Ao CO, de la Torre-Juárez M, Hajj GA (2004) Carrier phase delay altimetry with GPS-reflection/occultation interferometry from Low Earth Orbiters. Geophys Res Lett 31(10):L10402

    Article  Google Scholar 

  • Cardellach E, Fabra F, Nogués-Correig O, Oliveras S, Ribó S, Rius A (2011) GNSS-R ground-based and airborne campaigns for ocean, land, ice, and snow techniques: application to the GOLD-RTR data sets. Radio Sci 46:RS0C04. doi:10.1029/2011RS004683

    Google Scholar 

  • Cardellach E, Fabra F, Rius A, Pettinato S, D’ Addio S (2012) Characterization of dry-snow sub-structure using GNSS reflected signals. Remote Sens Environ 124:122–134. doi:10.1016/j.rse.2012.05.012

    Article  Google Scholar 

  • Clarizia MP, Gommenginger C, Di Bisceglie M, Galdi C, Srokosz MA (2012) Simulation of L-band bistatic returns from the Ocean surface: a facet approach with application to Ocean GNSS reflectometry. IEEE Trans Geosci Remote Sens 50(3). doi:10.1109/TGRS.2011.2162245

    Google Scholar 

  • Elachi C (1987) Spaceborne radar remote sensing: applications and techniques. IEEE, New York. ISBN:0-87942-241-6

    Google Scholar 

  • Elfouhaily TM, Guérin C-A (2004) A critical survey of approximate scattering wave theories from random rough surfaces. Waves Random Media 14:R1–R40. doi:10.1088/0959-7174/14/4/R01

    Article  Google Scholar 

  • Elfouhaily T, Thompson DR, Linstrom L (2002) Delay-Doppler analysis of bistatically reflected signals from the Ocean surface: theory and application. IEEE Trans Geosci Remote Sens 40:560–573. doi:10.1109/TGRS.2002.1000316

    Article  Google Scholar 

  • Fabra F (2013) GNSS-R as a source of opportunity for sea ice and dry snow remote sensing. Ph.D. Dissertation, Polytechnical University of Catalonia (UPC), Barcelona

    Google Scholar 

  • Fabra F, Cardellach E, Rius A, Oliveras S, Nogués-Correig O, Belmonte-Rivas M, Semmling M, D’ Addio S (2011) Phase altimetry with dual polarization GNSS-R over sea-ice. IEEE Trans Geosci Remote Sens 50(6):10. doi:10.1109/TGRS.2011.2172797

    Google Scholar 

  • Fung AK (1994) Microwave scattering and emission models and their applications. Artech House, Norwood

    Google Scholar 

  • Fung AK, Pan GW (1986) An integral equation model for rough surface scattering. In: Proceedings of the international symposium on multiple scattering of waves in random media and random rough surface, 29 July–2 August 1985, University Park, PA. Pennsylvania State University Press, pp 701–714

    Google Scholar 

  • Fung AK, Li Z, Chen KS (1992) Backscattering from a randomly rough dielectric surface. IEEE Trans Geosci Remote Sens 30(2):356–369

    Article  Google Scholar 

  • Garrison JL, Komjathy A, Zavorotny VU, Katzberg SJ (2002) Wind speed measurement using forward scattered GPS signals. IEEE Trans Geosci Remote Sens 40:50–65

    Article  Google Scholar 

  • Germain O, Ruffini G, Soulat F, Caparrini M, Chapron B, Silvestrin P (2004) The eddy experiment: GNSS-R speculometry for directional sea-roughness retrieval from low-altitude aircraft. Geophys Res Lett 31:L21307. doi:10.1029/2004GL020991

    Article  Google Scholar 

  • Hajj G, Zuffada C (2003) Theoretical description of a bistatic system for Ocean altimetry using the GPS signal. Radio Sci 38(5):1089. doi:10.1029/2002RS002787

    Article  Google Scholar 

  • Helm A, Beyerle G, Nitschke M (2004) Detection of coherent reflections with GPS bipath interferometry. http://arxiv.org/pdf/physics/0407091v1.pdf

  • Ishimaru A (1978) Wave propagation and scattering in random media, vol 2. Academic, New York, p 572

    Google Scholar 

  • Komjathy A, Armatys M, Masters D, Axelrad P (2004) Retrieval of Ocean surface wind speed and wind direction using reflected GPS signals. J Atmos Ocean Technol 21:515–526

    Article  Google Scholar 

  • Krotikov VD (1962) Dielectric properties of dry soils. Izvest Vuz Radiophyz 5:1057

    Google Scholar 

  • Larson KM, Small EE, Gutmann E, Bilich A, Braun J, Zavorotny V (2008) Use of GPS receivers as a soil moisture network for water cycle studies. Geophys Res Lett 35:L24405. doi:10.1029/2008GL036013

    Article  Google Scholar 

  • Larson KM, Gutmann E, Zavorotny V, Braun J, Williams M, Nievinski F (2009) Can we measure snow depth with GPS receivers? Geophys Res Lett 36:L17502. doi:10.1029/2009GL039430

    Article  Google Scholar 

  • Larson KM, Ray R, Nievinski F, Freymueller J (2013) The accidental tide gauge: a case study of GPS reflections from Kachemak Bay, Alaska. IEEE Geosci Remote Sens Lett 10(5):1200–1204. doi:10.1109/LGRS.2012.2236075

    Article  Google Scholar 

  • Marchan-Hernandez J, Rodriguez-Alvarez N, Camps A, Bosch-Lluis X, Ramos-Perez I, Valencia E (2008) Correction of the sea state impact in the L-band brightness temperature by means of delay-Doppler maps of global navigation satellite signals reflected over the sea surface. IEEE Trans Geosci Remote Sens 46:2914–2923

    Article  Google Scholar 

  • Martín-Neira M (1993) A passive reflectometry and interferometry system (PARIS): application to Ocean altimetry. ESA J 17:331–355

    Google Scholar 

  • Martín-Neira M, Colmenarejo P, Ruffini G, Serra C (2002) Altimetry precision of 1 cm over a pond using the wide-lane carrier phase of GPS reflected signals. Can J Remote Sens 28(3):394–403

    Article  Google Scholar 

  • Martín-Neira M, D’Addio S, Buck C, Floury N, Prieto-Cerdeira R (2011) The PARIS Ocean altimeter in-orbit demonstrator. IEEE Trans Geosci Remote Sens 49(6, part 2):2209–2237. doi:10.1109/TGRS.2010.2092431

    Google Scholar 

  • Nogués-Correig O, Cardellach Galí E, Sanz Campderròs J, Rius A (2007) A GPS-reflections receiver that computes Doppler/delay maps in real time. IEEE Trans Geosci Remote Sens 45:156–174

    Article  Google Scholar 

  • PBO H2O Server (2012) http://xenon.colorado.edu/portal/

  • Rice SO (1951) Reflection of electromagnetic waves from slightly rough surfaces. Commun Pure Appl Math 4:351–378

    Article  Google Scholar 

  • Rice SO (1963) Reflection of EM from slightly rough surfaces. Interscience, New York

    Google Scholar 

  • Rius A, Cardellach E, Martín-Neira M (2010) Altimetric analysis of the sea surface GPS reflected signals. IEEE Trans Geosci Remote Sens 48(4):2119–2127. doi:10.1109/TGRS.2009.2036721

    Article  Google Scholar 

  • Rius A, Cardellach E, Oliveras S, Valencia E, Park H, Camps A, van der Marel H, van Bree R, Altena B, Nogués-Correig O, Ribó S, Tarongí J, Martín-Neira M (2011) Altimetry with GNSS-R interferometry: first proof of concept experiment. GPS Solut 1–11. doi:10.1007/s10291-011-0225-9

    Google Scholar 

  • Rius A, Fabra F, Ribó S, Arco Fernandez JC, Oliveras S, Cardellach E, Camps A, Nogués-Correig O, Kainulainen J, Rohue E, Martín-Neira M (2012) PARIS interferometric technique proof of concept: sea surface altimetry measurements. In: Proceedings of IEEE international geoscience and remote sensing symposium (IGARSS) 2012, Munich, pp 7067–7070. doi:10.1109/IGARSS.2012.6352035

    Google Scholar 

  • Rodriguez-Alvarez N, Bosch-Lluis X, Camps A, Ramos-Perez I, Valencia E, Park H, Vall-Llossera M (2012) Vegetation water content estimation using GNSS measurements. IEEE Geosci Remote Sens Lett 9(2):282–286

    Article  Google Scholar 

  • Semmling M, Beyerle G, Stosius R, Dick G, Wickert J, Fabra F, Cardellach E, Ribó S, Rius A, Helm A (2011) Detection of Arctic Ocean tides using interferometric GNSS-R signals. Geophys Res Lett doi:10.1029/2010GL046005

    Google Scholar 

  • Small EE, Larson KM, Braun JJ (2010) Sensing vegetation growth using reflected GPS signals. Geophys Res Lett 37:L12401. doi:10.1029/2010GL042951

    Article  Google Scholar 

  • Stratton JA (1941) Electromagnetic theory. McGraw-Hill, New York, p 615

    Google Scholar 

  • Thompson AR, Moran JM, Swenson GW (1986) Interferometry and synthesis in radio astronomy. A Wiley-Interscience publication, Wiley, New York. ISBN:0-471-80614-5

    Google Scholar 

  • Treuhaft RN, Lowe ST, Zuffada C, Chao Y (2001) Two-cm GPS altimetry over Crater Lake. Geophys Res Lett 28(23):4343–4346

    Article  Google Scholar 

  • Treuhaft RN, Lowe ST, Cardellach E (2011) Formulating a vector wave expression for polarimetric GNSS surface scattering. Prog Electromagn Res B 33:257–276

    Article  Google Scholar 

  • Ulaby FT, Moore RK, Fung AK (1982) Microwave remote sensing: active and passive, vol 2. Artech House, Inc., Norwood, p 1064

    Google Scholar 

  • Ulaby FT, Moore RK, Fung AK (1986) Microwave remote sensing: active and passive, vol 3. Artech House, Inc., Norwood, p 2162

    Google Scholar 

  • Valenzuela G (1978) Theories for the interaction of electromagnetic and oceanic waves – a review. Bound Layer Meteorol 13:61–85

    Article  Google Scholar 

  • Voronovich AG (1985) Small-slope approximation in wave scattering from rough surfaces. Sov Phys JETP 62(1):65–70

    Google Scholar 

  • Voronovich AG (1994a) Small-slope approximation for electromagnetic wave scattering at a rough interface of two dielectric half-spaces. Waves Random Media, Springer Berlin Heidelberg 4:337–367

    Article  Google Scholar 

  • Voronovich AG (1994b) Wave scattering from rough surfaces. Springer series on wave phenomena. Springer, Berlin/New York

    Book  Google Scholar 

  • Zavorotny VU, Voronovich AG (2000) Scattering of GPS signals from the Ocean with wind remote sensing application. IEEE Trans Geosci Remote Sens 38:951–964

    Article  Google Scholar 

  • Zhurbenko V (ed) (2011) Electromagnetic waves. InTech, Vienna. ISBN:978-953-307-304-0, Chapter 10 by: Ticconi F, Pulvirenti L, Pierdicca N

  • Zuffada C, Elfouhaily T, Lowe S (2003) Sensitivity analysis of wind vector measurements from Ocean reflected GPS signals. Remote Sens Environ 88(3):341–350

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jin, S., Cardellach, E., Xie, F. (2014). Theory of GNSS Reflectometry. In: GNSS Remote Sensing. Remote Sensing and Digital Image Processing, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7482-7_8

Download citation

Publish with us

Policies and ethics