Skip to main content

Phospholipids Signaling System in Plant Innate Immunity

  • Chapter
  • First Online:
PAMP Signals in Plant Innate Immunity

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 21))

Abstract

Phospholipids are the sources for production of the second messengers phosphatidic acid (PA), diacylglycerol (DAG), and inositol 1,4,5-trisphosphate (IP3), which are involved in defense signaling system. Phospholipase C (PLC) and phospholipase D (PLD) are the key enzymes involved in generation of the phospholipid second messengers. G-proteins, Ca2+ influx, nitric oxide (NO), and reactive oxygen species (ROS) are involved in PAMP elicitors-triggered activation of PLC and PLD. IP3 is involved in activation of Ca2+ signaling system. PA is an important second messenger in activating ROS, jasmonate (JA), abscisic acid (ABA) systems and it also activates phosphorylation/dephosphorylation in various signaling systems. DAG is involved in JA biosynthesis and ROS signaling system. Biphasic production of PA and ROS through distinctly different phospholipase pathways has been reported. Protein kinases and phosphatases play key roles in phospholipid signaling system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexandre J, Lassales JP, Kado RT (1990) Opening of Ca2+ channels in isolated red beet vacuole membrane by inositol-1,4,5-trisphosphate. Nature 343:567–570

    Article  CAS  Google Scholar 

  • Andersson MX, Kourtchenko O, Dangl JL, Mackey D, Ellerstrom M (2006) Phospholipase-dependent signaling during the AvrRpm1- and AvrRpt2-induced disease resistance responses in Arabidopsis thaliana. Plant J 47:947–959

    Article  PubMed  CAS  Google Scholar 

  • Anthony RG, Henriques R, Helfer A, Meszaros T, Rios G, Testerink C, Munnik T, Deak M, Koncz C, Rogre L (2004) A protein kinase target of a PDK1 signalling pathway is involved in root hair growth in Arabidopsis. EMBO J 23:572–581

    Article  PubMed  CAS  Google Scholar 

  • Anthony RG, Khan S, Costa J, Pais MS, Bögre L (2006) The Arabidopsis protein kinase PTI1-2 is activated by convergent phosphatidic acid and oxidative stress signaling pathways downstream of PDK1 and OXI1. J Biol Chem 281:37536–37546

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ (1984) Inositol trisphosphate and diacylglycerol as second messengers. Biochem J 220:345–360

    PubMed  CAS  Google Scholar 

  • Berridge MJ (1993) Inositol trisphosphate and calcium signaling. Nature 361:315–325

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universatility of calcium signaling. Nat Rev Mol Cell Biol 1:11–21

    Article  PubMed  CAS  Google Scholar 

  • Chasan R (1995) Signaling a role for phospholipids-derived compounds in plants. Plant Cell 7:1971–1974

    CAS  Google Scholar 

  • de Jong CF, Laxalt AM, Bargmann BO, de Wit PJ, Joosten MH, Munnik T (2004) Phosphatidic acid accumulation is an early response in the Cf-4/Avr4 interaction. Plant J 39:1–12

    Article  PubMed  Google Scholar 

  • de Pinto MC, Paradiso A, Leonetti P, De Gara L (2006) Hydrogen peroxide, nitric oxide and cytosolic ascorbate peroxidase at the crossroad between defence and cell death. Plant J 48:784–795

    Article  PubMed  Google Scholar 

  • Deak M, Casamayor A, Currie RA, Downes CP, Alessi DR (1999) Characterisation of a plant 3-phosphinositide-dependent protein kinase-1 homologue which contains a pleckstrin homology domain. FEBS Lett 451:220–226

    Article  PubMed  CAS  Google Scholar 

  • Desikan R, Cheung M-K, Bright J, Henson D, Hancock JT, Neill SJ (2004) ABA, hydrogen peroxide and nitric oxide signaling in stomatal guard cells. J Exp Bot 55:205–212

    Article  PubMed  CAS  Google Scholar 

  • Distéfano AM, Scuffi D, Garcia-Mata C, Lamattina L, Laxalt AM (2012) Phospholipase Dδ is involved in nitric oxide-induced stomatal closure. Planta 236:1899–1907

    Article  PubMed  Google Scholar 

  • Farmer PK, Choi JH (1999) Calcium and phospholipids activation of a recombinant calcium-dependent protein kinase (DcCPK1) from carrot (Daucus carota L). Biochim Biophys Acta 1434:6–17

    Article  PubMed  CAS  Google Scholar 

  • Hisatsune C, Nakamura K, Kuroda Y, Nakamura T, Mikoshiba K (2005) Amplification of Ca2+ signaling by diacylglycerol-mediated inositol 1,4,5-trisphosphate production. J Biol Chem 280:11723–11730

    Article  PubMed  CAS  Google Scholar 

  • Huang JZ, Hardin SC, Huber JC (2001) Identification of a novel phosphorylation motif for CDPKs: phosphorylation of synthetic peptides lacking basic residues at P-3/P-4. Arch Biochem Biophys 393:61–66

    Article  PubMed  CAS  Google Scholar 

  • Lamb CJ, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275

    Article  PubMed  CAS  Google Scholar 

  • Lanteri ML, Laxalt AM, Lamattina L (2008) Nitric oxide triggers phosphatidic accumulation via phospholipase D during auxin-induced adventitious root formation in cucumber. Plant Physiol 147:188–198

    Article  PubMed  CAS  Google Scholar 

  • Laxalt AM, Raho N, ten Have A, Lamattina L (2007) Nitric oxide is critical for inducing phosphatidic acid accumulation in xylanase-elicited cells. J Biol Chem 282:21160–21168

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Hirt H, Lee Y (2001) Phosphatidic acid activates a wound-activated MAPK in Glycine max. Plant J 479–486

    Google Scholar 

  • Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S, Gruissem W (2002) Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell 14 Suppl: S389–S400

    PubMed  Google Scholar 

  • Lum HK, Butt YK, Lo SC (2002) Hydrogen peroxide induces a rapid production of nitric oxide in mung bean (Phaseolus aureus). Nitric Oxide 6:205–213

    Article  PubMed  CAS  Google Scholar 

  • McPhail LC, Waite KA, Regier DS, Nixon JB, Qualliotine-Mann D, Zhang WX, Wallin R, Sergeant S (1999) A novel protein kinase target for the lipid second messenger phosphatidic acid. Biochim Biophys Acta 1439:277–290

    Article  PubMed  CAS  Google Scholar 

  • Meijer HJ, Munnik T (2003) Phospholipid-based signaling in plants. Annu Rev Plant Biol 54:265–306

    Article  PubMed  CAS  Google Scholar 

  • Mishra G, Zhang W, Deng F, Zhao J, Wang X (2006) A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis. Science 312:264–266

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen network of plants. Trends Plant Sci 9:490–498

    Article  PubMed  CAS  Google Scholar 

  • Munnik T (2001) Phosphatidic acid: an emerging plant lipid second messenger. Trends Plant Sci 6:227–233

    Article  PubMed  CAS  Google Scholar 

  • Munnik T, Testerink C (2009) Plant phospholipid signaling – ‘in a nutshell’. J Lipid Res 50:S260–S265

    Article  PubMed  Google Scholar 

  • Munnik T, Arisz SA, de Vrije T, Musgrave A (1995) G protein activation stimulates phospholipase D signaling in plants. Plant Cell 7:2197–2210

    PubMed  CAS  Google Scholar 

  • Munnik T, Irvine RF, Musgrave A (1998a) Phospholipid signalling in plants. Biochim Biophys Acta 1389:222–272

    Article  PubMed  CAS  Google Scholar 

  • Munnik T, van Himbergen JAJ, ter Riet B, Braun F-J, Irvine RF, van den Ende H, Musgrave A (1998b) Detailed analysis of the turnover of polyphosphoinositides and phosphatidic acid upon activation of phospholipase C and –D in Chlamydomonas cells treated with non-permeabilizing concentrations of mastoparan. Planta 207:133–145

    Article  CAS  Google Scholar 

  • Palicz A, Foubert TR, Jesaitis AJ, Marodi L, McPhail LC (2001) Phosphatidic acid and diacylglycerol directly activate NADPH oxidase by interacting with enzyme components. J Biol Chem 276:3090–3097

    Article  PubMed  CAS  Google Scholar 

  • Park J, Gu Y, Lee Y, Yang Z, Lee Y (2004) Phosphatidic acid induces leaf cell death in Arabidopsis by activating the Rho-related small G protein GTPase-mediated pathway of reactive oxygen species generation. Plant Physiol 134:129–136

    Article  PubMed  CAS  Google Scholar 

  • Regier DS, Waite KA, Wallin R, McPhail LC (1999) A phosphatidic acid activated protein kinase and conventional protein kinase C isoforms phosphorylate p22phox, an NADPH oxidase component. J Biol Chem 274:36601–36608

    Article  PubMed  CAS  Google Scholar 

  • Rentel MC, Lecourieux D, Ouaked F, Usher SL, Petersen L, Okamoto H, Knight H, Peck SC, Grierson CS, Hirt H, Knight MR (2004) OXI1 kinase is necessary for oxidative burst-mediated signaling in Arabidopsis. Nature 427:858–861

    Article  PubMed  CAS  Google Scholar 

  • Ritchie S, Gilroy S (2000) Abscisic acid stimulation of phospholipase D in the barley aleurone is G-protein-mediated and localized to the plasma membrane. Plant Physiol 124:693–702

    Article  PubMed  CAS  Google Scholar 

  • Ryu SB, Wang X (1998) Increase in free linolenic and linoleic acids associated with phospholipase D-mediated hydrolysis of phospholipids in wounded castor bean leaves. Biochim Biophys Acta 1393:193–202

    Article  PubMed  CAS  Google Scholar 

  • Sang Y, Cui D, Wang X (2001) Phospholipase D and phosphatidic acid-mediated generation of superoxide in Arabidopsis. Plant Physiol 126:1449–1458

    Article  PubMed  CAS  Google Scholar 

  • Uraji M, Katagiri T, Okuma E, Te W, Hossain M-A, Masuda C, Miura A, Nakamura Y, Mori I-C, Shinozaki K, Murata Y (2012) Cooperative function of PLDδ and PLDα1in abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiol 159:450–460

    Article  PubMed  CAS  Google Scholar 

  • van der Luit AH, Piatti T, van Doorn A, Musgrave A, Felix G, Boller T, Munnik T (2000) Elicitation of suspension-cultured tomato cells triggers the formation of phosphatidic acid and diacylglycerol pyrophosphate. Plant Physiol 123:1507–1515

    Article  PubMed  Google Scholar 

  • Wang X (2001) Plant phospholipases. Annu Rev Plant Physiol Plant Mol Biol 52:211–231

    Article  PubMed  CAS  Google Scholar 

  • Wang X (2005) Regulatory functions of phospholipase D and phosphatidic acid in plant growth, development, and stress responses. Plant Physiol 139:566–573

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Zien C, Afitlhile M, Welti R, Hildebrand DF, Wang X (2000) Involvement of phospholipase D in wound-induced accumulation of jasmonic acid in Arabidopsis. Plant Cell 12:2237–2246

    PubMed  CAS  Google Scholar 

  • Yamaguchi T, Tanabe S, Minami E, Shibuya N (2004) Activation of phospholipase D induced by hydrogen peroxide in suspension-cultured rice cells. Plant Cell Physiol 45:1261–1270

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi T, Minami E, Ueki J, Shibuya N (2005) Elicitor-induced activation of phospholipases plays an important role for the induction of defense responses in suspension-cultured rice cells. Plant Cell Physiol 46:579–587

    Article  PubMed  CAS  Google Scholar 

  • Yang Z (2002) Small GTPases: versatile signaling switches in plants. Plant Cell 14(Suppl):S375–S388

    PubMed  CAS  Google Scholar 

  • Zhang W, Qin C, Zhao J, Wang X (2004) Phospholipase Dα1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc Natl Acad Sci U S A 101:9508–9513

    Article  PubMed  CAS  Google Scholar 

  • Zhang WH, Yu LJ, Zhang YY, Wang XM (2005) Phospholipase D in the signaling networks of plant response to abscisic acid and reactive oxygen species. Biochim Biophys Acta 1736:1–9

    PubMed  CAS  Google Scholar 

  • Zhao J, Wang X (2004) Arabidopsis phospholipase Dα1 interacts with the heterotrimeric G-protein α-subunit through a motif analogous to the DRY motif in G-protein-coupled receptors. J Biol Chem 279:1794–1800

    Article  PubMed  CAS  Google Scholar 

  • Zheng L, Krishnamoorthi R, Zolkiewski M, Wang X (2000) Distinct Ca2+ binding properties of the novel C2 domains of plant phospholipase Dα and β. J Biol Chem 275:19700–19706

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vidhyasekaran, P. (2014). Phospholipids Signaling System in Plant Innate Immunity. In: PAMP Signals in Plant Innate Immunity. Signaling and Communication in Plants, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7426-1_8

Download citation

Publish with us

Policies and ethics