Skip to main content

Specificity of Structure and Properties of Timber Species

  • Chapter
  • First Online:
Fire Behavior and Fire Protection in Timber Buildings

Part of the book series: Springer Series in Wood Science ((SSWOO))

Abstract

This chapter describes the data related to micro- and macro-structure of deciduous and coniferous species, dry and wet density, and basic relationship between thermal conductivity, specific heat capacity, thermal diffusivity, thermal inertia and humidity, and density and anisotropy of various types of timber, and some genetic aspects of timber diversity are considered. The basic relationship between mechanical properties and ambient temperature is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afonin AA Palynometric analysis – assessing the level of aneuploidy and possible polyploidy in willow populations. http://www.afonin-59salix.narod.ru/index.html

  • Aleshina LA, Glazkova SV, Lugovskaya LA, et al (2001) Present-day concepts of cellulose structure. Chem Plant Mater (1):5–36

    Google Scholar 

  • Antonova GF (1999) Cell growth in coniferous trees. Nauka, Novosibirsk, 232 p

    Google Scholar 

  • Antonova GF (2000) Comparative analysis of lignification in summer and autumn wood of Siberian larch. In: Materials of the III international symposium “wood structure, properties and quality”. Institute of Forest of KNC RAS, Petrozavodsk, pp 27–29

    Google Scholar 

  • Antonova GF, Stasova VV, Konovalov NT, Konovalova NN (2002) Lignin distribution in structural elements of English oak wood. In: Proceedings of the II international conference for plant anatomy and morphology. SPbGLTA, St. Petersburg, pp 331–332

    Google Scholar 

  • Belyankin FP (1939) Mechanical characteristics of oak and pine timber. Academy of Sciences, Ukraine, Kiev

    Google Scholar 

  • Bobacz D (2008) Behavior of wood in case of fire. VDM Verlag Dr. Muller, 307 p

    Google Scholar 

  • Borodina NA (1982) Polyploidy in introduction of woody plants. Nauka, Moscow, 177 p

    Google Scholar 

  • Bui Din Than (2006) Impact of chemical components on fire-safety parameters of timber of Vietnam’s tropical species. PhD dissertation, ASFS, Moscow, 184 p

    Google Scholar 

  • Chudinov BS (1984) Water in wood. Nauka, Novosibirsk, 267 p

    Google Scholar 

  • Gamaley Yu V (2004) Transport system in vascular plants. Publishing House of SPb University, St. Petersburg, 424 p

    Google Scholar 

  • Glass SV, Felinka SL (2010) Chapter 4: Moisture relations and physical properties of wood. In: Forest Products Laboratory (ed) Wood handbook: wood as an engineering materials. FPL-GTR-190. Forest Products Laboratory, Madison, pp 1–19

    Google Scholar 

  • Golubovsky AM (2000) Age of genetics: evolution of ideas and notions. Borey Art, St. Petersburg, 263 p

    Google Scholar 

  • Goodwin T, Mercer E (1986) Introduction to plant biochemistry, 2 vols. Mir, Moscow, 396 p

    Google Scholar 

  • GOST 16483.34 – 77. Wood. Method of gas permeability determination

    Google Scholar 

  • GOST 16483. Timber. Methods for determination of mechanical properties

    Google Scholar 

  • Greb NA, Dzyga NV (2004) Gas permeability of larch sapwood in radial and tangential directions. In: Proceedings of the IV international symposium on “wood structure, properties and quality-2004”, vol 1. SFTA, St. Petersburg, pp 212–213

    Google Scholar 

  • Grif VG (2007) Plant mutagenesis and phylogenesis. Cytology 49(6):433–441

    Google Scholar 

  • GSSSD 69–84. Timber. Parameters of mechanical properties of small clean specimens. Gosstandart of the USSR, 1984

    Google Scholar 

  • Janssens MA (1991) Thermal model for piloted ignition of wood including variable thermophysical properties. In: Proceedings of the third international symposium on fire safety science, pp 167–176

    Google Scholar 

  • Khmelidze TP, et al (1986) Change of elastic modulus of pine and larch wood at heat exposure. Wood-Work Ind (Russ) (7):8–9

    Google Scholar 

  • Kollmann F (1951) Technologie des Holzes und der Holzwerkstoffe. Berlin, Bd.1, 1050s

    Google Scholar 

  • Krutovsky KV (2006) From population genetics to population genomics of forest woody species: integrated population-genome approach. Genetics 42(10):1304–1318

    Google Scholar 

  • Moghtadery B, Novozhilov V, Fletcher D, Kent JH (1997) An integral model for the transient pyrolysis of solid materials. Fire Mater 21:7–16

    Article  Google Scholar 

  • Nyman C (1980) The effect of temperature and moisture on the strength of wood and gluelines VTT. Technical Research Centre of Finland, Espoo

    Google Scholar 

  • Paul EE, Koukhta VN (2011) Dependence of timber mechanical properties on its density. For Hunt Econ (Russ) (10):20–23

    Google Scholar 

  • Perelman VI (1955) Chemist’s quick reference book. Scientific Technical Publishing House of Chemical Literature, Moscow, p 119

    Google Scholar 

  • Poluboyarinov OI (1976) Wood density. Lesnaya Promyshlennost, Moscow, 160 p

    Google Scholar 

  • Romanovsky MG (1994) Polymorphism of woody plants by quantitative features. Nauka, Moscow, 96 p

    Google Scholar 

  • Rykov RI (1980) Strength characteristics of timber at high temperatures (Irkutsk). In: Proceedings of symposium on fire resistance of wood structures. VTT. Technical Research Centre of Finland, Espoo

    Google Scholar 

  • Shirnin VK, Maksimenko AP, Kostrikin VA (2004) Peculiarities of xylogenesis and quality of forest tree wood in Eastern Priazovye. In: Proceedings of the IV international symposium on “wood structure, properties and quality-2004”, vol 1. SFTA, St. Petersburg, pp 149–152

    Google Scholar 

  • Siau JF (1984) Transport processes in wood. Springer, Berlin/Tokyo, 301 р

    Book  Google Scholar 

  • Simms DL, Law M (1967) The ignition of wet and dry wood by radiation. Combust Flame 11:377–388

    Article  Google Scholar 

  • Sivenkov AB (2002) Reducing fire safety of cellulose-based materials. PhD dissertation, ASFS, Moscow, 193p

    Google Scholar 

  • SP 64.13330.2011. Timber structures. Updated edition of SNiP II-25-80. Moscow 2011

    Google Scholar 

  • Spearpoint MJ, Quintiere JG (2001) Prediction the piloted ignition of wood in the cone calorimeters using an integral model. Fire Saf J 36:391–415

    Article  Google Scholar 

  • Tkhan BD, Serkov BB, Sivenkov AB, Aseeva RM (2006) Study of mechanical properties of some tropical timber species. Constructional materials of the 21st century (Russia), No. 6(89), pp 42–43

    Google Scholar 

  • Tran HC, White RH (1992) Burning rate of solid wood measured in a heat release rate calorimeter. Fire Mater 16:197–206

    Article  CAS  Google Scholar 

  • Tsarev AP, Pogiba SP, Trenin VV (2000) Genetics of forest tress species. Publishing House of PGU, Petrozavodsk, 338 p

    Google Scholar 

  • Tuskan GA et al (2006) The genome of black cottonwood, Populus trichocarpa. Science 313(5793):1596–1604

    Article  PubMed  CAS  Google Scholar 

  • Ugolev BN (2001) Wood science with fundamentals of forest merchandizing. Publishing House of MGUL, Moscow, 340 p

    Google Scholar 

  • Volynsky VN (2006) Interrelation and variability of timber mechanical properties. AGTU Publishers, Arkhangelsk, 196 p

    Google Scholar 

  • Zhdanov VM (1990) Evolution of viruses, 2 vols. Meditsina, Moscow, 376 p

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Aseeva, R., Serkov, B., Sivenkov, A. (2014). Specificity of Structure and Properties of Timber Species. In: Fire Behavior and Fire Protection in Timber Buildings. Springer Series in Wood Science. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7460-5_2

Download citation

Publish with us

Policies and ethics