Skip to main content

Heat Shock Proteins as Targets for Novel Anti-Malarial Drugs

  • Chapter
  • First Online:
Heat Shock Proteins of Malaria

Abstract

Molecular chaperones or heat shock proteins are involved in diverse biological processes and play an important role in maintaining cellular homeostasis. Thus, inhibiting their function can be detrimental to cell survival. It has been well established that elaborate involvement of heat shock proteins is required during the process of malaria pathogenesis. Hence, heat shock proteins serve as potential drug targets against malaria. The emergence of drug resistance in Plasmodium falciparum against existing anti-malarial drugs has created a pressing need for the identification of novel drug targets. Multiple strategies have been undertaken in this regard which involve target based drug discovery, identifying novel anti-malarial natural compounds, chemically modifying existing drugs or repurposing drugs used for other diseases. This chapter provides a comprehensive overview of the inhibitors of Hsp90 and Hsp70-40 molecular chaperone system tested for efficacy in Plasmodium falciparum. These compounds belong to diverse chemical families and are of both natural and synthetic origin. Naturally occurring napthoquinones and synthetic pyrimidinones target PfHsp70 function while geldanamycin, acrisorcin, APPA and harmine are natural compounds that inhibit PfHsp90 function. Some of these compounds like geldanamycin and its derivative 17-AAG have been also tested in the mouse model of malaria and have been found to be very effective. Overall, heat shock protein inhibitors not only provide us with a new avenue to tackle malaria but also shed light on novel features of parasite’s biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya P, Chaubey S, Grover M, Tatu U (2012) An exported heat shock protein associates with pathogenesis-related knobs in Plasmodium falciparum infected erythrocytes. PLoS One 7(9):e44605

    Article  PubMed  CAS  Google Scholar 

  • Acharya P, Kumar R, Tatu U (2007) chaperoning a cellular upheaver in malaria: heat shock proteins in Plasmodium faliciprum. Mol Biochem Parasitol 153: 85-94

    Google Scholar 

  • Acharya P, Pallavi R, Chandran S, Chakravarti H, Middha S et al (2009) A glimpse into the clinical proteome of Plasmodium falciparum and Plasmodium vivax. Proteomics Clin Appl 3:1314–1325

    Article  PubMed  CAS  Google Scholar 

  • Banumathy G, Singh V, Pavithra SR, Tatu U (2003) Heat shock protein 90 function is essential for Plasmodium falciparum growth in human erythrocytes. J Biol Chem 278:18336–18345

    Article  PubMed  CAS  Google Scholar 

  • Barrott JJ, Haystead TA (2013) Hsp90 an unlikely ally in the war on cancer. FEBS J 280:1381–1396

    Article  PubMed  CAS  Google Scholar 

  • Bonifazi EL, Ríos-Luci C, León LG, Burton G, Pardón JM, Misico RI (2010) Antiproliferative activity of synthetic naphthoquinones related to lapachol. First synthesis of 5-hydroxylapachol. Bioorg Med Chem 18:2621–2630

    Article  PubMed  CAS  Google Scholar 

  • Botha M, Pesce ER, Blatch GL (2007) The Hsp40 proteins of Plasmodium falciparum and other apicomplexa: regulating chaperone power in the parasite and the host. Int J Biochem Cell Biol 39:1783–1803

    Article  Google Scholar 

  • Botha M, Chiang AN, Needham PG, Stephens LL, Hoppe HC et al (2011) Plasmodium falciparum encodes a single cytosolic type I Hsp40 that functionally interacts with Hsp70 and is upregulated by heat shock. Cell Stress Chaperones 16:389–401

    Article  PubMed  CAS  Google Scholar 

  • Chiang AN, Valderramos JC, Balachandran R, Chovatiya RJ, Mead BP et al (2009) Select pyrimidinones inhibit the propagation of the malarial parasite Plasmodium falciparum. Bioorg Med Chem 17:1527–1533

    Article  PubMed  CAS  Google Scholar 

  • Chua CS, Low H, Lehming N, Sim TS (2011) Molecular analysis of Plasmodium falciparum co-chaperone Aha1 supports its interaction with and regulation of Hsp90 in the malaria parasite. Int J Biochem Cell Biol 44:233–245

    Article  PubMed  Google Scholar 

  • Cockburn IL, Pesce ER, Pryzborski JM, Davies-Coleman MT, Clark PG et al (2011) Screening for small molecule modulators of Hsp70 chaperone activity using protein aggregation suppression assays: inhibition of the plasmodial chaperone PfHsp70-1. Biol Chem 392:431–438

    Article  PubMed  CAS  Google Scholar 

  • Corbett KD, Berger JM (2010) Structure of the ATP-binding domain of Plasmodium falciparum Hsp90. Proteins 78:2738–2744

    Article  PubMed  CAS  Google Scholar 

  • Daily JP, Scanfeld D, Pochet N, Le Roch K, Plouffe D et al (2007) Distinct physiological states of Plasmodium falciparum in malaria-infected patients. Nature 450:1091–1095

    Article  PubMed  CAS  Google Scholar 

  • DeBoer C, Meulman PA, Wnuk RJ, Peterson DH (1970) Geldanamycin, a new antibiotic. J Antibiot (Tokyo) 23:442–447

    Article  PubMed  CAS  Google Scholar 

  • DeBoer C, Dietz A (1976) The description and antibiotic production of Streptomyces hygroscopicus var. Geldanus. J Antibiot (Tokyo) 29:1182–1188

    Google Scholar 

  • de Koning-Ward TF, Gilson PR, Boddey JA, Rug M, Smith BJ et al (2009) A newly discovered protein export machine in malaria parasites. Nature 459:945–949

    Article  PubMed  Google Scholar 

  • Graefe SE, Wiesgigl M, Gaworski I, Macdonald A, Clos J (2002) Inhibition of HSP90 in Trypanosoma cruzi induces a stress response but no stage differentiation. Eukaryot Cell 1:936–943

    Article  PubMed  CAS  Google Scholar 

  • Grem JL, Morrison G, Guo XD, Agnew E, Takimoto CH et al (2005) Phase I and pharmacologic study of 17-(allylamino)-17-demethoxygeldanamycin in adult patients with solid tumors. J Clin Oncol 23:1885–1893

    Article  PubMed  CAS  Google Scholar 

  • Grover M, Chaubey S, Ranade S, Tatu U (2013) Identification of an exported heat shock protein in Plasmodium falciparum. Parasite 20:2

    Article  PubMed  Google Scholar 

  • Keyzers RA, Gray CA, Schleyer MH, Whibley CE, Hendricks DT, Davies-Coleman MT (2006) Malonganenones A–C, novel tetraprenylated alkaloids from the Mozambique gorgonian Leptogorgia gilchristi. Tetrahedron 62:2200–2206

    Article  CAS  Google Scholar 

  • Kitson RRA, Moody CJ (2013) Learning from Nature: Advances in Geldanamycin- and Radicicol-based inhibitors of Hsp90. J Org Chem 78:5117–5141 . doi: 10.1021/jo4002849

    Google Scholar 

  • Koulov AV, LaPointe P, Lu B, Razvi A, Coppinger J et al (2010) Biological and structural basis for Aha1regulation of Hsp90 ATPase activity in maintaining proteostasis in the human disease cystic fibrosis. Mol Biol Cell 21:871–884

    Article  PubMed  CAS  Google Scholar 

  • Kulzer S, Rug M, Brinkmann K, Ping C, Cowman A et al (2010) Parasite-encoded Hsp40 proteins define novel mobile structures in the cytosol of the P. falciparum- infected erythrocyte. Cell Microbiol 12:1398–1420

    Article  PubMed  Google Scholar 

  • Külzer S, Charnaud S, Dagan T, Riedel J, Mandal P, Pesce ER (2012) Plasmodium falciparum-encoded exported hsp70/hsp40 chaperone/co-chaperone complexes within the host erythrocyte. Cell Microbiol 14:1784–1795

    Article  PubMed  Google Scholar 

  • Kumar R, Musiyenko A, Barik S (2003) The heat shock protein 90 of Plasmodium falciparum and antimalarial activity of its inhibitor, geldanamycin. Malar J 2:30

    Article  PubMed  Google Scholar 

  • Kumar R, Musiyenko A, Barik S (2005) Plasmodium falciparum calcineurin and its association with heat shock protein 90: mechanisms for the antimalarial activity of cyclosporin A and synergism with geldanamycin. Mol Biochem Parasitol 141:29–37

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Pavithra SR, Tatu U (2007) Three-dimensional structure of heat shock protein 90 from Plasmodium falciparum: molecular modelling approach to rational drug design against malaria. J Biosci 32:531–536

    Article  PubMed  Google Scholar 

  • Li Z, Menoret A, Srivastava P (2002) Roles of heat-shock proteins in antigen presentation and cross-presentation. Curr Opin Immunol 14:45–51

    Article  PubMed  CAS  Google Scholar 

  • Maier AG, Rug M, O’Neill MT, Brown M, Chakravorty S et al (2008) Exported proteins required for virulence and rigidity of Plasmodium falciparum infected human erythrocytes. Cell 134:48–61

    Article  PubMed  CAS  Google Scholar 

  • Mout R, Xu ZD, Wolf AK, Jo Davisson V, Jarori GK (2012) Anti-malarial activity of geldanamycin derivatives in mice infected with Plasmodium yoelii. Malar J 11:54

    Article  PubMed  CAS  Google Scholar 

  • Muralidharan V, Oksman A, Pal P, Lindquist S, Goldberg DE (2012) Plasmodium falciparum heat shock protein 110 stabilizes the asparagine repeat-rich parasite proteome during malarial fevers. Nat Commun 3:1310

    Article  PubMed  Google Scholar 

  • Nageshan RK, Roy N, Hehl AB, Tatu U (2011) Post-transcriptional repair of a split heat shock protein 90 gene by mRNA trans-splicing. J Biol Chem 286:7116–7122

    Article  PubMed  CAS  Google Scholar 

  • Njunge JM, Ludewig MH, Boshoff A, Pesce ER, Blatch GL (2013) Hsp70s and J proteins of Plasmodium parasites infecting rodents and primates: structure, function, clinical relevance, and drug targets. Curr Pharm Des 19:387–403

    Article  PubMed  CAS  Google Scholar 

  • Pallavi R, Acharya P, Chandran S, Daily JP, Tatu U (2010) Chaperone expression profiles correlate with distinct physiological states of Plasmodium falciparum in malaria patients. Malar J 9:236

    Article  PubMed  Google Scholar 

  • Pallavi R, Roy N, Nageshan RK, Talukdar P, Pavithra SR et al (2010) Heat shock protein 90 as a drug target against protozoan infections: biochemical characterization of HSP90 from Plasmodium falciparum and Trypanosoma evansi and evaluation of its inhibitor as a candidate drug. J Biol Chem 285:37964–37975

    Article  PubMed  CAS  Google Scholar 

  • Pavithra SR, Banumathy G, Joy O, Singh V, Tatu U (2004) Recurrent fever promotes Plasmodium falciparum development in human erythrocytes. J Biol Chem 279:46692–46699

    Article  PubMed  CAS  Google Scholar 

  • Pavithra SR, Kumar R, Tatu U (2007) Systems analysis of chaperone networks in the malarial parasite Plasmodium falciparum. PLoS Comput Biol 3:1701–1715

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Sacau E, Estévez-Braun A, Ravelo AG, Yapu DG, Turba AG (2005) Antiplasmodial activity of naphthoquinones related to lapachol and b-lapachone. Chem Biodevers 2:264–274

    Article  Google Scholar 

  • Ramya TN, Karmodiya K, Surolia A, Surolia N (2007) 15-deoxyspergualin primarily targets the trafficking of apicoplast proteins in Plasmodium falciparum. J Biol Chem 282:6388–6397

    Article  PubMed  CAS  Google Scholar 

  • Retzlaff M, Hagn F, Mitschke L, Hessling M, Gugel F et al (2010) Asymmetric activation of the Hsp90 dimer by its cochaperone aha1. Mol Cell 37:344–354 . doi: 10.1016/j.molcel.2010.01.006

    Article  PubMed  CAS  Google Scholar 

  • Rochani AK, Singh M, Tatu U (2013) Heat shock protein 90 inhibitors as broad spectrum anti-infectives. Curr Pharm Des 19:377–386

    Article  PubMed  CAS  Google Scholar 

  • Schulte TW, Akinaga S, Soga S, Sullivan W, Stensgard B et al (1998) Antibiotic Radicicol binds to the N-terminal domain of Hsp90 and shares important biological activities with geldanamycin. Cell Stress Chaperones 3:100–108

    Article  PubMed  CAS  Google Scholar 

  • Shahinas D, Liang M, Datti A, Pillai DR (2010) A repurposing strategy identifies novel synergistic inhibitors of Plasmodium falciparum heat shock protein 90. J Med Chem 13:3552–3557

    Article  Google Scholar 

  • Shahinas D, MacMullin G, Benedict C, Crandall I, Pillai DR (2012) Harmine is a potent antimalarial targeting Hsp90 and synergizes with chloroquin and artemisinin. Antimicrob Agents Chemother 56:4207–4213

    Article  PubMed  CAS  Google Scholar 

  • Shonhai A, Boshoff A, Blatch GL (2007) The structural and functional diversity of Hsp70 proteins from Plasmodium falciparum. Protein Sci 16:1803–1818

    Article  PubMed  CAS  Google Scholar 

  • Shonhai A, Botha M, De Beer TJ, Boshoff A, Blatch GL (2008) Structure-function study of a Plasmodium falciparum Hsp70 using three dimensional modelling and in vitro analyses. Protein Pept Lett 15:1117–1125

    Article  PubMed  CAS  Google Scholar 

  • Singh GP, Chandra BR, Bhattacharya A, Akhouri RR, Singh SK et al (2004) Hyper-expansion of asparagines correlates with an abundance of proteins with prion-like domains in Plasmodium falciparum. Mol Biochem Parasitol 137:307–319

    Article  PubMed  CAS  Google Scholar 

  • Stebbins CE, Russo AA, Schneider C, Rosen N, Hartl FU, Pavletich NP (1997) Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 89:239–250

    Article  PubMed  CAS  Google Scholar 

  • Supko JG, Hickman RL, Grever MR, Malspeis L (1995) Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent. Cancer Chemother Pharmacol 36:305–315

    Article  PubMed  CAS  Google Scholar 

  • Taipale M, Jarosz DF, Lindquist S (2010) Hsp90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11:515–528

    Article  PubMed  CAS  Google Scholar 

  • Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM (1994) Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci USA 91:8324–8328

    Article  PubMed  CAS  Google Scholar 

  • Wiesgigl M, Clos J (2001) Heat shock protein 90 homeostasis controls stage differentiation in Leishmania donovani. Mol Biol Cell 12:3307–3316

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Utpal Tatu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Grover, M., Chaubey, S., Tatu, U. (2014). Heat Shock Proteins as Targets for Novel Anti-Malarial Drugs. In: Shonhai, A., Blatch, G. (eds) Heat Shock Proteins of Malaria. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7438-4_10

Download citation

Publish with us

Policies and ethics