Skip to main content

The Role of Parasite Heat Shock Proteins in Protein Trafficking and Host Cell Remodeling

  • Chapter
  • First Online:
  • 909 Accesses

Abstract

Malaria parasites are principally intracellular pathogens of erythrocytes and hepatocytes. For the parasites to grow rapidly and to avoid host immunity they must extensively modify their host cells by exporting hundreds of proteins into them. These exported proteins specifically help permeabilise the host cell so additional nutrients can be obtained and to avoid splenic clearance, the exported proteins modify the erythrocyte surface to promote cytoadherance within the microvasculature. Since erythrocytes lack many of the protein trafficking systems present in normal cells, parasites export their own. Many exported proteins help transport, traffic and refold other exported proteins into functional complexes once they reach their final destinations in the host. Exported trafficking systems and their cargoes are best understood in the most deadly human malaria pathogen Plasmodium falciparum, because it can be cultured in the laboratory. Trafficking and refolding require protein chaperone ATPases and we will present the latest data on exported chaperones. In particular, we will discuss the role of HSP101 in the protein translocon that provides a portal for protein export into the host compartment. Plasmodium species also export a few Hsp40s that probably function co-operatively with host Hsp70s. P. falciparum is however unique in that it exports also many additional Hsp40s as well as its own Hsp70-x and the roles of these will also be discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acharya P, Chaubey S, Grover M, Tatu U (2012) An exported heat shock protein 40 associates with pathogenesis-related knobs in Plasmodium falciparum infected erythrocytes. PLoS ONE 7:e44605

    Article  PubMed  CAS  Google Scholar 

  • Adisa A, Rug M, Klonis N et al (2003) The signal sequence of exported protein-1 directs the green fluorescent protein to the parasitophorous vacuole of transfected malaria parasites. J Biol Chem 278:6532–6542

    Article  PubMed  CAS  Google Scholar 

  • Aikawa M, Iseki M, Barnwell JW et al (1990) The pathology of human cerebral malaria. Am J Trop Med Hyg 43:30–37

    PubMed  CAS  Google Scholar 

  • Altman E, Kumamoto CA, Emr SD (1991) Heat-shock proteins can substitute for SecB function during protein export in Escherichia coli. EMBO J 10:239–245

    PubMed  CAS  Google Scholar 

  • Ansorge I, Benting J, Bhakdi S, Lingelbach K (1996) Protein sorting in Plasmodium falciparum-infected red blood cells permeabilized with the pore-forming protein streptolysin O. Biochem J 315 (Pt 1):307–314

    PubMed  CAS  Google Scholar 

  • Banumathy G (2001) Host chaperones are recruited in membrane-bound complexes by Plasmodium falciparum. J Biol Chem 277:3902–3912

    Article  PubMed  Google Scholar 

  • Bechtluft P, Nouwen N, Tans SJ, Driessen AJM (2010) SecB—A chaperone dedicated to protein translocation. Mol BioSyst 6:620

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharjee S, Stahelin RV, Speicher KD et al (2012) Endoplasmic reticulum pi(3)p lipid binding targets malaria proteins to the host cell. Cell 148:201–212

    Article  PubMed  CAS  Google Scholar 

  • Black CG, Proellocks NI, Kats LM et al (2008) In vivo studies support the role of trafficking and cytoskeletal-binding motifs in the interaction of MESA with the membrane skeleton of Plasmodium falciparum-infected red blood cells. Mol Biochem Parasitol 160:143–147

    Article  PubMed  CAS  Google Scholar 

  • Boddey JA, Moritz RL, Simpson RJ, Cowman AF (2009) Role of the Plasmodium export element in trafficking parasite proteins to the infected erythrocyte. Traffic 10:285–299

    Article  PubMed  CAS  Google Scholar 

  • Boddey JA, Hodder AN, Günther S et al (2010) An aspartyl protease directs malaria effector proteins to the host cell. Nature 463:627–631

    Article  PubMed  CAS  Google Scholar 

  • Boddey JA, Carvalho TG, Hodder AN et al (2013) Role of plasmepsin v in export of diverse protein families from the Plasmodium falciparum exportome. Traffic. 14:532–550

    Google Scholar 

  • Botha M, Pesce ER, Blatch GL (2007) The Hsp40 proteins of Plasmodium falciparum and other apicomplexa: regulating chaperone power in the parasite and the host. Int J Biochem Cell Biol 39:1781–1803

    Article  PubMed  CAS  Google Scholar 

  • Botha M, Chiang AN, Needham PG et al (2010) Plasmodium falciparum encodes a single cytosolic type I Hsp40 that functionally interacts with Hsp70 and is upregulated by heat shock. Cell Stress Chaperones 16:389–401

    Google Scholar 

  • Brabin BJ, Romagosa C, Abdelgalil S et al (2004) The sick placenta-the role of malaria. Placenta 25:359–378

    Article  PubMed  CAS  Google Scholar 

  • Bullen HE, Charnaud SC, Kalanon M et al (2012) Biosynthesis, localisation and macromolecular arrangement of the Plasmodium falciparum translocon of exported proteins; PTEX. J Biol Chem 287:7871–7884

    Article  PubMed  CAS  Google Scholar 

  • Chan J-A, Howell KB, Reiling L et al (2012) Targets of antibodies against Plasmodium falciparum-infected erythrocytes in malaria immunity. J Clin Invest 122:3227–3238

    Article  PubMed  CAS  Google Scholar 

  • Chang HH, Falick AM, Carlton PM et al (2008) N-terminal processing of proteins exported by malaria parasites. Mol Biochem Parasitol 160:107–115

    Article  PubMed  CAS  Google Scholar 

  • Cheetham ME, Caplan AJ (1998) Structure, function and evolution of DnaJ: conservation and adaptation of chaperone function. Cell Stress Chaperones 3:28–36

    Article  PubMed  CAS  Google Scholar 

  • Cooke BM, Mohandas N, Coppel RL (2001) The malaria-infected red blood cell: structural and functional changes. Adv Parasitol 50:1–86

    Article  PubMed  CAS  Google Scholar 

  • Cooke BM, Glenister FK, Mohandas N, Coppel RL (2002) Assignment of functional roles to parasite proteins in malaria-infected red blood cells by competitive flow-based adhesion assay. Br J Haematol 117:203–211

    Article  PubMed  CAS  Google Scholar 

  • Cowman AF, Crabb BS (2006) Invasion of red blood cells by malaria parasites. Cell 124:755–766

    Google Scholar 

  • Crabb BS, Cooke BM, Reeder JC et al (1997) Targeted gene disruption shows that knobs enable malaria-infected red cells to cytoadhere under physiological shear stress. Cell 89:287–296

    Article  PubMed  CAS  Google Scholar 

  • Crabb B, Bullen H, Charnaud S et al (2010a) A common protein export pathway in malaria parasites. Malar J 9:I3

    Article  Google Scholar 

  • Crabb BS, de Koning Ward TF, Gilson PR (2010b) Protein export in Plasmodium parasites: from the endoplasmic reticulum to the vacuolar export machine. Int J Parasitol 40:509–513

    Article  CAS  Google Scholar 

  • de Koning Ward TF, Gilson PR, Boddey JA et al (2009) A newly discovered protein export machine in malaria parasites. Nature 459:945–949

    Article  Google Scholar 

  • Deplaine G, Safeukui I, Jeddi F et al (2011) The sensing of poorly deformable red blood cells by the human spleen can be mimicked in vitro. Blood 117:e88–95

    Article  PubMed  CAS  Google Scholar 

  • Desai SA, Krogstad DJ, McCleskey EW (1993) A nutrient-permeable channel on the intraerythrocytic malaria parasite. Nature 362:643–646

    Article  PubMed  CAS  Google Scholar 

  • Desai SA, Rosenberg RL (1997) Pore size of the malaria parasite’s nutrient channel. Proc Natl Acad Sci USA 94:2045–2049

    Article  PubMed  CAS  Google Scholar 

  • Desai M, Kuile ter FO, Nosten F et al (2007) Epidemiology and burden of malaria in pregnancy. Lancet Infect Dis 7:93–104

    Article  PubMed  Google Scholar 

  • Doyle SM, Wickner S (2009) Hsp104 and ClpB: protein disaggregating machines. Trends Biochem Sci 34:40–48

    Article  PubMed  CAS  Google Scholar 

  • Foley M, Tilley L, Sawyer WH, Anders RF (1991) The ring-infected erythrocyte surface antigen of Plasmodium falciparum associates with spectrin in the erythrocyte membrane. Mol Biochem Parasito 46:137–147

    Article  CAS  Google Scholar 

  • Gehde N, Hinrichs C, Montilla I et al (2009) Protein unfolding is an essential requirement for transport across the parasitophorous vacuolar membrane of Plasmodium falciparum. Mol Microbiol 71:613–628

    Article  PubMed  CAS  Google Scholar 

  • Goodman SR, Kurdia A, Ammann L et al (2007) The human red blood cell proteome and interactome. Exp Biol Med (Maywood) 232:1391–1408

    Article  CAS  Google Scholar 

  • Görlich D, Rapoport TA (1993) Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane. Cell 75:615–630

    Article  PubMed  Google Scholar 

  • Grüring C, Heiber A, Kruse F et al (2012) Uncovering common principles in protein export of malaria parasites. Cell Host Microbe 12:717–729

    Article  PubMed  Google Scholar 

  • Haase S, Herrmann S, Grüring C et al (2009) Sequence requirements for the export of the Plasmodium falciparum Maurer’s clefts protein REX2. Mol Microbiol 71:1003–1017

    Article  PubMed  CAS  Google Scholar 

  • Hiller NL (2004) A host-targeting signal in virulence proteins reveals a secretome in malarial infection. Science 306:1934–1937

    Article  PubMed  CAS  Google Scholar 

  • Hoskins JR, Kim SY, Wickner S (2000) Substrate recognition by the ClpA chaperone component of ClpAP protease. J Biol Chem 275:35361–35367

    Article  PubMed  CAS  Google Scholar 

  • Howard RJ, Lyon JA, Uni S et al (1987) Transport of an Mr approximately 300,000 Plasmodium falciparum protein (Pf EMP 2) from the intraerythrocytic asexual parasite to the cytoplasmic face of the host cell membrane. J Cell Biol 104:1269–1280

    Article  PubMed  CAS  Google Scholar 

  • Kilili GK, LaCount DJ (2011) An erythrocyte cytoskeleton-binding motif in exported Plasmodium falciparum proteins. Eukaryotic Cell 10:1439–1447

    Article  PubMed  CAS  Google Scholar 

  • Koncarevic S, Rohrbach P, Deponte M et al (2009) The malarial parasite Plasmodium falciparum imports the human protein peroxiredoxin 2 for peroxide detoxification. Proc Natl Acad Sci 106:13323–13328

    Article  PubMed  Google Scholar 

  • Külzer S, Charnaud S, Dagan T et al (2012) Plasmodium falciparum-encoded exported hsp70/hsp40 chaperone/co-chaperone complexes within the host erythrocyte. Cell Microbiol 14:1784–95

    Article  PubMed  Google Scholar 

  • Külzer S, Rug M, Brinkmann K et al (2010) Parasite-encoded Hsp40 proteins define novel mobile structures in the cytosol of the P. falciparum-infected erythrocyte. Cell Microbiol 12:1398–1420

    Article  PubMed  Google Scholar 

  • Lee S, Sielaff B, Lee J, Tsai FTF (2010) CryoEM structure of Hsp104 and its mechanistic implication for protein disaggregation. Proc Natl Acad Sci 107:8135–8140

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Yang Y, Qiu Z et al (2010) Folding of Toll-like receptors by the HSP90 paralogue gp96 requires a substrate-specific cochaperone. Nat Commun 1:79

    Article  PubMed  Google Scholar 

  • Lustigman S, Anders RF, Brown GV, Coppel RL (1990) The mature-parasite-infected erythrocyte surface antigen (MESA) of Plasmodium falciparum associates with the erythrocyte membrane skeletal protein, band 4.1. Mol Biochem Parasitol 38:261–270

    Article  PubMed  CAS  Google Scholar 

  • Magowan C, Coppel RL, Lau AO et al (1995) Role of the Plasmodium falciparum mature-parasite-infected erythrocyte surface antigen (MESA/PfEMP-2) in malarial infection of erythrocytes. Blood 86:3196–3204

    PubMed  CAS  Google Scholar 

  • Maier AG, Rug M, O’Neill MT et al (2008) Exported proteins required for virulence and rigidity of Plasmodium falciparum-infected human erythrocytes. Cell 134:48–61

    Article  PubMed  CAS  Google Scholar 

  • Marti M (2004) Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science 306:1930–1933

    Article  PubMed  CAS  Google Scholar 

  • Mills JP, Diez-Silva M, Quinn DJ et al (2007) Effect of plasmodial RESA protein on deformability of human red blood cells harboring Plasmodium falciparum. Proc Natl Acad Sci USA 104:9213–9217

    Article  PubMed  CAS  Google Scholar 

  • Miot M, Reidy M, Doyle SM et al (2011) Species-specific collaboration of heat shock proteins (Hsp) 70 and 100 in thermotolerance and protein disaggregation. Proc Natl Acad Sci 108:6915–6920

    Article  PubMed  CAS  Google Scholar 

  • Mueller M, Grauschopf U, Maier T et al (2009) The structure of a cytolytic alpha-helical toxin pore reveals its assembly mechanism. Nature 459:726–730

    Article  PubMed  CAS  Google Scholar 

  • Newbold C, Craig A, Kyes S et al (1999) Cytoadherence, pathogenesis and the infected red cell surface in Plasmodium falciparum. Int J Parasitol 29:927–937

    Article  PubMed  CAS  Google Scholar 

  • Njunge JM, Ludewig MH, Boshoff A et al (2013) Hsp70s and J proteins of Plasmodium parasites infecting rodents and primates: structure, function, clinical relevance, and drug targets. Curr Pharm Des 19:387–403

    Article  PubMed  CAS  Google Scholar 

  • Nyalwidhe J, Lingelbach K (2006) Proteases and chaperones are the most abundant proteins in the parasitophorous vacuole of Plasmodium falciparum-infected erythrocytes. Proteomics 6:1563–1573

    Article  PubMed  CAS  Google Scholar 

  • Oguchi Y, Kummer E, Seyffer F et al (2012) A tightly regulated molecular toggle controls AAA + disaggregase. Nat Struct Mol Biol 19:1338–1346

    Article  PubMed  CAS  Google Scholar 

  • Panzner S, Dreier L, Hartmann E et al (1995) Posttranslational protein transport in yeast reconstituted with a purified complex of Sec proteins and Kar2p. Cell 81:561–570

    Article  PubMed  CAS  Google Scholar 

  • Pasini EM, Braks JA, Fonager J et al (2013) Proteomic and genetic analyses demonstrate that Plasmodium berghei blood stages export a large and diverse repertoire of proteins. Mol Cell Proteomics 12:426–448

    Article  PubMed  CAS  Google Scholar 

  • Pavithra SR, Kumar R, Tatu U (2007) Systems analysis of chaperone networks in the malarial parasite Plasmodium falciparum. PLoS Comput Biol 3:e168

    Article  Google Scholar 

  • Pei X, Guo X, Coppel R et al (2007) The ring-infected erythrocyte surface antigen (RESA) of Plasmodium falciparum stabilizes spectrin tetramers and suppresses further invasion. Blood 110:1036–1042

    Article  PubMed  CAS  Google Scholar 

  • Rao A, Kumar MK, Joseph T, Bulusu G (2010) Cerebral malaria: insights from host-parasite protein-protein interactions. Malar J 9:155

    Article  PubMed  Google Scholar 

  • Riglar DT, Richard D, Wilson DW et al (2011) Super-resolution dissection of coordinated events during malaria parasite invasion of the human erythrocyte. Cell Host Microbe 9:9–20

    Article  PubMed  CAS  Google Scholar 

  • Rogerson SJ, Hviid L, Duffy PE et al (2007) Malaria in pregnancy: pathogenesis and immunity. Lancet Infect Dis 7:105–117

    Article  PubMed  CAS  Google Scholar 

  • Russo I, Babbitt S, Muralidharan V et al (2010) Plasmepsin V licenses Plasmodium proteins for export into the host erythrocyte. Nature 463:632–636

    Article  PubMed  CAS  Google Scholar 

  • Sanders PR, Gilson PR, Cantin GT et al (2005) Distinct protein classes including novel merozoite surface antigens in Raft-like membranes of Plasmodium falciparum. J Biol Chem 280:40169–40176

    Article  PubMed  CAS  Google Scholar 

  • Sargeant TJ, Marti M, Caler E et al (2006) Lineage-specific expansion of proteins exported to erythrocytes in malaria parasites. Genome Biol 7:R12–R12

    Article  PubMed  Google Scholar 

  • Seyffer F, Kummer E, Oguchi Y et al (2012) Hsp70 proteins bind Hsp100 regulatory M domains to activate AAA + disaggregase at aggregate surfaces. Nat Struct Mol Biol 19:1347–1355

    Article  PubMed  CAS  Google Scholar 

  • Sherman IW, Crandall I, Smith H (1992) Membrane proteins involved in the adherence of Plasmodium falciparum-infected erythrocytes to the endothelium. Biol Cell 74:161–178

    Article  PubMed  CAS  Google Scholar 

  • Sielaff B, Tsai FTF (2010) The M-domain controls Hsp104 protein remodeling activity in an Hsp70/Hsp40-dependent manner. J Mol Biol 402:30–37

    Article  PubMed  CAS  Google Scholar 

  • Spielmann T, Gilberger T-W (2010) Protein export in malaria parasites: do multiple export motifs add up to multiple export pathways? Trends Parasitol 26:6–10

    Article  PubMed  CAS  Google Scholar 

  • Strbo N, Podack ER (2008) REVIEW ARTICLE: Secreted Heat Shock Protein gp96-Ig: an Innovative Vaccine Approach. Am J Reprod Immunol 59:407–416

    Article  PubMed  CAS  Google Scholar 

  • Tamez PA, Liu H, Wickrema A, Haldar K (2011) P. falciparum modulates erythroblast cell gene expression in signaling and erythrocyte production pathways. PLoS ONE 6:e19307

    Article  PubMed  CAS  Google Scholar 

  • Umbers AJ, Aitken EH, Rogerson SJ (2011) Malaria in pregnancy: small babies, big problem. Trends Parasitol 27:168–175

    Article  PubMed  Google Scholar 

  • Waller KL, Nunomura W, An X et al (2003) Mature parasite-infected erythrocyte surface antigen (MESA) of Plasmodium falciparum binds to the 30-kDa domain of protein 4.1 in malaria-infected red blood cells. Blood 102:1911–1914

    Article  PubMed  CAS  Google Scholar 

  • Walsh P, Bursać D, Law YC et al (2004) The J-protein family: modulating protein assembly, disassembly and translocation. EMBO Rep 5:567–571

    Article  PubMed  CAS  Google Scholar 

  • Wendler P, Shorter J, Snead D et al (2009) Motor mechanism for protein threading through Hsp104. Mol Cell 34:81–92

    Article  PubMed  CAS  Google Scholar 

  • Werbeck ND, Schlee S, Reinstein J (2008) Coupling and dynamics of subunits in the hexameric AAA + chaperone ClpB. J Mol Biol 378:178–190

    Article  PubMed  CAS  Google Scholar 

  • Wickham ME, Rug M, Ralph SA et al (2001) Trafficking and assembly of the cytoadherence complex in Plasmodium falciparum-infected human erythrocytes. EMBO J 20:5636–5649

    Article  PubMed  CAS  Google Scholar 

  • Woodbury RL, Topping TB, Diamond DL et al (2000) Complexes between protein export chaperone SecB and SecA. Evidence for separate sites on SecA providing binding energy and regulatory interactions. J Biol Chem 275:24191–24198

    Article  PubMed  CAS  Google Scholar 

  • Wuchty S (2011) Computational prediction of host-parasite protein interactions between P. falciparum and H. sapiens. PLoS ONE 6:e26960

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Liu B, Dai J et al (2007) Heat shock protein gp96 is a master chaperone for toll-like receptors and is important in the innate function of macrophages. Immunity 26:215–226

    Article  PubMed  Google Scholar 

  • Yipp BG, Baruch DI, Brady C et al (2003) Recombinant PfEMP1 peptide inhibits and reverses cytoadherence of clinical Plasmodium falciparum isolates in vivo. Blood 101:331–337

    Article  PubMed  CAS  Google Scholar 

  • Young JC, Hoogenraad NJ, Hartl FU (2003) Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 112:41–50

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Australian National Health and Medical Research Council (516740, 637406 & 1021560). The authors gratefully acknowledge the contribution to this work of the Victorian Operational Infrastructure Support Program. SCC is recipient of a Monash Graduate Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul R. Gilson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gilson, P., Charnaud, S., Crabb, B. (2014). The Role of Parasite Heat Shock Proteins in Protein Trafficking and Host Cell Remodeling. In: Shonhai, A., Blatch, G. (eds) Heat Shock Proteins of Malaria. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7438-4_6

Download citation

Publish with us

Policies and ethics