Skip to main content

General Structural and Functional Features of Molecular Chaperones

  • Chapter
  • First Online:
Heat Shock Proteins of Malaria

Abstract

Molecular chaperones are a group of structurally diverse and highly conserved ubiquitous proteins. They play crucial roles in facilitating the correct folding of proteins in vivo by preventing protein aggregation or facilitating the appropriate folding and assembly of proteins. Heat shock proteins form the major class of molecular chaperones that are responsible for protein folding events in the cell. This is achieved by ATP-dependent (folding machines) or ATP-independent mechanisms (holders). Heat shock proteins are induced by a variety of stresses, besides heat shock. The large and varied heat shock protein class is categorised into several subfamilies based on their sizes in kDa namely, small Hsps (HSPB), Hsp40 (DNAJ), Hsp60 (HSPD/E; Chaperonins), Hsp70 (HSPA), Hsp90 (HSPC), and Hsp100. Heat shock proteins are localised to different compartments in the cell to carry out tasks specific to their environment. Most heat shock proteins form large oligomeric structures and their functions are usually regulated by a variety of cochaperones and cofactors. Heat shock proteins do not function in isolation but are rather part of the chaperone network in the cell. The general structural and functional features of the major heat shock protein families are discussed, including their roles in human disease. Their function is particularly important in disease due to increased stress in the cell. Vector-borne parasites affecting human health encounter stress during transmission between invertebrate vectors and mammalian hosts. Members of the main classes of heat shock proteins are all represented in Plasmodium falciparum, the causative agent of cerebral malaria, and they play specific functions in differentiation, cytoprotection, signal transduction and virulence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya P, Kumar R, Tatu U (2007) Chaperoning a cellular upheaval in malaria: heat shock proteins in Plasmodium falciparum. Mol Biochem Parasitol 153:85–94

    PubMed  CAS  Google Scholar 

  • Ali MM, Roe SM, Vaughan CK et al (2006) Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature 440:1013–1017

    PubMed  CAS  Google Scholar 

  • Altieri DC, Stein GS, Lian JB et al (2012) TRAP-1, the mitochondrial Hsp90. Biochim Biophys Acta 1823:767–773

    PubMed  CAS  Google Scholar 

  • Andreasson C, Fiaux J, Rampelt H et al (2008) Insights into the structural dynamics of the Hsp110-Hsp70 interaction reveal the mechanism for nucleotide exchange activity. Proc Natl Acad Sci U S A 105:16519–16524

    PubMed  CAS  Google Scholar 

  • Andreasson C, Rampelt H, Fiaux J et al (2010) The endoplasmic reticulum Grp170 acts as a nucleotide exchange factor of Hsp70 via a mechanism similar to that of the cytosolic Hsp110. J Biol Chem 285:12445–12453

    PubMed  CAS  Google Scholar 

  • Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230

    PubMed  CAS  Google Scholar 

  • Aoyagi S, Archer TK (2005) Modulating molecular chaperone Hsp90 functions through reversible acetylation. Trends Cell Biol 15:565–567

    PubMed  CAS  Google Scholar 

  • Argon Y, Simen BB (1999) GRP94, an ER chaperone with protein and peptide binding properties. Semin Cell Dev Biol 10:495–505

    PubMed  CAS  Google Scholar 

  • Aron R, Lopez N, Walter W et al (2005) In vivo bipartite interaction between the Hsp40 Sis1 and Hsp70 in Saccharomyces cerevisiae. Genetics 169:1873–1882

    PubMed  CAS  Google Scholar 

  • Arsene F, Tomoyasu T, Bukau B (2000) The heat shock response of Escherichia coli. Int J Food Microbiol 55:3–9

    PubMed  CAS  Google Scholar 

  • Arts HJ, Hollema H, Lemstra W et al (1999) Heat-shock-protein-27 (hsp27) expression in ovarian carcinoma: relation in response to chemotherapy and prognosis. Int J Cancer 84:234–238

    PubMed  CAS  Google Scholar 

  • Ballinger CA, Connell P, Wu Y et al (1999) Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol Cell Biol 19:4535–4545

    PubMed  CAS  Google Scholar 

  • Banumathy G, Singh V, Tatu U (2002) Host chaperones are recruited in membrane-bound complexes by Plasmodium falciparum. J Biol Chem 277:3902–3912

    PubMed  CAS  Google Scholar 

  • Banumathy G, Singh V, Pavithra SR et al (2003) Heat shock protein 90 function is essential for Plasmodium falciparum growth in human erythrocytes. J Biol Chem 278:18336–18345

    PubMed  CAS  Google Scholar 

  • Becker J, Craig EA (1994) Heat-shock proteins as molecular chaperones. Eur J Biochem 219:11–23

    PubMed  CAS  Google Scholar 

  • Beliakoff J, Whitesell L (2004) Hsp90: an emerging target for breast cancer therapy. Anticancer Drugs 15:651–662

    PubMed  CAS  Google Scholar 

  • Benesch JL, Ayoub M, Robinson CV et al (2008) Small heat shock protein activity is regulated by variable oligomeric substructure. J Biol Chem 283:28513–28517

    PubMed  CAS  Google Scholar 

  • Bertelsen EB, Chang L, Gestwicki JE et al (2009) Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate. Proc Natl Acad Sci U S A 106:8471–8476

    PubMed  CAS  Google Scholar 

  • Bhutani N, Udgaonkar JB (2002) Chaperonins as protein-folding machines. Cur Sci 83:1337

    CAS  Google Scholar 

  • Bigotti MG, Clarke AR (2008) Chaperonins: the hunt for the Group II mechanism. Arch Biochem Biophys 474:331–339

    PubMed  CAS  Google Scholar 

  • Blatch GL, Lassle M (1999) The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. Bioessays 21:932–939

    PubMed  CAS  Google Scholar 

  • Bohen SP (1998) Genetic and biochemical analysis of p23 and ansamycin antibiotics in the function of Hsp90-dependent signaling proteins. Mol Cell Biol 18:3330–3339

    PubMed  CAS  Google Scholar 

  • Boisvert DC, Wang J, Otwinowski Z et al (1996) The 2.4 A crystal structure of the bacterial chaperonin GroEL complexed with ATP gamma S. Nat Struct Biol 3:170–177

    PubMed  CAS  Google Scholar 

  • Boorstein WR, Ziegelhoffer T, Craig EA (1994) Molecular evolution of the HSP70 multigene family. J Mol Evol 38:1–17

    PubMed  CAS  Google Scholar 

  • Borges JC, Fischer H, Craievich AF et al (2005) Low resolution structural study of two human HSP40 chaperones in solution. DJA1 from subfamily A and DJB4 from subfamily B have different quaternary structures. J Biol Chem 280:13671–13681

    PubMed  CAS  Google Scholar 

  • Borkovich KA, Farrelly FW, Finkelstein DB et al (1989) hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures. Mol Cell Biol 9:3919–3930

    PubMed  CAS  Google Scholar 

  • Botha M, Pesce ER, Blatch GL (2007) The Hsp40 proteins of Plasmodium falciparum and other apicomplexa: regulating chaperone power in the parasite and the host. Int J Biochem Cell Biol 39:1781–1803

    PubMed  CAS  Google Scholar 

  • Braig K, Otwinowski Z, Hegde R et al (1994) The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature 371:578–586

    PubMed  CAS  Google Scholar 

  • Brinker A, Pfeifer G, Kerner MJ et al (2001) Dual function of protein confinement in chaperonin-assisted protein folding. Cell 107:223–233

    PubMed  CAS  Google Scholar 

  • Brinker A, Scheufler C, Von Der Mulbe F etal (2002) Ligand discrimination by TPR domains. Relevance and selectivity of EEVD-recognition in Hsp70 × Hop × Hsp90 complexes. J Biol Chem 277:19265–19275

    PubMed  CAS  Google Scholar 

  • Brodsky JL, Chiosis G (2006) Hsp70 molecular chaperones: emerging roles in human disease and identification of small molecule modulators. Curr Top Med Chem 6:1215–1225

    PubMed  CAS  Google Scholar 

  • Brodsky JL, Werner ED, Dubas ME et al (1999) The requirement for molecular chaperones during endoplasmic reticulum-associated protein degradation demonstrates that protein export and import are mechanistically distinct. J Biol Chem 274:3453–3460

    PubMed  CAS  Google Scholar 

  • Brychzy A, Rein T, Winklhofer KF et al (2003) Cofactor Tpr2 combines two TPR domains and a J domain to regulate the Hsp70/Hsp90 chaperone system. Embo J 22:3613–3623

    PubMed  CAS  Google Scholar 

  • Buchberger A, Theyssen H, Schroder H et al (1995) Nucleotide-induced conformational changes in the ATPase and substrate binding domains of the DnaK chaperone provide evidence for interdomain communication. J Biol Chem 270:16903–16910

    PubMed  CAS  Google Scholar 

  • Buchner J (1999) Hsp90 & Co.—a holding for folding. Trends Biochem Sci 24:136–141

    PubMed  CAS  Google Scholar 

  • Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366

    PubMed  CAS  Google Scholar 

  • Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125:443–451

    PubMed  CAS  Google Scholar 

  • Calderwood SK, Mambula SS, Gray PJ Jr (2007) Extracellular heat shock proteins in cell signaling and immunity. Ann N Y Acad Sci 1113:28–39

    PubMed  CAS  Google Scholar 

  • Callebaut I, Catelli MG, Portetelle D et al (1994) Redox mechanism for the chaperone activity of heat shock proteins HSPs 60, 70 and 90 as suggested by hydrophobic cluster analysis: hypothesis. C R Acad Sci III 317:721–729

    PubMed  CAS  Google Scholar 

  • Caplan AJ, Cyr DM, Douglas MG (1992) YDJ1p facilitates polypeptide translocation across different intracellular membranes by a conserved mechanism. Cell 71:1143–1155

    PubMed  CAS  Google Scholar 

  • Catlett MG, Kaplan KB (2006) Sgt1p is a unique co-chaperone that acts as a client adaptor to link Hsp90 to Skp1p. J Biol Chem 281:33739–33748

    PubMed  CAS  Google Scholar 

  • Chadli A, Bruinsma ES, Stensgard B et al (2008) Analysis of Hsp90 cochaperone interactions reveals a novel mechanism for TPR protein recognition. Biochemistry 47:2850–2857

    PubMed  CAS  Google Scholar 

  • Chakraborty K, Chatila M, Sinha J et al (2010) Chaperonin-catalyzed rescue of kinetically trapped states in protein folding. Cell 142:112–122

    PubMed  CAS  Google Scholar 

  • Chandra D, Choy G, Tang DG (2007) Cytosolic accumulation of HSP60 during apoptosis with or without apparent mitochondrial release: evidence that its pro-apoptotic or pro-survival functions involve differential interactions with caspase-3. J Biol Chem 282:31289–31301

    PubMed  CAS  Google Scholar 

  • Chandrasekhar GN, Tilly K, Woolford C et al (1986) Purification and properties of the groES morphogenetic protein of Escherichia coli. J Biol Chem 261:12414–12419

    PubMed  CAS  Google Scholar 

  • Chang HC, Nathan DF, Lindquist S (1997) In vivo analysis of the Hsp90 cochaperone Sti1 (p60). Mol Cell Biol 17:318–325

    PubMed  CAS  Google Scholar 

  • Cheetham ME, Caplan AJ (1998) Structure, function and evolution of DnaJ: conservation and adaptation of chaperone function. Cell Stress Chaperones 3:28–36

    PubMed  CAS  Google Scholar 

  • Chen L, Sigler PB (1999) The crystal structure of a GroEL/peptide complex: plasticity as a basis for substrate diversity. Cell 99:757–768

    PubMed  CAS  Google Scholar 

  • Chen B, Piel WH, Gui L et al (2005) The HSP90 family of genes in the human genome: insights into their divergence and evolution. Genomics 86:627–637

    PubMed  CAS  Google Scholar 

  • Cheung-Flynn J, Roberts PJ, Riggs DL et al (2003) C-terminal sequences outside the tetratricopeptide repeat domain of FKBP51 and FKBP52 cause differential binding to Hsp90. J Biol Chem 278:17388–17394

    PubMed  CAS  Google Scholar 

  • Chiappori F, Merelli I, Colombo G et al (2012) Molecular mechanism of allosteric communication in hsp70 revealed by molecular dynamics simulations. PLoS Comput Biol 8:e1002844

    Google Scholar 

  • Chiosis G, Rodina A, Moulick K (2006) Emerging Hsp90 inhibitors: from discovery to clinic. Anticancer Agents Med Chem 6:1–8

    PubMed  CAS  Google Scholar 

  • Clark MS, Peck LS (2009) Triggers of the HSP70 stress response: environmental responses and laboratory manipulation in an Antarctic marine invertebrate (Nacella concinna). Cell Stress Chaperones 14:649–660

    PubMed  CAS  Google Scholar 

  • Cliff MJ, Harris R, Barford D et al (2006) Conformational diversity in the TPR domain-mediated interaction of protein phosphatase 5 with Hsp90. Structure 14:415–426

    PubMed  CAS  Google Scholar 

  • Corbett KD, Berger JM (2010) Structure of the ATP-binding domain of Plasmodium falciparum Hsp90. Proteins 78:2738–2744

    PubMed  CAS  Google Scholar 

  • Csermely P, Schnaider T, Soti C et al (1998) The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther 79:129–168

    PubMed  CAS  Google Scholar 

  • Cupp-Vickery JR, Vickery LE (2000) Crystal structure of Hsc20, a J-type Co-chaperone from Escherichia coli. J Mol Biol 304:835–845

    PubMed  CAS  Google Scholar 

  • Cyr DM, Lu X, Douglas MG (1992) Regulation of Hsp70 function by a eukaryotic DnaJ homolog. J Biol Chem 267:20927–20931

    PubMed  CAS  Google Scholar 

  • Das A, Syin C, Fujioka H et al (1997) Molecular characterization and ultrastructural localization of Plasmodium falciparum Hsp 60. Mol Biochem Parasitol 88:95–104

    PubMed  CAS  Google Scholar 

  • de Koning-Ward TF, Drew DR, Chesson JM et al (2008) Truncation of Plasmodium berghei merozoite surface protein 8 does not affect in vivo blood-stage development. Mol Biochem Parasitol 159:69–72

    PubMed  CAS  Google Scholar 

  • Demand J, Luders J, Hohfeld J (1998) The carboxy-terminal domain of Hsc70 provides binding sites for a distinct set of chaperone cofactors. Mol Cell Biol 18:2023–2028

    PubMed  CAS  Google Scholar 

  • den Engelsman J, Bennink EJ, Doerwald L et al (2004) Mimicking phosphorylation of the small heat-shock protein alphaB-crystallin recruits the F-box protein FBX4 to nuclear SC35 speckles. Eur J Biochem 271:4195–4203

    PubMed  CAS  Google Scholar 

  • Dickey CA, Kamal A, Lundgren K et al (2007) The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. J Clin Invest 117:648–658

    PubMed  CAS  Google Scholar 

  • Dierks T, Volkmer J, Schlenstedt G et al (1996) A microsomal ATP-binding protein involved in efficient protein transport into the mammalian endoplasmic reticulum. Embo J 15:6931–6942

    PubMed  CAS  Google Scholar 

  • Dobrzynski JK, Sternlicht ML, Farr GW et al (1996) Newly-synthesized beta-tubulin demonstrates domain-specific interactions with the cytosolic chaperonin. Biochemistry 35:15870–15882

    PubMed  CAS  Google Scholar 

  • Dollins DE, Warren JJ, Immormino RM et al (2007) Structures of GRP94-nucleotide complexes reveal mechanistic differences between the hsp90 chaperones. Mol Cell 28:41–56

    PubMed  CAS  Google Scholar 

  • Doong H, Vrailas A, Kohn EC (2002) What’s in the ‘BAG’?—a functional domain analysis of the BAG-family proteins. Cancer Lett 188:25–32

    PubMed  CAS  Google Scholar 

  • Doyle SM, Shorter J, Zolkiewski M et al (2007) Asymmetric deceleration of ClpB or Hsp104 ATPase activity unleashes protein-remodeling activity. Nat Struct Mol Biol 14:114–122

    PubMed  CAS  Google Scholar 

  • Dragovic Z, Broadley SA, Shomura Y et al (2006a) Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s. Embo J 25:2519–2528

    CAS  Google Scholar 

  • Dragovic Z, Shomura Y, Tzvetkov N et al (2006b) Fes1p acts as a nucleotide exchange factor for the ribosome-associated molecular chaperone Ssb1p. Biol Chem 387:1593–1600

    CAS  Google Scholar 

  • Duval M, Le Boeuf F, Huot J et al (2007) Src-mediated phosphorylation of Hsp90 in response to vascular endothelial growth factor (VEGF) is required for VEGF receptor-2 signaling to endothelial NO synthase. Mol Biol Cell 18:4659–4668

    PubMed  CAS  Google Scholar 

  • Easton DP, Kaneko Y, Subjeck JR (2000) The hsp110 and Grp1 70 stress proteins: newly recognized relatives of the Hsp70s. Cell Stress Chaperones 5:276–290

    PubMed  CAS  Google Scholar 

  • Eggers DK, Welch WJ, Hansen WJ (1997) Complexes between nascent polypeptides and their molecular chaperones in the cytosol of mammalian cells. Mol Biol Cell 8:1559–1573

    PubMed  CAS  Google Scholar 

  • Eisenhardt BD, Forreiter C (2012) Insights in small Heat Shock Protein/client interaction by combined protection analysis of two different client proteins. FEBS Lett 586:1772–1777

    PubMed  CAS  Google Scholar 

  • Ellis RJ (2001) Macromolecular crowding: obvious but underappreciated. Trends Biochem Sci 26:597–604

    PubMed  CAS  Google Scholar 

  • Ellis RJ, Hartl FU (1999) Principles of protein folding in the cellular environment. Curr Opin Struct Biol 9:102–110

    PubMed  CAS  Google Scholar 

  • Emelyanov VV (2002) Phylogenetic relationships of organellar Hsp90 homologs reveal fundamental differences to organellar Hsp70 and Hsp60 evolution. Gene 299:125–133

    PubMed  CAS  Google Scholar 

  • Evans CG, Chang L, Gestwicki JE (2010) Heat shock protein 70 (hsp70) as an emerging drug target. J Med Chem 53:4585–4602

    PubMed  CAS  Google Scholar 

  • Ewalt KL, Hendrick JP, Houry WA et al (1997) In vivo observation of polypeptide flux through the bacterial chaperonin system. Cell 90:491–500

    PubMed  CAS  Google Scholar 

  • Eyles SJ, Gierasch LM (2010) Nature’s molecular sponges: small heat shock proteins grow into their chaperone roles. Proc Natl Acad Sci U S A 107:2727–2728

    PubMed  CAS  Google Scholar 

  • Fan CY, Lee S, Ren HY et al (2004) Exchangeable chaperone modules contribute to specification of type I and type II Hsp40 cellular function. Mol Biol Cell 15:761–773

    PubMed  CAS  Google Scholar 

  • Fan AC, Bhangoo MK, Young JC (2006) Hsp90 functions in the targeting and outer membrane translocation steps of Tom70-mediated mitochondrial import. J Biol Chem 281:33313–33324

    PubMed  CAS  Google Scholar 

  • Farnsworth P, Singh K (2004) Structure function relationship among alpha-crystallin related small heat shock proteins. Exp Eye Res 79:787–794

    PubMed  CAS  Google Scholar 

  • Fayet O, Ziegelhoffer T, Georgopoulos C (1989) The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J Bacteriol 171:1379–1385

    PubMed  CAS  Google Scholar 

  • Feldman DE, Spiess C, Howard DE et al (2003) Tumorigenic mutations in VHL disrupt folding in vivo by interfering with chaperonin binding. Mol Cell 12:1213–1224

    PubMed  CAS  Google Scholar 

  • Felts SJ, Owen BA, Nguyen P et al (2000) The hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. J Biol Chem 275:3305–3312

    PubMed  CAS  Google Scholar 

  • Fink AL (1999) Chaperone-mediated protein folding. Physiol Rev 79:425–449

    PubMed  CAS  Google Scholar 

  • Flaherty KM, DeLuca-Flaherty C, McKay DB (1990) Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein. Nature 346:623–628

    PubMed  CAS  Google Scholar 

  • Flynn GC, Pohl J, Flocco MT et al (1991) Peptide-binding specificity of the molecular chaperone BiP. Nature 353:726–730

    PubMed  CAS  Google Scholar 

  • Frey S, Leskovar A, Reinstein J et al (2007) The ATPase cycle of the endoplasmic chaperone Grp94. J Biol Chem 282:35612–35620

    PubMed  CAS  Google Scholar 

  • Frydman J (2001) Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 70:603–647

    PubMed  CAS  Google Scholar 

  • Garnier C, Lafitte D, Tsvetkov PO et al (2002) Binding of ATP to heat shock protein 90: evidence for an ATP-binding site in the C-terminal domain. J Biol Chem 277:12208–12214

    PubMed  CAS  Google Scholar 

  • Garrido C, Gurbuxani S, Ravagnan L et al (2001) Heat shock proteins: endogenous modulators of apoptotic cell death. Biochem Biophys Res Commun 286:433–442

    PubMed  CAS  Google Scholar 

  • Garrido C, Paul C, Seigneuric R et al (2006) The small heat shock proteins family: the long forgotten chaperones. Int J Biochem Cell Biol 44:1588–1592

    Google Scholar 

  • Georgopoulos C, Welch WJ (1993) Role of the major heat shock proteins as molecular chaperones. Annu Rev Cell Biol 9:601–634

    PubMed  CAS  Google Scholar 

  • Gitau GW, Mandal P, Blatch GL et al (2012) Characterisation of the Plasmodium falciparum Hsp70-Hsp90 organising protein (PfHop). Cell Stress Chaperones 17:191–202

    PubMed  CAS  Google Scholar 

  • Glover JR, Lindquist S (1998) Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94:73–82

    PubMed  CAS  Google Scholar 

  • Goes FS, Martin J (2001) Hsp90 chaperone complexes are required for the activity and stability of yeast protein kinases Mik1, Wee1 and Swe1. Eur J Biochem 268:2281–2289

    PubMed  CAS  Google Scholar 

  • Goloubinoff P, Mogk A, Zvi AP et al (1999) Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc Natl Acad Sci U S A 96:13732–13737

    PubMed  CAS  Google Scholar 

  • Gottesman S (2003) Proteolysis in bacterial regulatory circuits. Annu Rev Cell Dev Biol 19:565–587

    PubMed  CAS  Google Scholar 

  • Grad I, McKee TA, Ludwig SM et al (2006) The Hsp90 cochaperone p23 is essential for perinatal survival. Mol Cell Biol 26:8976–8983

    PubMed  CAS  Google Scholar 

  • Grad I, Cederroth CR, Walicki J et al (2010) The molecular chaperone Hsp90alpha is required for meiotic progression of spermatocytes beyond pachytene in the mouse. PLoS One 5:e15770

    PubMed  CAS  Google Scholar 

  • Gragerov A, Gottesman ME (1994) Different peptide binding specificities of hsp70 family members. J Mol Biol 241:133–135

    PubMed  CAS  Google Scholar 

  • Grammatikakis N, Vultur A, Ramana CV et al (2002) The role of Hsp90N, a new member of the Hsp90 family, in signal transduction and neoplastic transformation. J Biol Chem 277:8312–8320

    PubMed  CAS  Google Scholar 

  • Greene MK, Maskos K, Landry SJ (1998) Role of the J-domain in the cooperation of Hsp40 with Hsp70. Proc Natl Acad Sci U S A 95:6108–6113

    PubMed  CAS  Google Scholar 

  • Grenert JP, Sullivan WP, Fadden P et al (1997) The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation. J Biol Chem 272:23843–23850

    PubMed  CAS  Google Scholar 

  • Gusev NB, Bogatcheva NV, Marston SB (2002) Structure and properties of small heat shock proteins (sHsp) and their interaction with cytoskeleton proteins. Biochemistry (Mosc) 67:511–519

    CAS  Google Scholar 

  • Hageman J, Kampinga HH (2009) Computational analysis of the human HSPH/HSPA/DNAJ family and cloning of a human HSPH/HSPA/DNAJ expression library. Cell Stress Chaperones 14:1–21

    PubMed  CAS  Google Scholar 

  • Hainzl O, Lapina MC, Buchner J et al (2009) The charged linker region is an important regulator of Hsp90 function. J Biol Chem 284:22559–22567

    PubMed  CAS  Google Scholar 

  • Hamman BD, Hendershot LM, Johnson AE (1998) BiP maintains the permeability barrier of the ER membrane by sealing the lumenal end of the translocon pore before and early in translocation. Cell 92:747–758

    PubMed  CAS  Google Scholar 

  • Harrison CJ, Hayer-Hartl M, Liberto MD et al (1997) Crystal Structure of the Nucleotide Exchange Factor GrpE Bound to the ATPase Domain of the Molecular Chaperone DnaK. Science 276:431–435

    PubMed  CAS  Google Scholar 

  • Harst A, Lin H, Obermann WM (2005) Aha1 competes with Hop, p50 and p23 for binding to the molecular chaperone Hsp90 and contributes to kinase and hormone receptor activation. Biochem J 387:789–796

    PubMed  CAS  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858

    PubMed  CAS  Google Scholar 

  • Hartl FU, Martin J, Neupert W (1992) Protein folding in the cell: the role of molecular chaperones Hsp70 and Hsp60. Annu Rev Biophys Biomol Struct 21:293–322

    PubMed  CAS  Google Scholar 

  • Hawle P, Siepmann M, Harst A et al (2006) The middle domain of Hsp90 acts as a discriminator between different types of client proteins. Mol Cell Biol 26:8385–8395

    PubMed  CAS  Google Scholar 

  • Hayes D, Napoli V, Mazurkie A et al (2009) Phosphorylation dependence of hsp27 multimeric size and molecular chaperone function. J Biol Chem 284:18801–18807

    PubMed  CAS  Google Scholar 

  • Hendrick JP, Hartl FU (1993) Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem 62:349–384

    PubMed  CAS  Google Scholar 

  • Hendrick JP, Hartl FU (1995) The role of molecular chaperones in protein folding. Faseb J 9:1559–1569

    PubMed  CAS  Google Scholar 

  • Henics T, Nagy E, Oh HJ et al (1999) Mammalian Hsp70 and Hsp110 proteins bind to RNA motifs involved in mRNA stability. J Biol Chem 274:17318–17324

    PubMed  CAS  Google Scholar 

  • Hennessy F, Boshoff A, Blatch GL (2005a) Rational mutagenesis of a 40 kDa heat shock protein from Agrobacterium tumefaciens identifies amino acid residues critical to its in vivo function. Int J Biochem Cell Biol 37:177–191

    CAS  Google Scholar 

  • Hennessy F, Nicoll WS, Zimmermann R et al (2005b) Not all J domains are created equal: implications for the specificity of Hsp40-Hsp70 interactions. Protein Sci 14:1697–1709

    CAS  Google Scholar 

  • Hernandez MP, Chadli A, Toft DO (2002a) HSP40 binding is the first step in the HSP90 chaperoning pathway for the progesterone receptor. J Biol Chem 277:11873–11881

    CAS  Google Scholar 

  • Hernandez MP, Sullivan WP, Toft DO (2002b) The assembly and intermolecular properties of the hsp70-Hop-hsp90 molecular chaperone complex. J Biol Chem 277:38294–38304

    CAS  Google Scholar 

  • Hohfeld J, Minami Y, Hartl FU (1995) Hip, a novel cochaperone involved in the eukaryotic Hsc70/Hsp40 reaction cycle. Cell 83:589–598

    PubMed  CAS  Google Scholar 

  • Horovitz A, Willison KR (2005) Allosteric regulation of chaperonins. Curr Opin Struct Biol 15:646–651

    PubMed  CAS  Google Scholar 

  • Horrocks P, Newbold CI (2000) Intraerythrocytic polyubiquitin expression in Plasmodium falciparum is subjected to developmental and heat-shock control. Mol Biochem Parasitol 105:115–125

    PubMed  CAS  Google Scholar 

  • Horst R, Bertelsen EB, Fiaux J et al (2005) Direct NMR observation of a substrate protein bound to the chaperonin GroEL. Proc Natl Acad Sci U S A 102:12748–12753

    PubMed  CAS  Google Scholar 

  • Horwich AL, Farr GW, Fenton WA (2006) GroEL-GroES-mediated protein folding. Chem Rev 106:1917–1930

    PubMed  CAS  Google Scholar 

  • Horwich AL, Fenton WA, Chapman E et al (2007) Two families of chaperonin: physiology and mechanism. Annu Rev Cell Dev Biol 23:115–145

    PubMed  CAS  Google Scholar 

  • Houry WA, Frishman D, Eckerskorn C et al (1999) Identification of in vivo substrates of the chaperonin GroEL. Nature 402:147–154

    PubMed  CAS  Google Scholar 

  • Hu J, Wu Y, Li J et al (2008) The crystal structure of the putative peptide-binding fragment from the human Hsp40 protein Hdj1. BMC Struct Biol 8:3

    PubMed  CAS  Google Scholar 

  • Immormino RM, Metzger LEt, Reardon PN et al (2009) Different poses for ligand and chaperone in inhibitor-bound Hsp90 and GRP94: implications for paralog-specific drug design. J Mol Biol 388:1033–1042

    PubMed  CAS  Google Scholar 

  • Ingolia TD, Craig EA (1982) Drosophila gene related to the major heat shock-induced gene is transcribed at normal temperatures and not induced by heat shock. Proc Natl Acad Sci U S A 79:525–529

    PubMed  CAS  Google Scholar 

  • Irmer H, Hohfeld J (1997) Characterization of functional domains of the eukaryotic co-chaperone Hip. J Biol Chem 272:2230–2235

    PubMed  CAS  Google Scholar 

  • Irobi J, Van Impe K, Seeman P et al (2004) Hot-spot residue in small heat-shock protein 22 causes distal motor neuropathy. Nat Genet 36:597–601

    PubMed  CAS  Google Scholar 

  • Jakob U, Gaestel M, Engel K et al (1993) Small heat shock proteins are molecular chaperones. J Biol Chem 268:1517–1520

    PubMed  CAS  Google Scholar 

  • Jiang J, Taylor AB, Prasad K et al (2003) Structure-function analysis of the auxilin J-domain reveals an extended Hsc70 interaction interface. Biochemistry 42:5748–5753

    PubMed  CAS  Google Scholar 

  • Jiang J, Prasad K, Lafer EM et al (2005) Structural basis of interdomain communication in the Hsc70 chaperone. Mol Cell 20:513–524

    PubMed  CAS  Google Scholar 

  • Jiang J, Maes EG, Taylor AB et al (2007) Structural basis of J cochaperone binding and regulation of Hsp70. Mol Cell 28:422–433

    PubMed  CAS  Google Scholar 

  • Johnson JL, Toft DO (1995) Binding of p23 and hsp90 during assembly with the progesterone receptor. Mol Endocrinol 9:670–678

    PubMed  CAS  Google Scholar 

  • Johnson JL, Craig EA (2001) An essential role for the substrate-binding region of Hsp40s in Saccharomyces cerevisiae. J Cell Biol 152:851–856

    PubMed  CAS  Google Scholar 

  • Johnson BD, Schumacher RJ, Ross ED et al (1998) Hop modulates Hsp70/Hsp90 interactions in protein folding. J Biol Chem 273:3679–3686

    PubMed  CAS  Google Scholar 

  • Kabani M, Martineau CN (2008) Multiple hsp70 isoforms in the eukaryotic cytosol: mere redundancy or functional specificity? Curr Genomics 9:338–248

    PubMed  CAS  Google Scholar 

  • Kabani M, McLellan C, Raynes DA et al (2002) HspBP1, a homologue of the yeast Fes1 and Sls1 proteins, is an Hsc70 nucleotide exchange factor. FEBS Lett 531:339–342

    PubMed  CAS  Google Scholar 

  • Kadota Y, Amigues B, Ducassou L et al (2008) Structural and functional analysis of SGT1-HSP90 core complex required for innate immunity in plants. EMBO Rep 9:1209–1215

    PubMed  CAS  Google Scholar 

  • Kamal A, Thao L, Sensintaffar J et al (2003) A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425:407–410

    PubMed  CAS  Google Scholar 

  • Kampinga HH, Craig EA (2010) The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 11:579–592

    PubMed  CAS  Google Scholar 

  • Kampinga HH, Hageman J, Vos MJ et al (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14:105–111

    PubMed  CAS  Google Scholar 

  • Kase S, Parikh JG, Rao NA (2009) Expression of heat shock protein 27 and alpha-crystallins in human retinoblastoma after chemoreduction. Br J Ophthalmol 93:541–544

    PubMed  CAS  Google Scholar 

  • Kelley WL, Georgopoulos C (1997) Positive control of the two-component RcsC/B signal transduction network by DjlA: a member of the DnaJ family of molecular chaperones in Escherichia coli. Mol Microbiol 25:913–931

    PubMed  CAS  Google Scholar 

  • Kerner MJ, Naylor DJ, Ishihama Y et al (2005) Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell 122:209–220

    PubMed  CAS  Google Scholar 

  • Kimura Y, Rutherford SL, Miyata Y et al (1997) Cdc37 is a molecular chaperone with specific functions in signal transduction. Genes Dev 11:1775–1785

    PubMed  CAS  Google Scholar 

  • Kityk R, Kopp J, Sinning I et al (2012) Structure and dynamics of the ATP-bound open conformation of Hsp70 chaperones. Mol Cell 48:863–874

    PubMed  CAS  Google Scholar 

  • Klumpp M, Baumeister W, Essen LO (1997) Structure of the substrate binding domain of the thermosome, an archaeal group II chaperonin. Cell 91:263–270

    PubMed  CAS  Google Scholar 

  • Koteiche HA, McHaourab HS (2006) Mechanism of a hereditary cataract phenotype. Mutations in alphaA-crystallin activate substrate binding. J Biol Chem 281:14273–14279

    PubMed  CAS  Google Scholar 

  • Kramer G, Patzelt H, Rauch T et al (2004) Trigger factor peptidyl-prolyl cis/trans isomerase activity is not essential for the folding of cytosolic proteins in Escherichia coli. J Biol Chem 279:14165–14170

    PubMed  CAS  Google Scholar 

  • Kumar R, Pavithra SR, Tatu U (2007) Three-dimensional structure of heat shock protein 90 from Plasmodium falciparum: molecular modelling approach to rational drug design against malaria. J Biosci 32:531–536

    PubMed  Google Scholar 

  • Langer T, Lu C, Echols H et al (1992) Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature 356:683–689

    PubMed  CAS  Google Scholar 

  • Lanneau D, de Thonel A, Maurel S et al (2007) Apoptosis versus cell differentiation: role of heat shock proteins HSP90, HSP70 and HSP27. Prion 1:53–60

    PubMed  Google Scholar 

  • Lanneau D, Wettstein G, Bonniaud P et al (2010) Heat shock proteins: cell protection through protein triage. ScientificWorldJournal 10:1543–1552

    PubMed  CAS  Google Scholar 

  • Lawson B, Brewer JW, Hendershot LM (1998) Geldanamycin, an hsp90/GRP94-binding drug, induces increased transcription of endoplasmic reticulum (ER) chaperones via the ER stress pathway. J Cell Physiol 174:170–178

    PubMed  CAS  Google Scholar 

  • Lee GJ, Roseman AM, Saibil HR et al (1997) A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. Embo J 16:659–671

    PubMed  CAS  Google Scholar 

  • Lee S, Fan CY, Younger JM et al (2002) Identification of essential residues in the type II Hsp40 Sis1 that function in polypeptide binding. J Biol Chem 277:21675–21682

    PubMed  CAS  Google Scholar 

  • Lee S, Sowa ME, Watanabe YH et al (2003) The structure of ClpB: a molecular chaperone that rescues proteins from an aggregated state. Cell 115:229–240

    PubMed  CAS  Google Scholar 

  • Lee P, Shabbir A, Cardozo C et al (2004) Sti1 and Cdc37 can stabilize Hsp90 in chaperone complexes with a protein kinase. Mol Biol Cell 15:1785–1792

    PubMed  CAS  Google Scholar 

  • Lee KP, Raez LE, Podack ER (2006) Heat shock protein-based cancer vaccines. Hematol Oncol Clin North Am 20:637–659

    PubMed  Google Scholar 

  • Lee CT, Graf C, Mayer FJ et al (2012) Dynamics of the regulation of Hsp90 by the co-chaperone Sti1. Embo J 31:1518–1528

    PubMed  CAS  Google Scholar 

  • Lee-Yoon D, Easton D, Murawski M et al (1995) Identification of a major subfamily of large hsp70-like proteins through the cloning of the mammalian 110-kDa heat shock protein. J Biol Chem 270:15725–15733

    PubMed  CAS  Google Scholar 

  • Leroux MR, Hartl FU (2000) Protein folding: versatility of the cytosolic chaperonin TRiC/CCT. Curr Biol 10:R260–264

    PubMed  CAS  Google Scholar 

  • Leskovar A, Wegele H, Werbeck ND et al (2008) The ATPase cycle of the mitochondrial Hsp90 analog Trap1. J Biol Chem 283:11677–11688

    PubMed  CAS  Google Scholar 

  • Li J, Sha B (2005) Structure-based mutagenesis studies of the peptide substrate binding fragment of type I heat-shock protein 40. Biochem J 386:453–460

    PubMed  CAS  Google Scholar 

  • Li J, Wu Y, Qian X et al (2006) Crystal structure of yeast Sis1 peptide-binding fragment and Hsp70 Ssa1 C-terminal complex. Biochem J 398:353–360

    PubMed  CAS  Google Scholar 

  • Li J, Qian X, Hu J et al (2009) Molecular chaperone Hsp70/Hsp90 prepares the mitochondrial outer membrane translocon receptor Tom71 for preprotein loading. J Biol Chem 284:23852–23859

    PubMed  CAS  Google Scholar 

  • Liberek K, Marszalek J, Ang D et al (1991) Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc Natl Acad Sci U S A 88:2874–2878

    PubMed  CAS  Google Scholar 

  • Liu Q, Hendrickson WA (2007) Insights into Hsp70 chaperone activity from a crystal structure of the yeast Hsp110 Sse1. Cell 131:106–120

    PubMed  CAS  Google Scholar 

  • Liu L, Srikakulam R, Winkelmann DA (2008) Unc45 activates Hsp90-dependent folding of the myosin motor domain. J Biol Chem 283:13185–13193

    PubMed  CAS  Google Scholar 

  • Liu B, Yang Y, Qiu Z et al (2010) Folding of Toll-like receptors by the HSP90 paralogue gp96 requires a substrate-specific cochaperone. Nat Commun 1:79

    PubMed  Google Scholar 

  • Longshaw VM, Dirr HW, Blatch GL et al (2000) The in vitro phosphorylation of the co-chaperone mSTI1 by cell cycle kinases substantiates a predicted casein kinase II-p34cdc2-NLS (CcN) motif. Biol Chem 381:1133–1138

    PubMed  CAS  Google Scholar 

  • Lu Z, Cyr DM (1998) The conserved carboxyl terminus and zinc finger-like domain of the co-chaperone Ydj1 assist Hsp70 in protein folding. J Biol Chem 273:5970–5978

    PubMed  CAS  Google Scholar 

  • Macario AJ, Conway de Macario E (2007a) Chaperonopathies and chaperonotherapy. FEBS Lett 581:3681–3688

    CAS  Google Scholar 

  • Macario AJ, Conway de Macario E (2007b) Chaperonopathies by defect, excess, or mistake. Ann N Y Acad Sci 1113:178–191

    CAS  Google Scholar 

  • MacLean M, Picard D (2003) Cdc37 goes beyond Hsp90 and kinases. Cell Stress Chaperones 8:114–119

    PubMed  CAS  Google Scholar 

  • Maier AG, Rug M, O’Neill MT et al (2008) Exported proteins required for virulence and rigidity of Plasmodium falciparum-infected human erythrocytes. Cell 134:48–61

    PubMed  CAS  Google Scholar 

  • Maier AG, Cooke BM, Cowman AF et al (2009) Malaria parasite proteins that remodel the host erythrocyte. Nat Rev Microbiol 7:341–354

    PubMed  CAS  Google Scholar 

  • Marcu MG, Neckers LM (2003) The C-terminal half of heat shock protein 90 represents a second site for pharmacologic intervention in chaperone function. Curr Cancer Drug Targets 3:343–347

    PubMed  CAS  Google Scholar 

  • Marcu MG, Chadli A, Bouhouche I et al (2000a) The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone. J Biol Chem 275:37181–37186

    CAS  Google Scholar 

  • Marcu MG, Schulte TW, Neckers L (2000b) Novobiocin and related coumarins and depletion of heat shock protein 90-dependent signaling proteins. J Natl Cancer Inst 92:242–248

    CAS  Google Scholar 

  • Martinez-Ruiz A, Villanueva L, Gonzalez de Orduna C et al (2005) S-nitrosylation of Hsp90 promotes the inhibition of its ATPase and endothelial nitric oxide synthase regulatory activities. Proc Natl Acad Sci U S A 102:8525–8530

    PubMed  CAS  Google Scholar 

  • Martinez-Yamout MA, Venkitakrishnan RP, Preece NE et al (2006) Localization of sites of interaction between p23 and Hsp90 in solution. J Biol Chem 281:14457–14464

    PubMed  CAS  Google Scholar 

  • Marzec M, Eletto D, Argon Y (2012) GRP94: An HSP90-like protein specialized for protein folding and quality control in the endoplasmic reticulum. Biochim Biophys Acta 1823:774–787

    PubMed  CAS  Google Scholar 

  • Mayer MP (2010) Gymnastics of molecular chaperones. Mol Cell 39:321–331

    PubMed  CAS  Google Scholar 

  • Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684

    PubMed  CAS  Google Scholar 

  • Mayer MP, Nikolay R, Bukau B (2002) Aha, another regulator for hsp90 chaperones. Mol Cell 10:1255–1256

    PubMed  CAS  Google Scholar 

  • McCarty JS, Buchberger A, Reinstein J et al (1995) The role of ATP in the functional cycle of the DnaK chaperone system. J Mol Biol 249:126–137

    PubMed  CAS  Google Scholar 

  • McClellan AJ, Tam S, Kaganovich D et al (2005) Protein quality control: chaperones culling corrupt conformations. Nat Cell Biol 7:736–741

    PubMed  CAS  Google Scholar 

  • McDonald ET, Bortolus M, Koteiche HA et al (2012) Sequence, structure, and dynamic determinants of Hsp27 (HspB1) equilibrium dissociation are encoded by the N-terminal domain. Biochemistry 51:1257–1268

    PubMed  CAS  Google Scholar 

  • McLaughlin SH, Smith HW, Jackson SE (2002) Stimulation of the weak ATPase activity of human hsp90 by a client protein. J Mol Biol 315:787–798

    PubMed  CAS  Google Scholar 

  • McLaughlin SH, Sobott F, Yao ZP et al (2006) The co-chaperone p23 arrests the Hsp90 ATPase cycle to trap client proteins. J Mol Biol 356:746–758

    PubMed  CAS  Google Scholar 

  • Medana IM, Turner GD (2006) Human cerebral malaria and the blood-brain barrier. Int J Parasitol 36:555–568

    PubMed  CAS  Google Scholar 

  • Meyer P, Prodromou C, Hu B et al (2003) Structural and functional analysis of the middle segment of hsp90: implications for ATP hydrolysis and client protein and cochaperone interactions. Mol Cell 11:647–658

    PubMed  CAS  Google Scholar 

  • Meyer P, Prodromou C, Liao C et al (2004) Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery. Embo J 23:511–519

    PubMed  CAS  Google Scholar 

  • Moffatt NS, Bruinsma E, Uhl C et al (2008) Role of the cochaperone Tpr2 in Hsp90 chaperoning. Biochemistry 47:8203–8213

    PubMed  Google Scholar 

  • Morishima Y, Kanelakis KC, Murphy PJ et al (2003) The hsp90 cochaperone p23 is the limiting component of the multiprotein hsp90/hsp70-based chaperone system in vivo where it acts to stabilize the client protein: hsp90 complex. J Biol Chem 278:48754–48763

    PubMed  CAS  Google Scholar 

  • Morshauser RC, Hu W, Wang H et al (1999) High-resolution solution structure of the 18 kDa substrate-binding domain of the mammalian chaperone protein Hsc70. J Mol Biol 289:1387–1403

    PubMed  CAS  Google Scholar 

  • Mounier N, Arrigo AP (2002) Actin cytoskeleton and small heat shock proteins: how do they interact? Cell Stress Chaperones 7:167–176

    PubMed  CAS  Google Scholar 

  • Muralidharan V, Oksman A, Pal P et al (2013) Plasmodium falciparum heat shock protein 110 stabilizes the asparagine repeat-rich parasite proteome during malarial fevers. Nat Commun 3:1310

    Google Scholar 

  • Narberhaus F (2002) Alpha-crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol Mol Biol Rev 66:64–93. (table of contents)

    PubMed  CAS  Google Scholar 

  • Neckers L, Kern A, Tsutsumi S (2007) Hsp90 inhibitors disrupt mitochondrial homeostasis in cancer cells. Chem Biol 14:1204–1206

    PubMed  CAS  Google Scholar 

  • Nelson GM, Huffman H, Smith DF (2003) Comparison of the carboxy-terminal DP-repeat region in the co-chaperones Hop and Hip. Cell Stress Chaperones 8:125–133

    PubMed  CAS  Google Scholar 

  • Nemoto T, Sato N (1998) Oligomeric forms of the 90-kDa heat shock protein. Biochem J 330(Pt 2):989–995

    PubMed  CAS  Google Scholar 

  • Nikolay R, Wiederkehr T, Rist W et al (2004) Dimerization of the human E3 ligase CHIP via a coiled-coil domain is essential for its activity. J Biol Chem 279:2673–2678

    PubMed  CAS  Google Scholar 

  • Njunge JM, Ludewig MH, Boshoff A et al (2013) Hsp70s and j proteins of Plasmodium parasites infecting rodents and primates: structure, function, clinical relevance, and drug targets. Curr Pharm Des 19:387–403

    PubMed  CAS  Google Scholar 

  • Nyalwidhe J, Lingelbach K (2006) Proteases and chaperones are the most abundant proteins in the parasitophorous vacuole of Plasmodium falciparum-infected erythrocytes. Proteomics 6:1563–1573

    PubMed  CAS  Google Scholar 

  • Obermann WM, Sondermann H, Russo AA et al (1998) In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis. J Cell Biol 143:901–910

    PubMed  CAS  Google Scholar 

  • Odunuga OO, Hornby JA, Bies C et al (2003) Tetratricopeptide repeat motif-mediated Hsc70-mSTI1 interaction. Molecular characterization of the critical contacts for successful binding and specificity. J Biol Chem 278:6896–6904

    PubMed  CAS  Google Scholar 

  • Ogura T, Wilkinson AJ (2001) AAA + superfamily ATPases: common structure–diverse function. Genes Cells 6:575–597

    PubMed  CAS  Google Scholar 

  • Oh HJ, Chen X, Subjeck JR (1997) Hsp110 protects heat-denatured proteins and confers cellular thermoresistance. J Biol Chem 272:31636–31640

    PubMed  CAS  Google Scholar 

  • Oh HJ, Easton D, Murawski M et al (1999) The chaperoning activity of hsp110. Identification of functional domains by use of targeted deletions. J Biol Chem 274:15712–15718

    PubMed  CAS  Google Scholar 

  • Ohto-Fujita E, Fujita Y, Atomi Y (2007) Analysis of the alphaB-crystallin domain responsible for inhibiting tubulin aggregation. Cell Stress Chaperones 12:163–171

    PubMed  CAS  Google Scholar 

  • Onuoha SC, Coulstock ET, Grossmann JG et al (2008) Structural studies on the co-chaperone Hop and its complexes with Hsp90. J Mol Biol 379:732–744

    PubMed  CAS  Google Scholar 

  • Pallavi R, Roy N, Nageshan RK et al (2010) Heat shock protein 90 as a drug target against protozoan infections: biochemical characterization of HSP90 from Plasmodium falciparum and Trypanosoma evansi and evaluation of its inhibitor as a candidate drug. J Biol Chem 285:37964–37975

    PubMed  CAS  Google Scholar 

  • Palleros DR, Reid KL, Shi L et al (1993) ATP-induced protein-Hsp70 complex dissociation requires K + but not ATP hydrolysis. Nature 365:664–666

    PubMed  CAS  Google Scholar 

  • Panaretou B, Prodromou C, Roe SM et al (1998) ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. Embo J 17:4829–4836

    PubMed  CAS  Google Scholar 

  • Panaretou B, Siligardi G, Meyer P et al (2002) Activation of the ATPase activity of hsp90 by the stress-regulated cochaperone aha1. Mol Cell 10:1307–1318

    PubMed  CAS  Google Scholar 

  • Parcellier A, Schmitt E, Brunet M et al (2005) Small heat shock proteins HSP27 and alphaB-crystallin: cytoprotective and oncogenic functions. Antioxid Redox Signal 7:404–413

    PubMed  CAS  Google Scholar 

  • Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27:437–496

    PubMed  CAS  Google Scholar 

  • Patury S, Miyata Y, Gestwicki JE (2009) Pharmacological targeting of the Hsp70 chaperone. Curr Top Med Chem 9:1337–1351

    PubMed  CAS  Google Scholar 

  • Pavithra SR, Banumathy G, Joy O et al (2004) Recurrent fever promotes Plasmodium falciparum development in human erythrocytes. J Biol Chem 279:46692–46699

    PubMed  CAS  Google Scholar 

  • Pavithra SR, Kumar R, Tatu U (2007) Systems analysis of chaperone networks in the malarial parasite Plasmodium falciparum. PLoS Comput Biol 3:1701–1715

    PubMed  CAS  Google Scholar 

  • Pearl LH, Prodromou C, Workman P (2008) The Hsp90 molecular chaperone: an open and shut case for treatment. Biochem J 410:439–453

    PubMed  CAS  Google Scholar 

  • Pellecchia M, Szyperski T, Wall D et al (1996) NMR structure of the J-domain and the Gly/Phe-rich region of the Escherichia coli DnaJ chaperone. J Mol Biol 260:236–250

    PubMed  CAS  Google Scholar 

  • Pesce ER, Cockburn IL, Goble JL et al (2010) Malaria heat shock proteins: drug targets that chaperone other drug targets. Infect Disord Drug Targets 10:147–157

    PubMed  CAS  Google Scholar 

  • Pirkl F, Buchner J (2001) Functional analysis of the Hsp90-associated human peptidyl prolyl cis/trans isomerases FKBP51, FKBP52 and Cyp40. J Mol Biol 308:795–806

    PubMed  CAS  Google Scholar 

  • Polier S, Dragovic Z, Hartl FU et al (2008) Structural Basis for the Cooperation of Hsp70 and Hsp110 Chaperones in Protein Folding. Cell 133:1068–1079

    PubMed  CAS  Google Scholar 

  • Pratt WB, Toft DO (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood) 228:111–133

    CAS  Google Scholar 

  • Pratt WB, Morishima Y, Peng HM et al (2010) Proposal for a role of the Hsp90/Hsp70-based chaperone machinery in making triage decisions when proteins undergo oxidative and toxic damage. Exp Biol Med (Maywood) 235:278–289

    CAS  Google Scholar 

  • Prince T, Sun L, Matts RL (2005) Cdk2: a genuine protein kinase client of Hsp90 and Cdc37. Biochemistry 44:15287–15295

    PubMed  CAS  Google Scholar 

  • Prodromou C, Roe SM, O’Brien R et al (1997) Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90:65–75

    PubMed  CAS  Google Scholar 

  • Prodromou C, Siligardi G, O’Brien R et al (1999) Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones. Embo J 18:754–762

    PubMed  CAS  Google Scholar 

  • Qian YQ, Patel D, Hartl FU et al (1996) Nuclear magnetic resonance solution structure of the human Hsp40 (HDJ-1) J-domain. J Mol Biol 260:224–235

    PubMed  CAS  Google Scholar 

  • Qian SB, McDonough H, Boellmann F et al (2006) CHIP-mediated stress recovery by sequential ubiquitination of substrates and Hsp70. Nature 440:551–555

    PubMed  CAS  Google Scholar 

  • Qiu XB, Shao YM, Miao S et al (2006) The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell Mol Life Sci 63:2560–2570

    PubMed  CAS  Google Scholar 

  • Ranson NA, White HE, Saibil HR (1998) Chaperonins. Biochem J 333(Pt 2):233–242

    PubMed  CAS  Google Scholar 

  • Rao R, Fiskus W, Yang Y et al (2008) HDAC6 inhibition enhances 17-AAG–mediated abrogation of hsp90 chaperone function in human leukemia cells. Blood 112:1886–1893

    PubMed  CAS  Google Scholar 

  • Raviol H, Sadlish H, Rodriguez F et al (2006) Chaperone network in the yeast cytosol: Hsp110 is revealed as an Hsp70 nucleotide exchange factor. Embo J 25:2510–2518

    PubMed  CAS  Google Scholar 

  • Reid BG, Fenton WA, Horwich AL et al (2001) ClpA mediates directional translocation of substrate proteins into the ClpP protease. Proc Natl Acad Sci U S A 98:3768–3772

    PubMed  CAS  Google Scholar 

  • Riggs DL, Roberts PJ, Chirillo SC et al (2003) The Hsp90-binding peptidylprolyl isomerase FKBP52 potentiates glucocorticoid signaling in vivo. Embo J 22:1158–1167

    PubMed  CAS  Google Scholar 

  • Ritossa F (1962) A new puffing pattern induced by temperature shock and DNP in drosophila. CMLS Cell Mol Life Sci 18:571–573

    CAS  Google Scholar 

  • Roe SM, Ali MM, Meyer P et al (2004) The Mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50(cdc37). Cell 116:87–98

    PubMed  CAS  Google Scholar 

  • Rogalla T, Ehrnsperger M, Preville X et al (1999) Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor alpha by phosphorylation. J Biol Chem 274:18947–18956

    PubMed  CAS  Google Scholar 

  • Rosser MF, Washburn E, Muchowski PJ et al (2007) Chaperone functions of the E3 ubiquitin ligase CHIP. J Biol Chem 282:22267–22277

    PubMed  CAS  Google Scholar 

  • Rudiger S, Germeroth L, Schneider-Mergener J et al (1997) Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. Embo J 16:1501–1507

    PubMed  CAS  Google Scholar 

  • Rug M, Maier AG (2011) The heat shock protein 40 family of the malaria parasite Plasmodium falciparum. IUBMB Life 63:1081–1086

    PubMed  CAS  Google Scholar 

  • Rye HS, Burston SG, Fenton WA et al (1997) Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL. Nature 388:792–798

    PubMed  CAS  Google Scholar 

  • Saibil H (1996) The lid that shapes the pot: structure and function of the chaperonin GroES. Structure 4:1–4

    PubMed  CAS  Google Scholar 

  • Saibil H (2000) Molecular chaperones: containers and surfaces for folding, stabilising or unfolding proteins. Curr Opin Struct Biol 10:251–258

    PubMed  CAS  Google Scholar 

  • Sanchez Y, Lindquist SL (1990) HSP104 required for induced thermotolerance. Science 248:1112–1115

    PubMed  CAS  Google Scholar 

  • Sanchez Y, Taulien J, Borkovich KA et al (1992) Hsp104 is required for tolerance to many forms of stress. Embo J 11:2357–2364

    PubMed  CAS  Google Scholar 

  • Scheufler C, Brinker A, Bourenkov G et al (2000) Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell 101:199–210

    PubMed  CAS  Google Scholar 

  • Schirmer EC, Glover JR, Singer MA et al (1996) HSP100/Clp proteins: a common mechanism explains diverse functions. Trends Biochem Sci 21:289–296

    PubMed  CAS  Google Scholar 

  • Schirmer EC, Queitsch C, Kowal AS et al (1998) The ATPase activity of Hsp104, effects of environmental conditions and mutations. J Biol Chem 273:15546–15552

    PubMed  CAS  Google Scholar 

  • Schirmer EC, Ware DM, Queitsch C et al (2001) Subunit interactions influence the biochemical and biological properties of Hsp104. Proc Natl Acad Sci U S A 98:914–919

    PubMed  CAS  Google Scholar 

  • Schmid AB, Lagleder S, Grawert MA et al (2012) The architecture of functional modules in the Hsp90 co-chaperone Sti1/Hop. Embo J 31:1506–1517

    PubMed  CAS  Google Scholar 

  • Schmitt E, Gehrmann M, Brunet M et al (2007) Intracellular and extracellular functions of heat shock proteins: repercussions in cancer therapy. J Leukoc Biol 81:15–27

    PubMed  CAS  Google Scholar 

  • Schuermann JP, Jiang J, Cuellar J et al (2008) Structure of the Hsp110:Hsc70 nucleotide exchange machine. Mol Cell 31:232–243

    PubMed  CAS  Google Scholar 

  • Sha B, Lee S, Cyr DM (2000) The crystal structure of the peptide-binding fragment from the yeast Hsp40 protein Sis1. Structure 8:799–807

    PubMed  CAS  Google Scholar 

  • Shaner L, Sousa R, Morano KA (2006) Characterization of Hsp70 binding and nucleotide exchange by the yeast Hsp110 chaperone Sse1. Biochemistry 45:15075–15084

    PubMed  CAS  Google Scholar 

  • Shao J, Hartson SD, Matts RL (2002) Evidence that protein phosphatase 5 functions to negatively modulate the maturation of the Hsp90-dependent heme-regulated eIF2alpha kinase. Biochemistry 41:6770–6779

    PubMed  CAS  Google Scholar 

  • Sharma YD (1992) Structure and possible function of heat-shock proteins in Falciparum malaria. Comp Biochem Physiol B 102:437–444

    PubMed  CAS  Google Scholar 

  • Shi YY, Hong XG, Wang CC (2005) The C-terminal (331–376) sequence of Escherichia coli DnaJ is essential for dimerization and chaperone activity: a small angle X-ray scattering study in solution. J Biol Chem 280:22761–22768

    PubMed  CAS  Google Scholar 

  • Shomura Y, Dragovic Z, Chang HC et al (2005) Regulation of Hsp70 function by HspBP1: structural analysis reveals an alternate mechanism for Hsp70 nucleotide exchange. Mol Cell 17:367–379

    PubMed  CAS  Google Scholar 

  • Shonhai A, Boshoff A, Blatch GL (2005) Plasmodium falciparum heat shock protein 70 is able to suppress the thermosensitivity of an Escherichia coli DnaK mutant strain. Mol Genet Genomics 274:70–78

    PubMed  CAS  Google Scholar 

  • Shonhai A, Maier AG, Przyborski JM et al (2010) Intracellular protozoan parasites of humans: the role of molecular chaperones in development and pathogenesis. Protein Pept Lett 18:143–157

    Google Scholar 

  • Siligardi G, Panaretou B, Meyer P et al (2002) Regulation of Hsp90 ATPase activity by the co-chaperone Cdc37p/p50cdc37. J Biol Chem 277:20151–20159

    PubMed  CAS  Google Scholar 

  • Siligardi G, Hu B, Panaretou B et al (2004) Co-chaperone regulation of conformational switching in the Hsp90 ATPase cycle. J Biol Chem 279:51989–51998

    PubMed  CAS  Google Scholar 

  • Silverstein AM, Galigniana MD, Chen MS et al (1997) Protein phosphatase 5 is a major component of glucocorticoid receptor.hsp90 complexes with properties of an FK506-binding immunophilin. J Biol Chem 272:16224–16230

    PubMed  CAS  Google Scholar 

  • Sims JD, McCready J, Jay DG (2011) Extracellular heat shock protein (Hsp)70 and Hsp90alpha assist in matrix metalloproteinase-2 activation and breast cancer cell migration and invasion. PLoS One 6:e18848

    PubMed  CAS  Google Scholar 

  • Skowyra D, Georgopoulos C, Zylicz M (1990) The E. coli dnaK gene product, the hsp70 homolog, can reactivate heat-inactivated RNA polymerase in an ATP hydrolysis-dependent manner. Cell 62:939–944

    PubMed  CAS  Google Scholar 

  • Slepenkov SV, Witt SN (2002) The unfolding story of the Escherichia coli Hsp70 DnaK: is DnaK a holdase or an unfoldase? Mol Microbiol 45:1197–1206

    PubMed  CAS  Google Scholar 

  • Sondermann H, Scheufler C, Schneider C et al (2001) Structure of a Bag/Hsc70 complex: convergent functional evolution of Hsp70 nucleotide exchange factors. Science 291:1553–1557

    PubMed  CAS  Google Scholar 

  • Soti C, Vermes A, Haystead TA et al (2003) Comparative analysis of the ATP-binding sites of Hsp90 by nucleotide affinity cleavage: a distinct nucleotide specificity of the C-terminal ATP-binding site. Eur J Biochem 270:2421–2428

    PubMed  CAS  Google Scholar 

  • Spee P, Subjeck J, Neefjes J (1999) Identification of novel peptide binding proteins in the endoplasmic reticulum: ERp72, calnexin, and grp170. Biochemistry 38:10559–10566

    PubMed  CAS  Google Scholar 

  • Sreedhar AS, Kalmar E, Csermely P et al (2004) Hsp90 isoforms: functions, expression and clinical importance. FEBS Lett 562:11–15

    PubMed  Google Scholar 

  • Srikakulam R, Liu L, Winkelmann DA (2008) Unc45b forms a cytosolic complex with Hsp90 and targets the unfolded myosin motor domain. PLoS ONE 3:e2137

    PubMed  Google Scholar 

  • Stebbins CE, Russo AA, Schneider C et al (1997) Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 89:239–250

    PubMed  CAS  Google Scholar 

  • Sternlicht H, Farr GW, Sternlicht ML et al (1993) The t-complex polypeptide 1 complex is a chaperonin for tubulin and actin in vivo. Proc Natl Acad Sci U S A 90:9422–9426

    PubMed  CAS  Google Scholar 

  • Sterrenberg JN, Blatch GL, Edkins AL (2011) Human DNAJ in cancer and stem cells. Cancer Lett 312:129–142

    PubMed  CAS  Google Scholar 

  • Stoldt V, Rademacher F, Kehren V et al (1996) Review: the Cct eukaryotic chaperonin subunits of Saccharomyces cerevisiae and other yeasts. Yeast 12:523–529

    PubMed  CAS  Google Scholar 

  • Sullivan WP, Owen BA, Toft DO (2002) The influence of ATP and p23 on the conformation of hsp90. J Biol Chem 277:45942–45948

    PubMed  CAS  Google Scholar 

  • Suzuki H, Noguchi S, Arakawa H et al (2010) Peptide-binding sites as revealed by the crystal structures of the human Hsp40 Hdj1 C-terminal domain in complex with the octapeptide from human Hsp70. Biochemistry 49:8577–8584

    PubMed  CAS  Google Scholar 

  • Swain JF, Dinler G, Sivendran R et al (2007) Hsp70 chaperone ligands control domain association via an allosteric mechanism mediated by the interdomain linker. Mol Cell 26:27–39

    PubMed  CAS  Google Scholar 

  • Taldone T, Gozman A, Maharaj R et al (2008) Targeting Hsp90: small-molecule inhibitors and their clinical development. Curr Opin Pharmacol 8:370–374

    PubMed  CAS  Google Scholar 

  • Terasawa K, Minami M, Minami Y (2005) Constantly updated knowledge of Hsp90. J Biochem 137:443–447

    PubMed  CAS  Google Scholar 

  • Tissieres A, Mitchell HK, Tracy UM (1974) Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J Mol Biol 84:389–398

    PubMed  CAS  Google Scholar 

  • Tsai J, Douglas MG (1996) A conserved HPD sequence of the J-domain is necessary for YDJ1 stimulation of Hsp70 ATPase activity at a site distinct from substrate binding. J Biol Chem 271:9347–9354

    PubMed  CAS  Google Scholar 

  • Tsan MF, Gao B (2009) Heat shock proteins and immune system. J Leukoc Biol 85:905–910

    PubMed  CAS  Google Scholar 

  • Ungewickell E, Ungewickell H, Holstein SE et al (1995) Role of auxilin in uncoating clathrin-coated vesicles. Nature 378:632–635

    PubMed  CAS  Google Scholar 

  • Vertii A, Hakim C, Kotlyarov A et al (2006) Analysis of properties of small heat shock protein Hsp25 in MAPK-activated protein kinase 2 (MK2)-deficient cells: MK2-dependent insolubilization of Hsp25 oligomers correlates with susceptibility to stress. J Biol Chem 281:26966–26975

    PubMed  CAS  Google Scholar 

  • Vogel M, Mayer MP, Bukau B (2006) Allosteric regulation of Hsp70 chaperones involves a conserved interdomain linker. J Biol Chem 281:38705–38711

    PubMed  CAS  Google Scholar 

  • Vos MJ, Hageman J, Carra S et al (2008) Structural and functional diversities between members of the human HSPB, HSPH, HSPA, and DNAJ chaperone families. Biochemistry 47:7001–7011

    PubMed  CAS  Google Scholar 

  • Voss AK, Thomas T, Gruss P (2000) Mice lacking HSP90beta fail to develop a placental labyrinth. Development 127:1–11

    PubMed  CAS  Google Scholar 

  • Wakabayashi Y, Kobayashi M, Akashi-Takamura S et al (2006) A protein associated with toll-like receptor 4 (PRAT4A) regulates cell surface expression of TLR4. J Immunol 177:1772–1779

    PubMed  CAS  Google Scholar 

  • Walsh P, Bursac D, Law YC et al (2004) The J-protein family: modulating protein assembly, disassembly and translocation. EMBO Rep 5:567–571

    PubMed  CAS  Google Scholar 

  • Wandinger SK, Richter K, Buchner J (2008) The Hsp90 chaperone machinery. J Biol Chem 283:18473–18477

    PubMed  CAS  Google Scholar 

  • Ward BK, Allan RK, Mok D et al (2002) A structure-based mutational analysis of cyclophilin 40 identifies key residues in the core tetratricopeptide repeat domain that mediate binding to Hsp90. J Biol Chem 277:40799–40809

    PubMed  CAS  Google Scholar 

  • Wegele H, Muller L, Buchner J (2004) Hsp70 and Hsp90—a relay team for protein folding. Rev Physiol Biochem Pharmacol 151:1–44

    PubMed  CAS  Google Scholar 

  • Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5:761–772

    PubMed  CAS  Google Scholar 

  • Wider D, Peli-Gulli MP, Briand PA et al (2009) The complementation of yeast with human or Plasmodium falciparum Hsp90 confers differential inhibitor sensitivities. Mol Biochem Parasitol 164:147–152

    PubMed  CAS  Google Scholar 

  • Winkler J, Tyedmers J, Bukau B et al (2012) Hsp70 targets Hsp100 chaperones to substrates for protein disaggregation and prion fragmentation. J Cell Biol 198:387–404

    PubMed  CAS  Google Scholar 

  • Wisniewska M, Karlberg T, Lehtio L et al (2010) Crystal structures of the ATPase domains of four human Hsp70 isoforms: HSPA1 L/Hsp70-hom, HSPA2/Hsp70–2, HSPA6/Hsp70B’, and HSPA5/BiP/GRP78. PLoS One 5:e8625

    PubMed  Google Scholar 

  • Wittung-Stafshede P, Guidry J, Horne BE et al (2003) The J-domain of Hsp40 couples ATP hydrolysis to substrate capture in Hsp70. Biochemistry 42:4937–4944

    PubMed  CAS  Google Scholar 

  • Wu Y, Li J, Jin Z et al (2005) The crystal structure of the C-terminal fragment of yeast Hsp40 Ydj1 reveals novel dimerization motif for Hsp40. J Mol Biol 346:1005–1011

    PubMed  CAS  Google Scholar 

  • Xu Z, Horwich AL, Sigler PB (1997) The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388:741–750

    PubMed  CAS  Google Scholar 

  • Xu Z, Page RC, Gomes MM et al (2008) Structural basis of nucleotide exchange and client binding by the Hsp70 cochaperone Bag2. Nat Struct Mol Biol 15:1309–1317

    PubMed  CAS  Google Scholar 

  • Yang Y, Rao R, Shen J et al (2008) Role of acetylation and extracellular location of heat shock protein 90alpha in tumor cell invasion. Cancer Res 68:4833–4842

    PubMed  CAS  Google Scholar 

  • Yebenes H, Mesa P, Munoz IG et al (2011) Chaperonins: two rings for folding. Trends Biochem Sci 36:424–432

    PubMed  CAS  Google Scholar 

  • Young JC, Hartl FU (2000) Polypeptide release by Hsp90 involves ATP hydrolysis and is enhanced by the co-chaperone p23. Embo J 19:5930–5940

    PubMed  CAS  Google Scholar 

  • Young JC, Obermann WM, Hartl FU (1998) Specific binding of tetratricopeptide repeat proteins to the C-terminal 12-kDa domain of hsp90. J Biol Chem 273:18007–18010

    PubMed  CAS  Google Scholar 

  • Young JC, Hoogenraad NJ, Hartl FU (2003) Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 112:41–50

    PubMed  CAS  Google Scholar 

  • Young JC, Agashe VR, Siegers K et al (2004) Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol 5:781–791

    PubMed  CAS  Google Scholar 

  • Zhang W, Hirshberg M, McLaughlin SH et al (2004) Biochemical and structural studies of the interaction of Cdc37 with Hsp90. J Mol Biol 340:891–907

    PubMed  CAS  Google Scholar 

  • Zhang C, Xu Z, He XR et al (2005) CHIP, a cochaperone/ubiquitin ligase that regulates protein quality control, is required for maximal cardioprotection after myocardial infarction in mice. Am J Physiol Heart Circ Physiol 288:H2836–2842

    PubMed  CAS  Google Scholar 

  • Zhang M, Boter M, Li K et al (2008) Structural and functional coupling of Hsp90- and Sgt1-centred multi-protein complexes. Embo J 27:2789–2798

    PubMed  CAS  Google Scholar 

  • Zhu X, Zhao X, Burkholder WF et al (1996) Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272:1606–1614

    PubMed  CAS  Google Scholar 

  • Zolkiewski M (2006) A camel passes through the eye of a needle: protein unfolding activity of Clp ATPases. Mol Microbiol 61:1094–1100

    PubMed  CAS  Google Scholar 

  • Zougbede S, Miller F, Ravassard P et al (2011) Metabolic acidosis induced by Plasmodium falciparum intraerythrocytic stages alters blood-brain barrier integrity. J Cereb Blood Flow Metab 31:514–526

    PubMed  CAS  Google Scholar 

  • Zuehlke A, Johnson JL (2010) Hsp90 and co-chaperones twist the functions of diverse client proteins. Biopolymers 93:211–217

    PubMed  CAS  Google Scholar 

  • Zugel U, Kaufmann SH (1999) Role of heat shock proteins in protection from and pathogenesis of infectious diseases. Clin Microbiol Rev 12:19–39

    PubMed  CAS  Google Scholar 

  • Zurawska A, Urbanski J, Bieganowski P (2008) Hsp90n—An accidental product of a fortuitous chromosomal translocation rather than a regular Hsp90 family member of human proteome. Biochim Biophys Acta 1784:1844–1846

    PubMed  CAS  Google Scholar 

  • Zylicz M, Ang D, Liberek K et al (1989) Initiation of lambda DNA replication with purified host- and bacteriophage-encoded proteins: the role of the dnaK, dnaJ and grpE heat shock proteins. Embo J 8:1601–1608

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aileen Boshoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Edkins, A., Boshoff, A. (2014). General Structural and Functional Features of Molecular Chaperones. In: Shonhai, A., Blatch, G. (eds) Heat Shock Proteins of Malaria. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7438-4_2

Download citation

Publish with us

Policies and ethics