Skip to main content

GNSS Atmospheric and Multipath Delays

  • Chapter
  • First Online:
GNSS Remote Sensing

Part of the book series: Remote Sensing and Digital Image Processing ((RDIP,volume 19))

Abstract

The GNSS signals will be refracted when going through the neutral atmosphere and the ionosphere, with the speed change and signal curve. The effects are called GNSS atmospheric and ionospheric delays, respectively. In addition, the GNSS antenna can receive signals from not only the direct path, but also indirect reflected or diffracted signals, which will result in a certain delay, phase, and amplitude difference relative to the direct component, called GNSS multipath effects. In this Chapter, more detailed atmospheric delays and multipath effects are introduced, including tropospheric and ionospheric correction models and multipath variation characteristics with satellite elevation and antenna height.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bassiri S, Hajj GA (1993) Higher-order ionospheric effect on the Global Positioning System observables and means of modeling them. Manuscr Geodaet 18:280–289

    Google Scholar 

  • Bent RB et al (1972) Description and evaluation of the Bent ionospheric model. DBA Systems, Melbourne

    Google Scholar 

  • Bilitza D, Reinisch BW (2008) International reference ionosphere 2007: improvements and new parameters. Adv Space Res 42(4):599–609

    Article  Google Scholar 

  • Datta-Barua S, Walter T, Blanch J, Enge P (2008) Bounding higher-order ionosphere errors for the dual-frequency GPS user. Radio Sci 43:RS5010. doi:10.1029/2007RS003772

    Article  Google Scholar 

  • Elosegui P, Davis JL, Jaldehag RK, Johansson JM, Niell AE, Shapiro B (1995) Geodesy using the global positioning system: the effects of signal scattering. J Geophys Res 100:9921–9934

    Article  Google Scholar 

  • Hartmann G, Leitinger R (1984) Range errors due to ionospheric and tropospheric effects for signal frequencies above 100 MHz. Bull Géod 58:109–136

    Article  Google Scholar 

  • Hilla S, Cline M (2002) Evaluating pseudorange multipath effects at stations in the National CORS Network, Weikko A. Heiskanen Symposium in Geodesy, the Ohio State University Columbus, OH, 1–4 Oct 2002

    Google Scholar 

  • Hopfield H (1969) Two-quartic tropospheric refractivity profile for correcting satellite data. J Geophys Res 74(18):4487–4499

    Article  Google Scholar 

  • Hopfield HS (1971) Tropospheric effect on electromagnetically measured range: prediction from surface weather data. Radio Sci 6:357–367

    Article  Google Scholar 

  • Kelley MC (2009) The Earth’s ionosphere: plasma physics & electrodynamics. Academic Press/ Elsevier, San Diego

    Google Scholar 

  • Klobuchar JA (1987) Ionospheric time-delay algorithm for single-frequency Gps users. IEEE Trans Aerosp Electron Syst 23(3):325–331

    Article  Google Scholar 

  • Lakhtakia A (1992) General schema for the Brewster conditions. Optik 90:184–186

    Google Scholar 

  • Leroux C, Deuze JL, Goloub P, Sergent C, Fily M (1998) Ground measurements of the polarized bidirectional reflectance of snow in the near-infrared spectral domain: comparisons with model results. J Geophys Res 103:19721–19731

    Article  Google Scholar 

  • Pulinets SA, Boyarchuk KA (2004) Ionospheric precursors of earthquakes. Springer, Berlin, p 315

    Google Scholar 

  • Ray JK, Cannon ME (1999) Mitigation of static carrier-phase multipath effects using multiple closely spaced antennas. Navigation 46:193–201

    Google Scholar 

  • Saastamoinen J (1972) Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. In: The use of artificial satellites for geodesy, Geophysical monograph series 15. American Geophysical Union, Washington, pp 247–251

    Google Scholar 

  • Saastamoinen J (1973) Contributions to the theory of atmospheric refraction (in three parts). Bull Geod 105, 106, 107, 279–298, 383–397, 13–34

    Google Scholar 

  • Saastamoinen J (1975) Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. The use of artificial satellites for Geodesy. Geophys Monogr 15:247–251

    Article  Google Scholar 

  • Smith EK, Weintraub S (1953) The constants in the equation for atmospheric refractive index at radio frequencies. Proc IRE 41:1035–1037

    Article  Google Scholar 

  • Teunissen P, Kleusberg A (1998) GPS for Geodesy, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • van Nee RDJ (1992) Multipath effects on GPS code phase measurements. Navigation 39:177–190

    Google Scholar 

  • Vickerman JC, Gilmore IS (2009) Surface analysis-the principal techniques, 2nd edn. Wiley, Chichester, pp 391–478

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jin, S., Cardellach, E., Xie, F. (2014). GNSS Atmospheric and Multipath Delays. In: GNSS Remote Sensing. Remote Sensing and Digital Image Processing, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7482-7_2

Download citation

Publish with us

Policies and ethics