Skip to main content

Reflections on Justification and Proof

Justification and Proof in Mathematics and Mathematics Education

  • Chapter
Mathematics & Mathematics Education: Searching for Common Ground

Part of the book series: Advances in Mathematics Education ((AME))

  • 2446 Accesses

Abstract

In this chapter, we explore how investigations into mathematicians’ practice can inform instruction on justification and proof. Each co-author of this practice presents an investigation of how mathematicians use justification and proof in their professional practice and suggests pedagogical implications based upon insights from their investigations.

With contributions by

Gila Hanna, Ontario Institute for Studies in Education, University of Toronto, Toronto, Canada

Guershon Harel, University of California-San Diego, La Jolla, CA, USA

Ivy Kidron, Jerusalem College of Technology, Jerusalem, Israel

Annie Selden and John Selden, New Mexico State University, Las Cruces, NM, USA

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Park City Mathematics Institute is a program of the Institute for Advanced Study, Princeton, NJ. It is designed for mathematics researchers, post-secondary students, and mathematics educators at the secondary and post-secondary levels.

  2. 2.

    By quasi-empirical evidence, de Villiers (2004) was including naïve empirical evidence collected with the aid of computers (see p. 398).

References

  • Alcock, L., & Weber, K. (2010). Undergraduates’ example use in proof construction: purposes and effectiveness. Investigations in Mathematics Learning, 3, 1–22.

    Google Scholar 

  • Avigad, J. (2006). Mathematical method and proof. Synthese, 153(10), 105–159.

    Article  Google Scholar 

  • Azzouni, J. (2004). The derivation-indicator view of mathematical practice. Philosophia Mathematica, 12, 81–106.

    Article  Google Scholar 

  • Azzouni, J. (2009). Why do informal proofs conform to formal norms? Foundations of Science, 14(1), 9–26.

    Article  Google Scholar 

  • Balacheff, N. (1987). Processus de preuves et situations de validation. Educational Studies in Mathematics, 18(2), 147–176.

    Article  Google Scholar 

  • Calude, C. S., & Müller, C. (2009). Formal proof: reconciling correctness and understanding. In L. Dixon et al. (Eds.), LNAI: Vol. 5625. Proceedings Calculemus/MKM (pp. 217–232). Dordrecht: Springer.

    Google Scholar 

  • Corfield, D. (2003). Towards a philosophy of real mathematics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Csiszar, A. (2003). Stylizing rigor: or, why mathematicians write so well. Configurations, 11(2), 239–268.

    Article  Google Scholar 

  • Dawson, J. W. (2006). Why do mathematicians re-prove theorems? Philosophia Mathematica, 14, 269–286.

    Article  Google Scholar 

  • de Villiers, M. (2004). The role and function of quasi-empirical methods in mathematics. Canadian Journal of Science, Mathematics and Technology Education, 4, 397–418.

    Article  Google Scholar 

  • Dreyfus, T., & Eisenberg, T. (1986). On the aesthetics of mathematical thoughts. For the Learning of Mathematics, 6(1), 2–10.

    Google Scholar 

  • Dreyfus, T., & Kidron, I. (2006). Interacting parallel constructions: a solitary learner and the bifurcation diagram. Recherches En Didactique Des Mathématiques, 26(3), 295–336.

    Google Scholar 

  • Friedman, A., & Medway, P. (1994). Introduction. New views of genre and their implications for education. In A. Friedman & P. Medway (Eds.), Learning and teaching genre (pp. 1–22). Portsmouth: Heinemann.

    Google Scholar 

  • Hales, T. C. (2008). Formal proof. Notices of the American Mathematical Society, 11, 1370–1380.

    Google Scholar 

  • Hanna, G., & Barbeau, E. (2008). Proofs as bearers of mathematical knowledge. ZDM. The International Journal on Mathematics Education, 40(3), 345–353.

    Article  Google Scholar 

  • Harel, G. (1998). Two dual assertions: the first on learning and the second on teaching (or vice versa). The American Mathematical Monthly, 105, 497–507.

    Article  Google Scholar 

  • Harel, G. (2001). The development of mathematical induction as a proof scheme: a model for DNR-based instruction. In S. Campbell & R. Zazkis (Eds.), Learning and teaching number theory (pp. 185–212). New Jersey: Ablex.

    Google Scholar 

  • Harel, G. (2008a). DNR perspective on mathematics curriculum and instruction, part I: focus on proving. ZDM. Zentralblatt für Didaktik der Mathematik, 40, 487–500.

    Article  Google Scholar 

  • Harel, G. (2008b). DNR perspective on mathematics curriculum and instruction, part II: with reference to teachers’ knowledge base. ZDM. Zentralblatt für Didaktik der Mathematik, 40, 893–907.

    Article  Google Scholar 

  • Harel, G., & Sowder, L. (2007). Towards a comprehensive perspective on proof. In F. Lester (Ed.), Second handbook of research on mathematical teaching and learning. Washington: NCTM.

    Google Scholar 

  • Harrison, J. (2008). Formal proof—theory and practice. Notices of the American Mathematical Society, 11, 1395–1406.

    Google Scholar 

  • Healy, L., & Hoyles, C. (2000). A study of proof conceptions in algebra. Journal for Research in Mathematics Education, 31, 396–428.

    Article  Google Scholar 

  • Herbst, P., & Balacheff, N. (2009). Proving and knowing in public: the nature of proof in a classroom. In M. Blanton, D. Stylianou, & E. Knuth (Eds.), Teaching and learning proof across the grades: a K-16 perspective (pp. 40–64). New York: Routledge.

    Google Scholar 

  • Inglis, M., Mejia-Ramos, J. P., Weber, K., & Alcock, L. (2013). On mathematicians’ different standards when evaluating elementary proofs. Topics in Cognitive Science, 5, 270–282.

    Article  Google Scholar 

  • Kidron, I., & Dreyfus, T. (2009). Justification, enlightenment and the explanatory nature of proof. In F.-L. Lin, F.-J. Hsieh, G. Hanna, & M. de Villiers (Eds.), Proceedings of the ICMI study 19 conference: proof and proving in mathematics education (Vol. 1, pp. 244–249). Taipei: National Taiwan Normal University.

    Google Scholar 

  • Kidron, I., & Dreyfus, T. (2010a). Justification enlightenment and combining constructions of knowledge. Educational Studies in Mathematics, 74(1), 75–93.

    Article  Google Scholar 

  • Kidron, I., & Dreyfus, T. (2010b). Interacting parallel constructions of knowledge in a CAS context. International Journal of Computers for Mathematical Learning, 15(2), 129–149.

    Article  Google Scholar 

  • Kitcher, P. (1981). Explanatory unification. Philosophy of Science, 48, 507–531.

    Article  Google Scholar 

  • Knuth, E. (2000). The rebirth of proof in school mathematics in the United States? International Newsletter on the Teaching and Learning of Mathematical Proof. http://www.cabri.imag.fr/Preuve/.

  • Lee, J. L. (2012). Some remarks on writing mathematical proofs. http://www.math.washington.edu/~lee/Writing/writing-proofs.pdf. Accessed 3 June, 2012.

  • Leron, U. (1983). Structuring mathematical proofs. The American Mathematical Monthly, 90(3), 174–180.

    Article  Google Scholar 

  • Mancosu, P. (2001). Mathematical explanation: problems and prospects. Topoi, 20, 97–117.

    Article  Google Scholar 

  • Manin, Y. (1998). Truth, rigour, and common sense. In H. G. Dales & G. Oliveri (Eds.), Truth in mathematics (pp. 147–159). Oxford: Oxford University Press.

    Google Scholar 

  • Marfori, M. A. (2010). Informal proofs and mathematical rigour. Studia Logica, 96, 261–272.

    Article  Google Scholar 

  • Maric, F., & Neuper, W. (2011). Theorem-prover based systems (TPS) for education (eduTPS). http://sites.dmi.rs/events/2012/CADGME2012/files/working%20group/Theorem-Prover%20based%20Systems.pdf.

  • Marks, G., & Mousley, J. (1990). Mathematics education and genre: dare we make the process writing mistake again? Language and Education, 4, 117–135.

    Article  Google Scholar 

  • McKnight, C., Magid, M., Murphy, T. J., & McKnight, M. (2000). Mathematics education research: a guide for the research mathematician. Washington: Am. Math. Soc.

    Google Scholar 

  • Nardi, E., & Iannone, P. (2006). To appear and to be: acquiring the genre speech of university mathematics. In Proceedings of the 4th conference on European research in mathematics education, CERME, Sant Feliu de Guixols, Spain (pp. 1800–1810).

    Google Scholar 

  • Rav, Y. (1999). Why do we prove theorems? Philosophia Mathematica, 7(3), 5–41.

    Article  Google Scholar 

  • Rota, G.-C. (1997). Indiscrete thoughts (pp. 131–135). Boston: Birkhäuser.

    Google Scholar 

  • Sandborg, D. (1997). Explanation in mathematical practice. Unpublished Ph.D. dissertation, University of Pittsburgh.

    Google Scholar 

  • Schoenfeld, A. H. (1989). Explorations’ of students mathematical beliefs and behaviour. Journal for Research in Mathematics Education, 20, 338–355.

    Article  Google Scholar 

  • Schoenfeld, A. H. (1994). What do we know about mathematics curricula? The Journal of Mathematical Behavior, 13(1), 55–80.

    Article  Google Scholar 

  • Selden, A. (2012). Transitions and proof and proving at tertiary level. In M. de Villiers & G. Hanna (Eds.), Proof and proving in mathematics education—the 19th ICMI study (pp. 391–420). New York: Springer.

    Google Scholar 

  • Selden, A., & Selden, J. (2003). Validations of proofs considered as texts: can undergraduates tell whether an argument proves a theorem? Journal for Research in Mathematics Education, 34, 4–36.

    Article  Google Scholar 

  • Selden, A., & Selden, J. (2011). Mathematical and non-mathematical university students’ proving difficulties. In L. R. Wiest & T. D. Lamberg (Eds.), Proceedings of the 33rd annual conference of the North American chapter of the international group for the psychology of mathematics education. Reno, NV (pp. 675–683).

    Google Scholar 

  • Selden, A., McKee, K., & Selden, J. (2010). Affect, behavioural schemas and the proving process. International Journal of Mathematical Education in Science and Technology, 41(2), 199–215.

    Article  Google Scholar 

  • Shepherd, M. D., Selden, A., & Selden, J. (2012). University students’ reading of their first-year mathematics textbooks. Mathematical Thinking and Learning, 14, 226–256.

    Article  Google Scholar 

  • Steiner, M. (1978). Mathematical explanation. Philosophical Studies, 34, 135–151.

    Article  Google Scholar 

  • Tall, D. (2006). A theory of mathematical growth through embodiment, symbolism and proof. In Annales de didactique et de sciences cognitives (Vol. 11, 195–215) Strasbourg: IREM.

    Google Scholar 

  • Tao, T. (2001). Learn the power of other mathematicians’ tools. http://terrytao.wordpress.com/career-advice/learn-the-power-of-other-mathematicians-tools/.

  • Tao, T. (2010). Buzz-public. https://profiles.google.com/114134834346472219368/buzz/WJkEENg19Sz#114134834346472219368/buzz/WJkEENg19Sz.

  • Tappenden, J. (2005). Proof style and understanding in mathematics 1: visualization, unification and axiom choice. In P. Mancosu, K. F. Jørgensen, & S. A. Pedersen (Eds.), Visualization, explanation and reasoning styles in mathematics (pp. 147–214). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Thurston, W. P. (1994). On proof and progress in mathematics. Bulletin of the American Mathematical Society, 30(2), 161–177.

    Article  Google Scholar 

  • Watson, A., & Mason, J. (2005). Mathematics as a constructive activity: learners generating examples. Mahwah: Erlbaum.

    Google Scholar 

  • Weber, K. (2008). How mathematicians determine if an argument is a valid proof. Journal for Research in Mathematics Education, 39, 431–459.

    Google Scholar 

  • Weber, K. (2013). On the sophistication of naïve empirical reasoning: factors influencing mathematicians’ persuasion ratings of empirical arguments. Research in Mathematics Education, 15, 100–114.

    Article  Google Scholar 

  • Wiedijk, F. (2008). Formal proof—getting started. Notices of the American Mathematical Society, 11, 1408–1414.

    Google Scholar 

  • Wilkerson-Jerde, M. H., & Wilensky, U. J. (2011). How do mathematicians learn math?: resources and acts for constructing and understanding mathematics. Educational Studies in Mathematics, 78, 21–43.

    Article  Google Scholar 

  • Wu, H. (1996). The role of Euclidean geometry in high school. The Journal of Mathematical Behavior, 15, 221–237.

    Article  Google Scholar 

  • Yandell, B. H. (2002). The honors class: Hilbert’s problems and their solvers. Natick: AK Peters.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith Weber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Weber, K. (2014). Reflections on Justification and Proof. In: Fried, M., Dreyfus, T. (eds) Mathematics & Mathematics Education: Searching for Common Ground. Advances in Mathematics Education. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7473-5_14

Download citation

Publish with us

Policies and ethics