Skip to main content

G-Proteins as Molecular Switches in Signal Transduction

  • Chapter
  • First Online:
  • 1793 Accesses

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 21))

Abstract

Guanosine triphosphate (GTP)-binding proteins (G-proteins) are the regulatory GTPases that have the ability to bind GTP and hydrolyze it to guanosine diphosphate (GDP). GDP locks G proteins into their inactive state, while GTP locks G-proteins into their activated state. Active or inactive states of G-proteins depend on the binding of GTP or GDP, respectively. G-proteins have been found to be key players in plant innate immunity. The GTPases act as molecular switches controlling the transmission of extracellular signals like pathogen-associated molecular patterns (PAMPs) to intracellular signaling pathways. The PAMPs have been shown to activate GTP binding to G-protein. The GTPase is normally inactive. The PAMP stimulates exchange of GTP for GDP and thus converts the G-proteins from their inactive state to their active state. Upon stimulation by an upstream PAMP signal, a guanine nucleotide exchange factor (GEF) converts the GDP-bound inactive form into the GTP-bound active form through GDP/GTP replacement. Through its effector domain, the GTP form interacts with specific downstream effector proteins. The GTP form exhibits a weak intrinsic GTPase activity for GTP hydrolysis, requiring a GTPase-activating protein (GAP) for efficient deactivation. Most small GTPases cycle between membrane-bound and cytosolic forms. Only membrane-associated GTPases can be activated by GEF and their removal by a cytosolic factor called guanine nucleotide dissociation inhibitor (GDI) negatively regulates these GTPases.

G-proteins include two major subfamilies: heterotrimeric G-proteins and small G-proteins (also called small GTPases). The heterotrimeric G-proteins contain Gα-, Gβ-, and Gγ- subunits. The small G-proteins are monomeric G-proteins and they appear to be similar to α-subunits, operating without the β-, and γ-subunits. Both classes of G-proteins use the GTP/GDP cycle as a molecular switch for signal transduction. Both heteromeric and monomeric small G-proteins trigger immune responses by activating several immune signaling systems. These include Ca2+ channel activation, K+ channel regulation, generation of reactive oxygen species through activation of NADPH oxidase, regulation of redox signaling, activation of nitric oxide (NO) signaling system, activation of mitogen-activated protein kinase (MAPK) signaling cascade, activation of phospholipases, efflux of vacuolar H+, biosynthesis of polyamines, biosynthesis of phosphatidic acid and programmed cell death. G-proteins also activate various plant hormone signaling systems including salicylic acid-, jasmonic acid-, ethylene-, abscisic acid-, auxin-, brassinosteroid-, and gibberellic acid- mediated signaling systems. The different subunits in heterotrimeric G-proteins and the monomeric small G-proteins may behave differently in activating defense responses against various pathogens. Ability of G-proteins to trigger immune responses also varies depending upon the type of invading pathogen.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdul Kadar M, Lindsberg S (2010) Cytosolic calcium and pH signaling in plants under salinity stress. Plant Signal Behav 5:233–238

    Google Scholar 

  • Adams DR, Ron D, Kiely PA (2011) RACK1, a multifaceted scaffolding protein: structure and function. Cell Commun Signal 9:22

    CAS  PubMed  Google Scholar 

  • Agrawal GK, Iwahashi H, Rakwal R (2003) Small GTPase ‘Rop’: molecular switch for plant defense responses. FEBS Lett 546:173–180

    CAS  PubMed  Google Scholar 

  • Alexandre J, Lassales JP (1992) Intracellular Ca2+ release by InsP3 in plants and effects of buffers on Ca2+ diffusion. Philos Trans Biol Sci 338:53–61

    CAS  Google Scholar 

  • Anderson DJ, Botella JR (2007) Expression analysis and subcellular localization of the Arabidopsis thaliana G-protein β subunit AGB1. Plant Cell Rep 26:1469–1480

    CAS  PubMed  Google Scholar 

  • Angelini R, Federico R (1989) Histochemical evidence of polyamine oxidation and generation of hydrogen peroxide in the cell wall. J Plant Physiol 135:212–217

    CAS  Google Scholar 

  • Angelini R, Bragaloni M, Federico R, Infantino A, Porta-Puglia A (1993) Involvement of polyamines, diamine oxidase and peroxidase in resistance of chick-pea to Ascochyta rabiei. J Plant Physiol 142:704–709

    CAS  Google Scholar 

  • Angelini R, Tisi A, Rea G, Chen MM, Botta M, Federico R, Cona A (2008) Involvement of polyamine oxidase in wound healing. Plant Physiol 146:162–177

    CAS  PubMed  Google Scholar 

  • Apone F, Alyeshmerni N, Wiens K, Chalmers D, Chrispeels MJ, Colucci G (2003) The G-protein-coupled receptor GCR1 regulates DNA synthesis through activation of phosphatidylinositol-specific phospholipase C. Plant Physiol 133:571–579

    CAS  PubMed  Google Scholar 

  • Assmann SM (2002) Heterotrimeric and unconventional GTP binding proteins in plant cell signaling. Plant Cell 14S:S355–S373

    Google Scholar 

  • Azevedo C, Betsuyaku S, Peart J, Takahashi A, Noel L, Sadanandom A, Casals C, Parker J, Shirasu K (2006) Role of SGT1 in resistance protein accumulation in plant immunity. EMBO J 25:2007–2016

    CAS  PubMed  Google Scholar 

  • Baxter-Burrell A, Yang Z, Springer PS, Bailey-Serres J (2002) RopGAP4-dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance. Science 296:2026–2028

    CAS  PubMed  Google Scholar 

  • Beffa R, Szell M, Meuwly P, Pay A, Vogeli-Lange R, Metraux JP, Neuhaus G, Meins F, Ferenc N (1995) Cholera toxin elevates pathogen resistance and induces pathogenesis-related gene expression in tobacco. EMBO J 14:5753–5761

    CAS  PubMed  Google Scholar 

  • Berken A (2006) ROPs in the spotlight of plant signal transduction. Cell Mol Life Sci 63:2446–2459

    CAS  PubMed  Google Scholar 

  • Berridge MJ (1993) Inositol trisphosphate and calcium signaling. Nature 361:315–325

    CAS  PubMed  Google Scholar 

  • Bhardwaj D, Sheikh AH, Sinha AK, Tuteja N (2011) Stress induced β subunit of heterotrimeric G-proteins from Pisum sativum interacts with mitogen activated protein kinase. Plant Signal Behav 6:287–292

    CAS  PubMed  Google Scholar 

  • Bisht NC, Jez JM, Pandey S (2011) An elaborate heterotrimeric G-protein family from soybean expands the diversity of plant G-protein networks. New Phytol 190:35–48

    CAS  PubMed  Google Scholar 

  • Blumwald E, Aharon GS, Lam BC-H (1998) Early signal transduction pathways in plant-pathogen interactions. Trends Plant Sci 3:342–346

    Google Scholar 

  • Bokoch GM, Diebold BA (2002) Current molecular models for NADPH oxidase regulation by RacGTPase. Blood 100:2692–2696

    CAS  PubMed  Google Scholar 

  • Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ (2006) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45:113–122

    CAS  PubMed  Google Scholar 

  • Cabrera-Vera TM, Vanhauwe J, Thomas TO, Medkova M, Preininger A, Mazzoni MR, Hamm HE (2003) Insights into G protein structure, function, and regulation. Endocr Rev 24:765–781

    CAS  PubMed  Google Scholar 

  • Casey PJ (1995) Protein lipidation in cell signaling. Science 268:221–225

    CAS  PubMed  Google Scholar 

  • Chakravorty D, Trusov Y, Zhang W, Sheahan MB, Acharya BW, McCurdy DW, Assmann SM, Botella JR (2011) A highly atypical heterotrimeric G protein γ subunit is involved in guard cell K+ channel regulation and morphological development in Arabidopsis thaliana. Plant J 67:840–851

    CAS  PubMed  Google Scholar 

  • Chen J-G, Pandey S, Huang J, Alonso JM, Ecker JR, Assmann SM, Jones AM (2004) GCR1 can act independently of heterotrimeric G-protein in response to brassinosteroids and gibberellins in Arabidopsis and germination. Plant Physiol 135:907–915

    CAS  PubMed  Google Scholar 

  • Chen Y, Fangfang JI, Xie H, Liang J (2006) Overexpression of the regulator of G-protein signalling protein enhances ABA-mediated inhibition of root elongation and drought tolerance in Arabidopsis. J Exp Bot 57:2101–2110

    CAS  PubMed  Google Scholar 

  • Choudhury SR, Bisht NC, Thompson R, Todorov O, Pandey S (2011) Conventional and novel Gγ protein families constitute the heterotrimeric G-protein signaling network in soybean. PLoS One 6:e23361

    CAS  PubMed  Google Scholar 

  • Clapham DE, Neer EJ (1997) G protein βγ subunits. Annu Rev Pharmacol Toxicol 37:167–203

    CAS  PubMed  Google Scholar 

  • Colucci G, Apone E, Alyeshmerni N, Chalmers D, Chrispeels MJ (2002) GCR1, the putative Arabidopsis G protein-coupled receptor gene is cell cycle-regulated, and its overexpression abolishes seed dormancy and shortens time to flowering. Proc Natl Acad Sci U S A 99:4736–4741

    CAS  PubMed  Google Scholar 

  • Cowley T, Walters DR (2002a) Polyamine metabolism in barley reacting hypersensitively to the powdery mildew fungus Blumeria graminis f. sp. hordei. Plant Cell Environ 25:461–468

    CAS  Google Scholar 

  • Cowley T, Walters DR (2002b) Polyamine metabolism in an incompatible interaction between barley and the powdery mildew fungus, Blumeria graminis f. sp hordei. J Phytopathol 150:1–7

    Google Scholar 

  • DeFalco TA, Bender KW, Snedden WA (2010) Breaking the code: Ca2+ sensors in plant signaling. Biochem J 426:27–40

    Google Scholar 

  • Delgado-Cerezo M, Sánchez-Rodriguez C, Escudero V, Miedes E, Fernández PV, Jordá L, Hernández-Blanco C, Sánchez-Vallet A, Bednarek P, Schulze-Lefert P, Somerville S, Estevez JM, Persson S, Molina A (2012) Arabidopsis heteromeric G-protein regulates cell wall defense and resistance to necrotrophic fungi. Mol Plant 6:98–114

    Google Scholar 

  • Desikan R, Hancock JT, Bright J, Harrison J, Weir I, Hooley R, Neill SJ (2005) A role for ETR1 in hydrogen peroxide signaling in stomatal guard cells. Plant Physiol 137:831–834

    CAS  PubMed  Google Scholar 

  • Ding L, Pandey S, Assmann SM (2008) Arabidopsis extra-large G proteins (XLGs) regulate root morphogenesis. Plant J 53:248–263

    CAS  PubMed  Google Scholar 

  • Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Annu Rev Plant Biol 61:593–620

    CAS  PubMed  Google Scholar 

  • Eckardt NA (2004) Abscisic acid signal transduction: function of G protein-coupled receptor 1 in Arabidopsis. Plant Cell 16:1353–1354

    CAS  Google Scholar 

  • Fedoroff N (2006) Redox regulatory mechanisms in cellular stress responses. Ann Bot (Lond) 98:289–300

    CAS  Google Scholar 

  • Fu J, Wang S (2011) Insights into auxin signaling in plant-pathogen interactions. Front Plant Sci 2:1–7. doi:10.3389/fpls.2011.00074, article 74

    Google Scholar 

  • Fu DQ, Ghabrial S, Kachroo A (2009) GmRAR1 and Gm SGT1 are required for basal, R gene-mediated and systemic acquired resistance in soybean. Mol Plant Microbe Interact 22:86–95

    CAS  PubMed  Google Scholar 

  • Fujisawa Y, Kato H, Iwasaki Y (2001) Structure and function of heterotrimeric G proteins in plants. Plant Cell Physiol 42:789–794

    CAS  PubMed  Google Scholar 

  • Fujiwara M, Umemura K, Kawasaki T, Shimamoto K (2006) Proteomics of Rac GTPase signaling reveals its predominant role in elicitor-induced defense response of cultured rice cells. Plant Physiol 140:734–745

    CAS  PubMed  Google Scholar 

  • Fujiwara M, Hamada S, Hiratsuka M, Fukao Y, Kawasaki T, Shimamoto K (2009) Proteome analysis of detergent-resistant membranes (DRMs) associated with OsRac1-mediated innate immunity in rice. Plant Cell Physiol 50:1191–1200

    CAS  PubMed  Google Scholar 

  • Fukada Y (1995) Prenylation and carboxylmethylation of G-protein γ subunit. Methods Enzymol 250:91–105

    CAS  PubMed  Google Scholar 

  • Galon Y, Finkler A, Fromm H (2010) Calcium-regulated transcription in plants. Mol Plant 3:653–669

    CAS  PubMed  Google Scholar 

  • Gao Y, Wang S, Asami T, Chen JG (2008) Loss-of-function mutations in the Arabidopsis heterotrimeric G-protein α subunit enhance the developmental defects of brassinosteroid signaling and biosynthesis mutants. Plant Cell Physiol 49:1013–1024

    CAS  PubMed  Google Scholar 

  • Gao Y, Li T, Liu Y, Ren C, Zhao Y, Wang M (2010a) Isolation and characterization of gene encoding G protein α subunit protein responsive to plant hormones and abiotic stresses in Brassica napus. Mol Biol Rep 37:3957–3965

    CAS  PubMed  Google Scholar 

  • Gao Y, Li T, Zhao Y, Ren C, Liu Y, Wang M (2010b) Cloning and characterization of a G protein β subunit gene responsive to plant hormones and abiotic stresses in Brassica napus. Plant Mol Biol Rep 28:450–459

    CAS  Google Scholar 

  • Garcia-Brugger A, Lamotte O, Vandelle E, Bourque S, Lecourieux D, Poinssot B, Wendehenne D, Pugin A (2006) Early signaling events induced by elicitors of plant defenses. Mol Plant Microbe Interact 19:711–724

    CAS  PubMed  Google Scholar 

  • Gardiner DM, Kazan K, Praud S, Torney FJ, Rusu A, Manners JM (2010) Early activation of wheat polyamine biosynthesis during Fusarium head blight implicates putrescine as an inducer of trichothecene mycotoxin production. BMC Plant Biol 10:289

    CAS  PubMed  Google Scholar 

  • Gelli A, Higgins VJ, Blumwald E (1997) Activation of plant plasma membrane Ca2+-permeable channels by race-specific fungal elicitors. Plant Physiol 113:269–279

    CAS  PubMed  Google Scholar 

  • Gerber IB, Laukens K, Witters E, Dubery IA (2006) Lipopolysaccharide-responsive phosphoproteins in Nicotiana tabacum cells. Plant Physiol Biochem 44:369–379

    CAS  PubMed  Google Scholar 

  • Gilman AG (1987) G proteins: transducers of receptor-generated signals. Annu Rev Biochem 56:615–649

    CAS  PubMed  Google Scholar 

  • Gookin T, Kim J, Assmann S (2008) Whole proteome identification of plant candidate G-protein coupled receptors in Arabidopsis, rice, and poplar: computational prediction and in-vivo protein coupling. Genome Biol 9:R120

    PubMed  Google Scholar 

  • Gray WM, Muskett PR, Chuang H-W, Parker JE (2003) Arabidopsis SGT1b is required for SCFTIR1-mediated auxin response. Plant Cell 15:1310–1319

    CAS  PubMed  Google Scholar 

  • Gu Y, Wang Z, Yang Z (2004) ROP/RAC GTPase: an old new master regulator for plant signaling. Curr Opin Plant Biol 7:527–536

    CAS  PubMed  Google Scholar 

  • Guo J, Yang X, Weston DJ, Chen J-G (2011) Abscisic acid receptors: past, present and future. J Integr Plant Biol 53:469–479

    CAS  PubMed  Google Scholar 

  • Guo L, Devaiah SP, Narasimhan R, Pan X, Zhang Y, Zhang W, Wang X (2012) Cytosolic glyceraldehyde-3-phosphate dehydrogenases interact with phospholipase Dδ to transduce hydrogen peroxide signals in the Arabidopsis response to stress. Plant Cell 24:2200–2212

    CAS  PubMed  Google Scholar 

  • Haggag WM, Mahmoud YS, Farag EM (2010) Signaling necessities and function of polyamines/jasmonate-dependent induced resistance in sugar beet against Beet mosaic virus (BtMV) infection. New York Sci J 3:95–103

    Google Scholar 

  • He DY, Yazaki Y, Nishizawa Y, Takai R, Yamada K, Sakano K, Shibuya N, Minami E (1998) Gene activation by cytoplasmic acidification in suspension-cultured rice cells in response to the potent elicitor, N-acetylchitoheptaose. Mol Plant Microbe Interact 11:1167–1174

    CAS  Google Scholar 

  • He JM, Ma XG, Zhang Y, Sun TF, Xu FF, Chen YP, Liu X, Yue M (2013) Role and interrelationship of Gα protein, hydrogen peroxide and nitric oxide in UV-B-induced stomatal closure in Arabidopsis leaves. Plant Physiol 161(3):1570–1583

    CAS  PubMed  Google Scholar 

  • Hettenhausen C, Baldwin IT, Wu J (2012) Silencing MPK4 in Nicotiana attenuata enhances photosynthesis and seed production but compromises abscisic acid-induced stomatal closure and guard cell-mediated resistance to Pseudomonas syringae pv. tomato DC3000. Plant Physiol 158:759–776

    CAS  PubMed  Google Scholar 

  • Hiraga S, Ito H, Yamakawa H, Obtsubo N, Seo S, Mitshuhara I, Matsui H, Honma M, Ohashi Y (2000) An HR-induced tobacco peroxidase gene is responsive to spermine, but not to salicylate, methyl jasmonate, and ethephon. Mol Plant Microbe Interact 13:210–216

    CAS  PubMed  Google Scholar 

  • Hoefle C, Huesmann C, Schultheiss H, Börnke F, Hensel G, Kumlehn J, Huckelhoven R (2011) A barley ROP GTPase ACTIVATING PROTEIN associates with microtubules and regulates entry of the barley powdery mildew fungus into leaf epidermal cells. Plant Cell 23:2422–2439

    CAS  PubMed  Google Scholar 

  • Hossain MS, Koba T, Harada K (2003) Cloning and characterization of two full-length cDNAs, TaGA1 and TaGA2, encoding G-protein α subunits expressed differentially in wheat genome. Genes Genet Syst 78:127–138

    CAS  PubMed  Google Scholar 

  • Hu X-Y, Neill SJ, Cai WM, Tang Z-C (2004) Induction of defence gene expression by oligogalacturonic acid requires increases in both cytosolic calcium and hydrogen peroxide in Arabidopsis thaliana. Cell Res 14:234–240

    CAS  PubMed  Google Scholar 

  • Hu J, Wang Y, Zhang X, Lloyd JR, Li JH, Karpiak J, Costanzi S, Wess J (2010) Structural basis of G protein-coupled receptor – G protein interactions. Nat Chem Biol 6:541–548

    CAS  PubMed  Google Scholar 

  • Hückelhoven R, Kogel K-H (1998) Tissue-specific superoxide generation at interaction sites in resistant and susceptible near-isogenic barley lines attacked by the powdery mildew fungus. Mol Plant Pathol 1:287–292

    Google Scholar 

  • Hückelhoven R, Trujillo M, Kogel KH (2000) Mutations in Ror1 and Ror2 genes cause modification of hydrogen peroxide accumulation in mlo-barley under attack from the powdery mildew fungus. Mol Plant Pathol 1:287–292

    PubMed  Google Scholar 

  • Huesmann C, Reiner T, Hoefle C, Preuss J, Jurca ME, Domoki M, Fehér A, Hṻckelhoven R (2012) Barley ROP binding kinase1 is involved in microtubule organization and in basal penetration resistance to the barley powdery mildew fungus. Plant Physiol 159:311–320

    CAS  PubMed  Google Scholar 

  • Ishikawa A (2009) The Arabidopsis G-protein beta-subunit is required for defense response against Agrobacterium tumefaciens. Biosci Biotechnol Biochem 73:47–52

    CAS  PubMed  Google Scholar 

  • Iuchi S, Kobayashi M, Taji T, Nakamoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27:325–333

    CAS  PubMed  Google Scholar 

  • Iwasaki Y, Fujisawa Y, Kato H (2003) Function of heterotrimeric G protein in gibberellin signaling. J Plant Growth Regul 22:126–133

    CAS  Google Scholar 

  • Iwata M, Umemura K, Teraoka T, Usami H, Fujisawa Y, Iwasaki Y (2002) Role of the α subunit of heterotrimeric G-protein in probenazole-inducing defense signaling in rice. J Gen Plant Pathol 63:83–86

    Google Scholar 

  • Izawa Y, Minami M, Ohki S, Iwasaki Y (2010) Expression profile of the α subunit of the heterotrimeric G protein in rice. Plant Signal Behav 5:845–847

    CAS  PubMed  Google Scholar 

  • Jabs T, Dietrich RA, Dangl JL (1996) Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273:1853–1856

    CAS  PubMed  Google Scholar 

  • Joo JH, Wang S, Chen JG, Jones AM, Fedoroff NV (2005) Different signaling and cell death roles of heterotrimeric G protein α and β subunits in the Arabidopsis oxidative stress response to ozone. Plant Cell 17:957–970

    CAS  PubMed  Google Scholar 

  • Josefsson LG, Rask L (1997) Cloning of a putative G-protein-coupled receptor from Arabidopsis thaliana. Eur J Biochem 249:415–420

    CAS  PubMed  Google Scholar 

  • Kato C, Mizutani T, Tamaki H, Kumagai H, Kamiya T, Hinbe A, Fujisawa Y, Kato H, Iwasaki Y (2004) Characterization of heterotrimeric G protein complexes in rice plasma membrane. Plant J 38:320–331

    CAS  PubMed  Google Scholar 

  • Kawamura Y, Takenaka S, Hase S, Kubota M, Kanayama Y, Nakaho K, Klessig DF, Takahashi H (2009) Enhanced defense responses in Arabidopsis induced by the cell wall protein fractions from Pythium oligandrum require SGT1, RAR1, NPR1 and JAR1. Plant Cell Physiol 50:924–934

    CAS  PubMed  Google Scholar 

  • Kawasaki T, Henmi K, Ono E, Hatakeyama S, Iwano M, Satoh H, Shimamoto K (1999) The small GTP-binding protein rac is a regulator of cell death in plants. Proc Natl Acad Sci U S A 96:10922–10926

    CAS  PubMed  Google Scholar 

  • Kawasaki T, Koita H, Nakatsubo T, Hasegawa K, Wakabayashi K, Takahashi H, Umemura K, Umezawa T, Shimamoto K (2006) Cinnamoyl-CoA reductase, a key enzyme in lignin biosynthesis, is an effector of small GTPase Rac in defense signaling in rice. Proc Natl Acad Sci U S A 103:230–235

    CAS  PubMed  Google Scholar 

  • Kaziro Y, Itoh H, Kozasa T, Nakafuku M, Satoh T (1991) Structure and function of signal-transducing GTP- binding properties. Annu Rev Biochem 60:349–400

    CAS  PubMed  Google Scholar 

  • Kiirika LM, Bergmann HF, Schikowsky C, Wimmer D, Korte J, Schmitz U, Niehaus K, Colditz F (2012) Silencing of the Rac1 GTPase MtROP9 in Medicago truncatula stimulates early mycorrhizal and oomycete root colonizations but negatively affects rhizobial infection. Plant Physiol 159:501–516

    CAS  PubMed  Google Scholar 

  • Komatsu S, Yang G, Hayashi N, Kaku H, Umemura K, Iwasaki Y (2004) Alterations by a defect in a rice protein α subunit in probenazole and pathogen-induced responses. Plant Cell Environ 27:947–957

    CAS  Google Scholar 

  • Kresge N, Simoni RD, Hill RL (2007) The biosynthesis of polyamines: the work of Herbert Tabor and Celia White Tabor. J Biol Chem 282:e26–e28

    CAS  Google Scholar 

  • Kudla J, Batistić O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22:541–563

    CAS  PubMed  Google Scholar 

  • Laohavisit A, Mortimer JC, Demidchik V, Coxon KM, Stancombe MA, Macpherson N, Brownlee C, Hofmann A, Webb AAR, Miedema H, Battey NH, Davies JM (2009) Zea mays annexins modulate cytosolic free Ca2+ and generate a Ca2+-permeable conductance. Plant Cell 21:479–493

    CAS  PubMed  Google Scholar 

  • Laohavisit A, Brown AT, Cicuta P, Davies JM (2010) Annexins: components of the calcium and reactive oxygen signaling network. Plant Physiol 152:1824–1829

    CAS  PubMed  Google Scholar 

  • Lapous D, Mathieu Y, Guern J, Lauriere C (1998) Increase of defense gene transcripts by cytoplasmic acidification in tobacco cell suspensions. Planta 205:452–458

    CAS  Google Scholar 

  • Laxalt AM, Raho N, ten Have A, Lamattina L (2007) Nitric oxide is critical for inducing phosphatidic acid accumulation in xylanase-elicited cells. J Biol Chem 282:21160–21168

    CAS  PubMed  Google Scholar 

  • Lecourieux – Ouaked D, Pugin A, Lebrun-Garcia A (2000) Phosphoproteins involved in the signal transduction of cryptogein, an elicitor of defense reactions in tobacco. Mol Plant Microbe Interact 13:821–829

    PubMed  Google Scholar 

  • Lecourieux D, Ranjeva R, Pugin A (2006) Calcium in plant defence-signaling pathways. New Phytol 171:249–269

    CAS  PubMed  Google Scholar 

  • Legendre L, Heinstein PF, Low PS (1992) Evidence for participation of GTP-binding proteins in elicitation of the rapid oxidative burst in cultured soybean cells. J Biol Chem 267:20140–20147

    CAS  PubMed  Google Scholar 

  • Lemichez E, Wu Y, Sanchez J-P, Mettouchi A, Mathur J, Chua N-H (2001) Inactivation of AtRac1 by abscisic acid is essential for stomatal closure. Genes Dev 15:1808–1816

    CAS  PubMed  Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593

    CAS  PubMed  Google Scholar 

  • Li J-H, Liu Y-Q, Pin L, Lin H-F, Bai Y, Wang X-C, Chen Y-L (2009) A signaling pathway linking nitric oxide production to heterotrimeric G protein and hydrogen peroxide regulates extracellular calmodulin induction of stomatal closure in Arabidopsis. Plant Physiol 150:114–124

    CAS  PubMed  Google Scholar 

  • Lieberherr D, Thao NP, Nakashima A, Umemura K, Kawasaki T, Shimamoto K (2005) A sphingolipid elicitor-inducible mitogen-activated protein kinase is regulated by the small GTPase OsRac1 and heterotrimeric G-protein in rice. Plant Physiol 138:1644–1652

    CAS  PubMed  Google Scholar 

  • Lindermayr C, Sell S, Mṻller B, Leister D, Dumer J (2010) Redox regulation of NPR1-TGA1 system of Arabidopsis thaliana by nitric oxide. Plant Cell 22:2894–2907

    CAS  PubMed  Google Scholar 

  • Liu X, Yue Y, Li W, Nie Y, Li W, Wu W-H, Ma L (2007a) A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science 315:1712–1716

    CAS  PubMed  Google Scholar 

  • Liu X, Yue Y, Li W, Ma L (2007b) Response to comment on “A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid”. Science 318:914d

    Google Scholar 

  • Liu W, Chen A-M, Luo L, Sun J, Cao L-P, Yu G-O, Zhu J-B, Wang Y-Z (2010) Characterization and expression analysis of Medicago truncatula ROP GTPase family during the early stage of symbiosis. J Integr Plant Biol 52:639–652

    PubMed  Google Scholar 

  • Liu J-Z, Horstman HD, Braun E, Graham MA, Zhang C, Navarre D, Qiu W-L, Lee Y, Nettleton D, Hill JH, Whitham SA (2011) Soybean homologs of MPK4 negatively regulate defense responses and positively regulate growth and development. Plant Physiol 157:1363–1378

    CAS  PubMed  Google Scholar 

  • Llorente F, Alonso-Blanco C, Sanchez-Rodriquez C, Jorda L, Molina A (2005) ERECTA receptor-like kinase and heterotrimeric G protein from Arabidopsis are required for resistance to the necrotrophic fungus Plectosphaerella cucumerina. Plant J 43:165–180

    CAS  PubMed  Google Scholar 

  • Lorenzo O, Solano R (2005) Molecular players regulating the jasmonate signaling network. Curr Opin Plant Biol 8:532–540

    CAS  PubMed  Google Scholar 

  • Mao G, Meng X, Liu Y, Zheng Z, Chen Z, Zhang S (2011) Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell 23:1639–1653

    CAS  PubMed  Google Scholar 

  • Marini F, Betti L, Scaramagli S, Biondi S, Torrigiani P (2001) Polyamine metabolism is upregulated in response to tobacco mosaic virus in hypersensitive, but not in susceptible, tobacco. New Phytol 149:301–309

    CAS  Google Scholar 

  • Marrari Y, Crouthamel M, Irannejad R, Wedegaertner PB (2007) Assembly and trafficking of heterotrimeric G proteins. Biochemistry 46:7665–7677

    CAS  PubMed  Google Scholar 

  • Mason MG, Botella JR (2000) Completing the heterotrimer: isolation and characterization of an Arabidopsis thaliana G-protein γ-subunit cDNA. Proc Natl Acad Sci U S A 97:14784–14788

    CAS  PubMed  Google Scholar 

  • Mason MG, Botella JR (2001) Isolation of a novel G-protein γ subunit from Arabidopsis thaliana and its interaction with Gβ. Biochim Biophys Acta 1520:147–153

    CAS  PubMed  Google Scholar 

  • McIntyre WE (2009) Structural determinants involved in the formation and activation of G protein βγ dimers. Neurosignals 17:82–99

    Google Scholar 

  • Mészáros T, Helfer A, Hatzimasoura E, Magyar Z, Serazetdinova L, Rios G, Bardόczy V, Teige M, Koncz C, Peck S, Bögre L (2006) The Arabidopsis MAP kinase kinase MKK1 participates in defence responses to the bacterial elicitor flagellin. Plant J 48:485–495

    PubMed  Google Scholar 

  • Miki D, Itoh R, Shimamoto K (2005) RNA silencing of single and multiple members in a gene family of rice. Plant Physiol 138:1903–1913

    CAS  PubMed  Google Scholar 

  • Misra S, Wu Y, Venkataraman G, Sopory SK, Tuteja N (2007) Heterotrimeric G-protein complex and G-protein-coupled receptor from a legume Pisum sativum: role in salinity and heat stress and cross-with phospholipase C. Plant J 51:656–669

    CAS  PubMed  Google Scholar 

  • Mo H, Pus EC (2002) Up-regulation of arginine decarboxylase gene expression and accumulation of polyamines in mustard (Brassica juncea) in response to stress. Physiol Plant 114:439–449

    CAS  PubMed  Google Scholar 

  • Moeder W, Yoshioka K, Klessig DF (2005) Involvement of the small GTPase Rac in the defense responses of tobacco to pathogens. Mol Plant Microbe Interact 18:116–124

    CAS  PubMed  Google Scholar 

  • Morel J, Fromentin J, Blein J-P, Simon-Plas F, Elmayan T (2004) RAC regulation of NtrbohD, the oxidase responsible for the oxidative burst in elicited tobacco cell. Plant J 37:282–293

    CAS  PubMed  Google Scholar 

  • Mucha E, Fricke I, Schaefer A, Wittinghofer A, Berken A (2011) Rho proteins of plants-functional cycle and regulation of cytoskeletal dynamics. Eur J Cell Biol 90:934–943

    CAS  PubMed  Google Scholar 

  • Munnik T, Arisz SA, de Vrije T, Musgrave A (1995) G protein activation stimulates phospholipase D signaling in plants. Plant Cell 7:2197–2210

    CAS  PubMed  Google Scholar 

  • Nakashima A, Chen L, Thao NP, Fujiwara M, Wong HL, Kuwano M, Umemura K, Shirasu K, Kawasaki T, Shimamoto K (2008) RACK1 functions in rice immunity by interacting with the Rac1 immune complex. Plant Cell 20:2265–2279

    CAS  PubMed  Google Scholar 

  • Nakashima K, Fujita Y, Kanamori N, Katagiri T, Umezawa T, Kidokoro S, Maruyama K, Yoshida T, Ishiyama K, Kobayashi M, Shinozaki K, Yamaguchi-Shinozaki K (2009) Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK21/SnRK2.3 involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol 50:1345–1363

    CAS  PubMed  Google Scholar 

  • Nambeesan S, Datsenka T, Ferruzzi MG, Malladi A, Mattoo AK, Handa AK (2010) Overexpression of yeast spermidine synthase impacts ripening, senescence and decay symptoms in tomato. Plant J 63:836–847

    CAS  PubMed  Google Scholar 

  • Nambeesan S, AbuQamar S, Laluk K, Mattoo AK, Mickelbart MV, Ferruzzi MG, Mengiste T, Handa AK (2012) Polyamines attenuate ethylene-mediated defense responses to abrogate resistance to Botrytis cinerea in tomato. Plant Physiol 158:1034–1045

    CAS  PubMed  Google Scholar 

  • Nibau C, Wu HM, Cheung AY (2006) RAC/ROP GTPases: ‘hubs’ for signal integration and diversification in plants. Trends Plant Sci 11:309–315

    CAS  PubMed  Google Scholar 

  • Ogasawara Y, Kaya H, Hiraoka G, Yumoto F, Kimura S, Kadota Y, Hishinuma H, Senzaki E, Yamagoe S, Nagata K, Nara M, Suzuki K, Tanokura M, Kuchitsu K (2008) Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation. J Biol Chem 283:8885–8892

    CAS  PubMed  Google Scholar 

  • Oki K, Inaba N, Kitagawa K, Fujioka S, Kitano H, Fujisawa Y, Kato H, Iwasaki Y (2009) Function of the α subunit of rice heterotrimeric G protein in brassinosteroid signaling. Plant Cell Physiol 50:161–172

    CAS  PubMed  Google Scholar 

  • Oldham WM, Hamm HE (2008) Heterotrimeric G protein activation by G-protein-coupled receptors. Nat Rev Mol Cell Biol 9:60–71

    CAS  PubMed  Google Scholar 

  • Ono E, Wong HL, Kawasaki T, Hasegawa M, Kodama O, Shimamoto K (2001) Essential role of the small GTPase Rac in disease resistance of rice. Proc Natl Acad Sci U S A 98:759–764

    CAS  PubMed  Google Scholar 

  • Ozawa R, Bertea CM, Foti M, Narayana R, Arimura G-I, Muroi A, Horiuchi JI, Nishioka T, Maffei ME, Takabayashi J (2009) Exogenous polyamines elicit herbivore-induced volatiles in lima bean leaves: involvement of calcium, H2O2 and jasmonic acid. Plant Cell Physiol 50:2183–2199

    CAS  PubMed  Google Scholar 

  • Ozawa R, Bertea CM, Foti M, Narayana R, Arimura G-I, Muroi A, Maffei ME, Takabayashi J (2010) Polyamines and jasmonic acid induce plasma membrane potential variations in Lima bean. Plant Signal Behav 5:308–310

    CAS  PubMed  Google Scholar 

  • Palicz A, Foubert TR, Jesaitis AJ, Marodi L, McPhail LC (2001) Phosphatidic acid and diacylglycerol directly activate NADPH oxidase by interacting with enzyme components. J Biol Chem 276:3090–3097

    CAS  PubMed  Google Scholar 

  • Palmgren MG, Harper JF (1999) Pumping with plant P-type ATPases. J Exp Bot 50:883–893

    CAS  Google Scholar 

  • Pandey S, Assmann SM (2004) The Arabidopsis putative G-protein-coupled receptor GCR1 interacts with the G protein α subunit GPA1 and regulates abscisic acid signaling. Plant Cell 16:1616–1632

    CAS  PubMed  Google Scholar 

  • Pandey S, Chen J-G, Jones AM, Assmann SM (2006) G-protein complex mutants are hypersensitive to abscisic acid regulation of germination and postgermination development. Plant Physiol 141:243–256

    CAS  PubMed  Google Scholar 

  • Pandey S, Nelson DC, Assmann SM (2009) Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell 136:136–148

    CAS  PubMed  Google Scholar 

  • Pandey S, Wang R-S, Wilson L, Li S, Zhao Z, Gookin TE, Assmann SM, Albert R (2010) Boolean modeling of transcriptome data reveals novel modes of heterotrimeric G-protein action. Mol Syst Biol 6:372

    PubMed  Google Scholar 

  • Park J, Choi HJ, Lee S, Lee T, Yang Z, Lee Y (2000) Rac-related GTP-binding protein in elicitor-induced reactive oxygen generation by suspension-cultured soybean cells. Plant Physiol 124:725–732

    CAS  PubMed  Google Scholar 

  • Park J, Gu Y, Lee Y, Yang Z, Lee Y (2004) Phosphatidic acid induces leaf cell death in Arabidopsis by activating the Rho-related small G protein GTPase-mediated pathway of reactive oxygen species generation. Plant Physiol 134:129–136

    CAS  PubMed  Google Scholar 

  • Patterson RL, van Rossum DB, Barrow RK, Snyder SH (2004) RACK1 binds to inositol 1,4,5-trisphosphate receptors and mediates Ca2+ release. Proc Natl Acad Sci U S A 101:2328–2332

    CAS  PubMed  Google Scholar 

  • Perchepied L, Balagué C, Riou C, Claudel-Renard C, Riviére N, Grezes-Besset B, Roby D (2010) Nitric oxide participates in the complex interplay of defense-related signaling pathways controlling disease resistance to Sclerotinia sclerotiorum in Arabidopsis thaliana. Mol Plant Microbe Interact 23:846–860

    CAS  PubMed  Google Scholar 

  • Perfus-Barboch I, Jones AM, Assmann SM (2004) Plant heterotrimeric G protein function: insights from Arabidopsis and rice mutants. Curr Opin Plant Biol 7:719–731

    Google Scholar 

  • Ritchie S, Gilroy S (2000) Abscisic acid stimulation of phospholipase D in the barley aleurone is G-protein-mediated and localized to the plasma membrane. Plant Physiol 124:693–702

    CAS  PubMed  Google Scholar 

  • Roos W, Dordschbal B, Steighardt J, Heike M, Weiss D, Saalbach G (1999) A redox-dependent, G-protein-coupled phospholipase A of the plasma membrane is involved in the elicitation of alkaloid biosynthesis in Eschcholtzia californica. Biochim Biophys Acta Mol Cell Res 1448:390–402

    CAS  Google Scholar 

  • Sakano K (2001) Metabolic regulation of pH in plant cells: role of cytoplasmic pH in defense reaction and secondary metabolism. Int Rev Cytol 206:1–44

    CAS  PubMed  Google Scholar 

  • Sang Y, Cui D, Wang X (2001) Phospholipase D and phosphatidic acid-mediated generation of superoxide in Arabidopsis. Plant Physiol 126:1449–1458

    CAS  PubMed  Google Scholar 

  • Sano H, Ohashi Y (1995) Involvement of small GTP-binding proteins in defense signal-transduction pathways of higher plants. Proc Natl Acad Sci U S A 92:4138–4144

    CAS  PubMed  Google Scholar 

  • Sano H, Seo S, Orudgev S, Youssefian K, Ishizuka K, Ohashi Y (1994) Expression of the gene for a small GTP binding protein in transgenic tobacco elevates endogenous cytokinin levels, abnormally induces salicylic acid in response to wounding, and increases resistance to tobacco mosaic virus infection. Proc Natl Acad Sci U S A 91:10556–10560

    CAS  PubMed  Google Scholar 

  • Schaller F (2001) Enzymes of the biosynthesis of octadecanoid-derived signaling molecules. J Exp Bot 52:11–23

    CAS  PubMed  Google Scholar 

  • Schiene K, Puhler A, Niehaus K (2000) Transgenic tobacco plants that express an antisense construct derived from a Medicago sativa cDNA encoding a Rac-related small GTP-binding protein fail to develop necrotic lesions upon elicitor infiltration. Mol Gen Genet 263:761–770

    CAS  PubMed  Google Scholar 

  • Schultheiss H, Dechert C, Kogel K-H, Hückelhoven R (2002) A small GTP-binding host protein is required for entry of powdery mildew fungus into epidermal cells of barley. Plant Physiol 128:1447–1454

    CAS  PubMed  Google Scholar 

  • Schultheiss H, Dechert C, Kogel K-H, Hückelhoven R (2003) Functional analysis of barley RAC/ROP G-protein family members in susceptibility to the powdery mildew fungus. Plant J 36:589–601

    CAS  PubMed  Google Scholar 

  • Seo W-S, Lee S-K, Song M-Y, Suh J-P, Hahn T-R, Ronald P, Jeon J-S (2008) The HSP90-SGT1-RAR1 molecular chaperone complex: a core modulator in plant immunity. J Plant Biol 51:1–10

    CAS  Google Scholar 

  • Shirasu K (2009) The HSP90-SGT1 chaperone complex for NLR immune sensors. Annu Rev Plant Biol 60:139–164

    CAS  PubMed  Google Scholar 

  • Shirasu K, Schulze-Lefert P (2003) Complex formation, promiscuity, and multi-functionality: protein interactions in disease-resistance pathways. Trends Plant Sci 8:252–258

    CAS  PubMed  Google Scholar 

  • Spoel SH, Johnson JS, Dong X (2007) Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc Natl Acad Sci U S A 104:18842–18847

    CAS  PubMed  Google Scholar 

  • Stael S, Wurzinger B, Mair A, Mehlmer N, Vothknecht UC, Teige M (2012) Plant organellar calcium signaling: an emerging field. J Exp Bot 63:1525–1542

    CAS  PubMed  Google Scholar 

  • Steffens B, Sauter M (2010) G proteins as regulators in ethylene-mediated hypoxia signaling. Plant Signal Behav 5:375–378

    CAS  PubMed  Google Scholar 

  • Suharsono U, Fujisawa Y, Kawasaki T, Iwasaki Y, Satoh H, Shimamoto K (2002) The heterotrimeric G protein subunit acts upstream of the small GTPase Rac in disease resistance of rice. Proc Natl Acad Sci U S A 99:13307–13312

    CAS  PubMed  Google Scholar 

  • Szepesi A, Gémes K, Orosz G, Petö A, Takács Z, Vorák M, Tari I (2011) Interaction between salicylic acid and polyamines and their possible roles in tomato hardening processes. Acta Biol Szeged 55:165–166

    Google Scholar 

  • Takahashi A, Casais C, Ichimura K, Shirasu K (2003a) HSP90 interacts with RAR1 and SGT1 and is essential for RPS2-mediated disease resistance in Arabidopsis. Proc Natl Acad Sci U S A 100:11777–11782

    CAS  PubMed  Google Scholar 

  • Takahashi Y, Berberich T, Miyazaki A, Seo S, Ohashi Y, Kusano T (2003b) Spermine signaling in tobacco: activation of mitogen-activated protein kinases by spermine is mediated through mitochondrial dysfunction. Plant J 36:820–829

    CAS  PubMed  Google Scholar 

  • Takahashi Y, Uehara Y, Berberich T, Ito A, Saitoh H, Miyazaki A, Terauchi R, Kusano T (2004) A subset of hypersensitive response marker genes, including HSR203J, is the downstream target of a spermine signal transduction pathway in tobacco. Plant J 40:586–595

    CAS  PubMed  Google Scholar 

  • Takahashi F, Yoshida R, Ichimura K, Mizoguchi T, Seo S, Yonezawa M, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K (2007) The mitogen-activated protein kinase cascade MKK3-MPK6 is an important part of the jasmonate signal transduction pathway in Arabidopsis. Plant Cell 19:805–818

    CAS  PubMed  Google Scholar 

  • Takeda S, Gapper C, Kaya H, Bell E, Kuchitsu K, Dolan L (2008) Local positive feedback regulation determines cell shape in root hair cells. Science 319:1241–1244

    CAS  PubMed  Google Scholar 

  • Takida S, Wedegaertner PB (2003) Heterotrimer formation, together with isoprenylation, is required for plasma membrane targeting of Gβγ. J Biol Chem 278:17284–17290

    CAS  PubMed  Google Scholar 

  • Tao LZ, Cheung AY, Wu HM (2002) Plant Rac-like GTPases are activated by auxin and mediate auxin-responsive gene expression. Plant Cell 14:2745–2760

    CAS  PubMed  Google Scholar 

  • Tavernier E, Wendehenne J-P, Blein J-P, Pugin A (1995) Involvement of free calcium in action of cryptogein, a proteinaceous elicitor of a hypersensitive reaction in tobacco cells. Plant Physiol 109:1025–1031

    CAS  PubMed  Google Scholar 

  • Temple BR, Jones AM (2007) The plant heterotrimeric G-protein complex. Annu Rev Plant Biol 58:249–266

    CAS  PubMed  Google Scholar 

  • Tesmer JJG (2010) The quest to understand heterotrimeric G protein signaling. Nat Struct Mol Biol 17:650–652

    CAS  PubMed  Google Scholar 

  • Thao NP, Chen L, Nakashima HS-I, Umemura K, Takahashi A, Shirasu K, Kawasaki T, Shimamoto K (2007) RAR1 and HSP90 form a complex with Rac/ROP GTPase and function in innate-immune responses in rice. Plant Cell 19:4035–4045

    PubMed  Google Scholar 

  • Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2 in plants: H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J 11:1187–1194

    CAS  Google Scholar 

  • Thung L, Trusov Y, Chakravorty D, Botella JR (2012) Gγ1 + Gγ2 + Gγ3 = Gβ: the search for heterotrimeric G-protein γ subunits in arabidopsis is over. J Plant Physiol 169:542–545

    CAS  PubMed  Google Scholar 

  • Torrigiani P, Rabiti AL, Bortolotti G, Betti I, Marani F, Canova A, Bagni N (1997) Polyamine synthesis and accumulation in the hypersensitive response to TMV in Nicotiana tabacum. New Phytol 135:467–473

    CAS  Google Scholar 

  • Trusov Y, Rookes JE, Chakravorty D, Armour D, Schenk PM, Botella JR (2006) Heterotrimeric G proteins facilitate Arabidopsis resistance to necrotrophic pathogens and are involved in jasmonate signaling. Plant Physiol 140:210–220

    CAS  PubMed  Google Scholar 

  • Trusov Y, Rookes JE, Tilbrook K, Chakravorty D, Mason MG, Anderson D, Chen J-G, Jones AM, Botella JR (2007) Heterotrimeric G protein γ subunits provide functional selectivity in Gβγ dimer signaling in Arabidopsis. Plant Cell 19:1235–1250

    CAS  PubMed  Google Scholar 

  • Trusov Y, Zhang W, Assmann SM, Botella JR (2008) Gγ1 + Gγ2 ≠ GB. Heterotrimeric G protein Gγ-deficient mutants do not re-capitulate all phenotypes of Gβ-deficient mutants. Plant Physiol 147:636–640

    CAS  PubMed  Google Scholar 

  • Trusov Y, Sewelam N, Rookes JE, Kunkel M, Nowak E, Schenk PM, Botella JR (2009) Heterotrimeric G proteins-mediated resistance to necrotrophic pathogens includes mechanisms independent of salicylic acid-, jasmonic acid/ethylene- and abscisic acid-mediated defense signaling. Plant J 58:69–81

    CAS  PubMed  Google Scholar 

  • Trusov Y, Jorda I, Molina A, Botella JP (2010) G proteins and plant innate immunity. Springer, Heidelberg

    Google Scholar 

  • Trusov Y, Chakravorty D, Botella JR (2012) Diversity of heterotrimeric G-protein γ subunits in plants. BMC Res Notes 5:608

    CAS  PubMed  Google Scholar 

  • Tsukada K, Ishizaka M, Fujisawa Y, Iwasaki Y, Yamaguchi T, Minami E, Shibuya N (2002) Rice receptor for chitin oligosaccharide elicitor does not couple to heterotrimeric G-protein: elicitor responses of suspension cultured rice cells from Daikoku dwarf (d1) mutants lacking a functional G-protein α-subunit. Physiol Plant 116:373–382

    CAS  Google Scholar 

  • Tun NN, Santa-Catarina C, Begum T, Silveira V, Handro W, Floh EIS, Scherer GFE (2006) Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol 47:346–354

    CAS  PubMed  Google Scholar 

  • Ullah H, Chen JG, Wang S, Jones AM (2002) Role of a heterotrimeric G protein in regulation of Arabidopsis seed germination. Plant Physiol 129:897–907

    CAS  PubMed  Google Scholar 

  • Uraji M, Katagiri T, Okuma E, Te W, Hossain M-A, Masuda C, Miura A, Nakamura Y, Mori I-C, Shinozaki K, Murata Y (2012) Cooperative function of PLDδ and PLDα1in abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiol 159:450–460

    CAS  PubMed  Google Scholar 

  • Vadassery J, Oelmūller R (2009) Calcium signaling in pathogenic and beneficial plant microbe interactions What can we learn from the interaction between Piriformospora indica and Arabidopsis thaliana. Plant Signal Behav 411:1024–1027

    Google Scholar 

  • Van Breusegem F, Bailey-Serres J, Mittler R (2008) Unraveling the tapestry of networks involving reactive oxygen species in plants. Plant Physiol 147:978–984

    PubMed  Google Scholar 

  • Vandelle E, Poinssot B, Wendehenne D, Bentéjac M, Pugin A (2006) Integrated signaling network involving calcium, nitric oxide, active oxygen species but not mitogen-activated protein kinases in BcPG-1 elicited grapevine defenses. Mol Plant Microbe Interact 19:429–440

    CAS  PubMed  Google Scholar 

  • Vera-Estrella R, Barkla BJ, Higgins VJ, Blumwald E (1994a) Plant defense response to fungal pathogens. Activation of host-plasma membrane H+-ATPase by elicitor-induced enzyme dephosphorylation. Plant Physiol 104:209–215

    CAS  PubMed  Google Scholar 

  • Vera-Estrella R, Higgins VJ, Blumwald E (1994b) Plant defense responses to fungal pathogens. II. G protein mediated changes in host plasma membrane redox reactions. Plant Physiol 106:97–103

    Google Scholar 

  • Vidhyasekaran P (2007) Fungal pathogenesis in plants and crops: molecular biology and host defense mechanisms, IIth edn. CRC Press/Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Viehweger K, Dordschbal B, Roos W (2002) Elicitor-activated phospholipase A2 generates lysophosphatidylcholines that mobilize the vacuolar H+ pool for pH signaling via the activation of Na+-dependent proton fluxes. Plant Cell 14:1509–1525

    CAS  PubMed  Google Scholar 

  • Viehweger K, Schwartze W, Schumann B, Lein W, Roos W (2006) The Gα protein controls a pH-dependent signal path to the induction of phytoalexin biosynthesis in Eschscholzia californica. Plant Cell 18:1510–1523

    CAS  PubMed  Google Scholar 

  • Walters DR (2000) Polyamines in plant-microbe interactions. Physiol Mol Plant Pathol 57:137–146

    CAS  Google Scholar 

  • Walters D (2003) Resistance to plant pathogens: possible roles for free polyamines and polyamine catabolism. New Phytol 159:109–115

    CAS  Google Scholar 

  • Walters D, Cowley T, Mitchell A (2002) Methyl jasmonate alters polyamine metabolism and induces systemic protection against powdery mildew infection in barley seedlings. J Exp Bot 53:747–756

    CAS  PubMed  Google Scholar 

  • Wang XQ, Ullah H, Jones AM, Assmann SM (2001) G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science 292:2070–2072

    CAS  PubMed  Google Scholar 

  • Wang KLC, Li H, Ecker IP (2002) Ethylene biosynthesis and signaling networks. Plant Cell 14:S131–S155

    CAS  PubMed  Google Scholar 

  • Wang L, Xu YY, Ma QB, Li D, Xu ZH, Chong K (2006) Heterotrimeric G protein α subunit is involved in rice brassinosteroid response. Cell Res 16:916–922

    PubMed  Google Scholar 

  • Wang S, Assmann SM, Fedoroff NV (2008) Characterization of the Arabidopsis heterotrimeric G protein. J Biol Chem 283:13913–13922

    CAS  PubMed  Google Scholar 

  • Wang W-H, Yi X-Q, Han A-D, Liu T-W, Chen J, Wu F-H, Dong X-J, He J-X, Pei Z-X, Pei Z-M, Zheng H-L (2010) Calcium-sensing receptor regulates stomatal closure through hydrogen peroxide and nitric oxide in response to extracellular calcium in Arabidopsis. J Exp Bot 63:177–190

    Google Scholar 

  • Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F, Valon C, Frei dit Frey F, Leung J (2008) An update on abscisic acid signaling in plants and more. Mol Plant 1:198–217

    CAS  PubMed  Google Scholar 

  • Wong HL, Sakamoto T, Kawasaki T, Umemura K, Shimamoto K (2004) Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice. Plant Physiol 135:1447–1456

    CAS  PubMed  Google Scholar 

  • Wong H, Pinontoan R, Hayashi K, Tabata R, Yaeno T, Hasegawa K, Kojima C, Yoshioka H, Iba K, Kawasaki T, Shimamoto K (2007) Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension. Plant Cell 19:4022–4034

    CAS  PubMed  Google Scholar 

  • Wu W-H, Assmann SM (1994) A membrane-delimited pathway of G-protein regulation of the guard-cell inward K+ channel. Proc Natl Acad Sci U S A 91:6310–6314

    CAS  PubMed  Google Scholar 

  • Wu H-M, Hazak O, Cheung AY, Yalovsky S (2011) RAC/ROP GTPases and auxin signaling. Plant Cell 23:1208–1218

    CAS  PubMed  Google Scholar 

  • Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280:1091–1094

    CAS  PubMed  Google Scholar 

  • Xing T, Higgins VJ, Blumwald E (1996) Regulation of plant defense response to fungal pathogens: two types of protein kinases in the reversible phosphorylation of the host plasma membrane H+-ATPase. Plant Cell 8:555–564

    CAS  PubMed  Google Scholar 

  • Xing T, Higgins VJ, Blumwald E (1997) Identification of G proteins mediating fungal elicitor-induced dephosphorylation of host plasma membrane H+-ATPase. J Exp Biol 48:229–237

    CAS  Google Scholar 

  • Xu L, Liu F, Lechner E, Genschik P, Crosby WL, Ma H, Peng W, Huang D, Xie D (2002) The SCF(COI1) ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 14:1919–1935

    CAS  PubMed  Google Scholar 

  • Xu T, Wen M, Nagawa S, Fu Y, Chen JG, Wu MJ, Perrot-Rechnmann C, Friml J, Jones AM, Yang Z (2010) Cell surface- and rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis. Cell 143:99–110

    CAS  PubMed  Google Scholar 

  • Yalovsky S, Baluska F, Jones A (2010) Integrated G proteins signaling in plants. Springer, Heidelberg

    Google Scholar 

  • Yamakawa H, Kamada H, Satoh M, Ohashi Y (1998) Spermine is a salicylate-independent endogenous inducer for both tobacco acidic pathogenesis-related proteins and resistance against tobacco acidic pathogenesis-related proteins and resistance against tobacco mosaic virus infection. Plant Physiol 118:1213–1222

    CAS  PubMed  Google Scholar 

  • Yang Z (2002) Small GTPases: versatile signaling switches in plants. Plant Cell 14(Suppl):S375–S388

    CAS  PubMed  Google Scholar 

  • Yang Z, Fu Y (2007) ROP/RAC GTPase signaling. Curr Opin Plant Biol 10:490–494

    CAS  PubMed  Google Scholar 

  • Yoda H, Sano H (2003) Activation of hypersensitive response genes in the absence of pathogens in transgenic tobacco plants expressing a small GTPase. Planta 217:993–997

    CAS  PubMed  Google Scholar 

  • Yoda H, Fujimura K, Takahashi H, Munemura I, Uchimiya H, Sano H (2009) Polyamines as a common source of hydrogen peroxide in host- and nonhost hypersensitive response during pathogen infection. Plant Mol Biol 70:103–112

    CAS  PubMed  Google Scholar 

  • Yong G, Tingting L, Yang L, Cabda R, Yun Z, Maolin W (2010) Isolation and characterization of gene encoding G protein α subunit protein responsive to plant hormones and abiotic stresses in Brassicus napus. Mol Biol Rep 37:3957–3965

    Google Scholar 

  • Zeng Q, Wang X, Running MP (2007) Dual lipid modification of Arabidopsis Gγ-subunits is required for efficient plasma membrane targeting. Plant Physiol 143:1119–1131

    CAS  PubMed  Google Scholar 

  • Zhang W, He SY, Assmann SM (2008) The plant innate immunity response in stomatal guard cells invokes G-protein-dependent ion channel regulation. Plant J 56:984–996

    CAS  PubMed  Google Scholar 

  • Zhang W, Jeon BW, Assmann SM (2011) Heterotrimeric G-protein regulation of ROS signalling and calcium currents in Arabidopsis guard cells. J Exp Bot 62:2371–2379

    CAS  PubMed  Google Scholar 

  • Zhang H, Gao Z, Zheng X, Zhang Z (2012) The role of G-proteins in plant immunity. Plant Signal Behav 7:1284–1288

    CAS  PubMed  Google Scholar 

  • Zhao J, Sakai K (2003) Multiple signalling pathways mediate fungal elicitor-induced β-thujalplicin biosynthesis in Cupressus lusitanica cell cultures. J Exp Bot 54:647–656

    CAS  PubMed  Google Scholar 

  • Zhao J, Wang X (2004) Arabidopsis phospholipase Dα1 interacts with the heterotrimeric G-protein α-subunit through a motif analogous to the DRY motif in G-protein-coupled receptors. J Biol Chem 279:1794–1800

    CAS  PubMed  Google Scholar 

  • Zhao J, Zheng S-H, Fujita K, Sakai K (2004) Jasmonate and ethylene signalling and their interaction are integral parts of the elicitor signalling pathway leading to β-thujaplicin biosynthesis in Cupressus lusitanica cell cultures. J Exp Bot 55:1003–1012

    CAS  PubMed  Google Scholar 

  • Zhao Z, Stanley BA, Zhang W, Assmann SM (2010) ABA-regulated G protein signaling in Arabidopsis guard cells: a proteomic perspective. J Proteome Res 9:1637–1647

    CAS  PubMed  Google Scholar 

  • Zheng Z, Qamar SA, Chen Z, Mengiste T (2006) Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J 48:596–605

    Google Scholar 

  • Zhou F, Mosher S, Tian M, Sassi G, Parker J, Klessig DF (2008) The Arabidopsis gain-of-function mutant ssi4 requires RAR1 and SGT1b differentially for defense activation and morphological alterations. Mol Plant Microbe Interact 21:40–49

    CAS  PubMed  Google Scholar 

  • Zhu H, Li G-J, Ding L, Cui X, Berg H, Assmann SM, Xia Y (2009) Arabidopsis extra-large G-protein 2 (XLG2) interacts with the Gβ subunit of heterotrimeric G protein and functions in disease resistance. Mol Plant 2:513–525

    CAS  PubMed  Google Scholar 

  • Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JDG, Felix G, Boller T (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764–767

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vidhyasekaran, P. (2014). G-Proteins as Molecular Switches in Signal Transduction. In: PAMP Signals in Plant Innate Immunity. Signaling and Communication in Plants, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7426-1_3

Download citation

Publish with us

Policies and ethics