Ground GNSS Ionosphere Sounding

Part of the Remote Sensing and Digital Image Processing book series (RDIP, volume 19)


Ionospheric delay will bring errors for GNSS navigation and positioning when the electromagnetic wave signal goes through the earth’s ionosphere from satellites to receivers. The amount of ionospheric delay of GNSS varies from a few meters to decades of meters, but could reach more than decades of meters during severe ionosphere storms. In contrast, the GNSS ionospheric delay may provide some useful information on the ionosphere, e.g. the total electron content (TEC). In this chapter, the theory and methods of ground-based GNSS ionospheric sounding are introduced, including vertical TEC, differential code biases, 2-D and 3-D ionospheric mapping. In addition, some applications are presented and discussed, e.g., GNSS TEC climatology, solar flare and storms response and co-seismic ionospheric behaviors.


Global Position System Total Electron Content Wenchuan Earthquake International GNSS Serve Ionospheric Delay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Afraimovich E, Ding F, Kiryushkin V, Astafyeva E, Jin SG, Sankov V (2010) TEC response to the 2008 Wenchuan earthquake in comparison with other strong earthquakes. Int J Remote Sens 31(13):3601–3613. doi: 10.1080/01431161003727747 CrossRefGoogle Scholar
  2. Austen JR, Franke SG, Liu CH (1988) Ionospheric imaging using computerized tomography. Radio Sci 23:299–307CrossRefGoogle Scholar
  3. Bassiri S, Hajj GA (1993) Higher-order ionospheric effects on the global positioning systems observables and means of modeling them. Manuscr Geodetica 18:280–289Google Scholar
  4. Bhonsle RV, Da Rosa AV, Garriott OK (1965) Measurement of total electron content and the equivalent slab thickness of the mid latitude ionosphere. Radio Sci 69(7):929–939Google Scholar
  5. Bilitza D (2001) International reference ionosphere 2000. Radio Sci 36:261–275CrossRefGoogle Scholar
  6. Calais E, Minster JB (1995) GPS detection of ionospheric perturbations following the January 17, 1994, Northridge Earthquake. Geophys Res Lett 22(9):1045–1048CrossRefGoogle Scholar
  7. Feng D, Herman BM (1999) Remotely sensing the Earth’s atmosphere using the Global Positioning System (GPS)- The GPS/MET data analysis. J Atmos Ocean Technol 16:989–1002CrossRefGoogle Scholar
  8. Gordon R, Bender R, Therman G (1970) Algebraic reconstruction techniques (ART) for three dimensional electron microscopy and X-ray photography. J Theor Biol 29:471–481CrossRefGoogle Scholar
  9. Huang YN (1983) Some result of ionospheric slab thickness observations at Lunping. J Geophys Res 88:5517–5522CrossRefGoogle Scholar
  10. Huang C-Y, Kuo Y-H, Chen S-H, Vandenberghe F (2005) Improvements in typhoon forecasts with assimilated GPS occultation refractivity. Weather Forecast 20:931–953CrossRefGoogle Scholar
  11. Jaychandran B, Krishnankutty T, Gulyaeva T (2004) Climatology of ionospheric slab thickness. Ann Geophys 22:25–33CrossRefGoogle Scholar
  12. Jin R, Jin SG (2013) Secular variations and fluctuations of GPS TEC over Antarctica. In: Proceeding of IAU symposium 288, Beijing, China, 20–31 Aug 2012, pp 322–325. doi: 10.1017/S1743921312017139
  13. Jin SG, Park J (2007) GPS ionospheric tomography: a comparison with the IRI-2001 model over South Korea. Earth Planets Space 59(4):287–292Google Scholar
  14. Jin SG, Wang J, Zhang H, Zhu W (2004) Real-time monitoring and prediction of the total ionospheric electron content by means of GPS observations. Chin Astron Astrophys 28(3):331–337. doi: 10.1016/j.chinastron.2004.07.008 CrossRefGoogle Scholar
  15. Jin SG, Park J, Wang J, Choi B, Park P (2006) Electron density profiles derived from ground-based GPS observations. J Navig 59(3):395–401. doi: 10.1017/S0373463306003821 Google Scholar
  16. Jin SG, Cho J, Park J (2007) Ionospheric slab thickness and its seasonal variations observed by GPS. J Atmos Sol Terr Phys 69(15):1864–1870. doi: 10.1016/j.jastp.2007.07.008 CrossRefGoogle Scholar
  17. Jin SG, Luo OF, Park P (2008) GPS observations of the ionospheric F2-layer behavior during the 20th November 2003 geomagnetic storm over South Korea. J Geod 82(12):883–892. doi: 10.1007/s00190-008-0217-x CrossRefGoogle Scholar
  18. Jin SG, Zhu WY, Afraimovich E (2010) Co-seismic ionospheric and deformation signals on the 2008 magnitude 8.0 Wenchuan Earthquake from GPS observations. Int J Remote Sens 31(13):3535–3543. doi: 10.1080/01431161003727739 CrossRefGoogle Scholar
  19. Kiryushkin V, Afraimovich E (2007) Determining the parameters of ionospheric perturbation caused by earthquakes with using the quasi-optimum algorithm of spatiotemporal processing of TEC measurements. Earth Planets Space 59:267–278Google Scholar
  20. Klobuchar JK (1991) Ionospheric effects on GPS. GPS World:48–51Google Scholar
  21. Liu J, Chen J, Zhang Y et al (1998) The theory and method of wide area differential GPS. Surveying and Mapping Press, BeijingGoogle Scholar
  22. Mannucci AJ, Wilson B, Yuan DN (1998) A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci 33(3):565–574CrossRefGoogle Scholar
  23. Mansilla G, Mosert M, Ezquer R (2005) Seasonal variation of the total electron content, maximum electron density and equivalent slab thickness at a South-American station. J Atmos Sol Terr Phys 67:1687–1690CrossRefGoogle Scholar
  24. Otsuka Y, Ogawa T, Saito A, Tsugawa T, Fukao S, Miyazak S (2002) A new technique for mapping of total electron content using GPS network in Japan. Earth Planets Space 54:63–70Google Scholar
  25. Pandey VK, Sethi NK, Mahajan KK (2001) Equivalent slab thickness and its variability: a study with incoherent scatter measurements. Adv Space Res 27:61–64CrossRefGoogle Scholar
  26. Raymund TD, Austen JR, Franke SJ (1990) Application of computerized tomography to the investigation of ionospheric structures. Radio Sci 25:771–789CrossRefGoogle Scholar
  27. Reinishch BW, Haines DM, Benson RF, Green JL, Sales GS, Taylor W (2001) Radio sounding in space: magnetosphere and topside ionosphere. J Atmos Sol Terr Phys 63:87–98CrossRefGoogle Scholar
  28. Rocken C (1997) Analysis and validation of GPS/MET data in the neutral atmosphere. J Geophys Res 102:29849–29866CrossRefGoogle Scholar
  29. Ruffini G, Flores A, Rius A (1998) GPS tomography of the ionospheric electron content with a correlation functional. IEEE Trans Geosci Remote Sens 36(1):143–153CrossRefGoogle Scholar
  30. Schaer S (1999) Mapping and predicting the Earth’s ionosphere using the Global Positioning System. Ph.D. dissertation. Astronomical Institute, University of Berne, SwitzerlandGoogle Scholar
  31. Skone S (1998) Wide area ionosphere grid modeling in the Auroral Region. Ph.D. thesis, The University of Calgary, Calgary, Alberta, CanadaGoogle Scholar
  32. Syndergaard S (2000) On the ionosphere calibration in GPS radio occultation measurements. Radio Sci 35(3):865–883CrossRefGoogle Scholar
  33. Tsai LC, Liu CH, Tsai WH, Liu CT (2002) Tomographic imaging of the ionosphere using the GPS/MET and NNSS data. J Atmos Sol Terr Phys 64:2003–2011CrossRefGoogle Scholar
  34. Tsunoda RT (1988) High-latitude F-region irregularities: a review and synthesis. Rev Geophys 26:719–760CrossRefGoogle Scholar
  35. Wall ME, Dyck PA, Brettin TS (2001) SVDMAN – singular value decomposition analysis of microarray data. Bioinformatics 17:566–568CrossRefGoogle Scholar
  36. Ware R (1992) GPS sounding of the earth atmosphere. GPS World 3:56–57Google Scholar
  37. Yin P, Mitchell CN, Spencer PS, Foster JC (2004) Ionospheric electron concentration imaging using GPS over the USA during the storm of July 2000. Geophys Res Lett 31:L12806. doi: 10.1029/2004GL019899 CrossRefGoogle Scholar
  38. Yuan Y, Ou J (2002) Differential Areas for Differential Stations (DADS): a new method of establishing grid ionospheric model. Chin Sci Bull 47(12):1033–1036Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Shanghai Astronomical ObservatoryChinese Academy of SciencesShanghaiChina People’s Republic
  2. 2.Institut d’Estudis Espacials de Catalunya (ICE/IEEC-CSIC)BarcelonaSpain
  3. 3.Texas A&M University-Corpus ChristiCorpus ChristiUSA

Personalised recommendations