Skip to main content

Ubiquitin-Proteasome System-Mediated Protein Degradation in Defense Signaling

  • Chapter
  • First Online:
Book cover PAMP Signals in Plant Innate Immunity

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 21))

Abstract

Ubiquitin-proteasome system plays important role in the complex PAMP signal transduction systems involved in plant innate immunity. JAZ proteins, which are activated by jasmonate (JA) signals, act as repressors of JA-dependent transcription factors. COI1 protein, a receptor of JA signal, forms a functional E3 ubiquitin ligase and is required for removal of repressors of the JA signaling pathway. Ubiquitin proteins-cullin-RING ligases negatively regulate biosynthesis of ethylene. Ethylene signal transduction terminates in a transcription cascade involving the EIN3/EIL and ERF families of transcription factors and ubiquitin ligases regulate the stability and expression of these transcription factors. Ubiquitin proteasome may positively or negatively regulate SA biosynthesis. A 26S proteosome is involved in triggering SA accumulation, probably by removing/degrading an inhibitor of SA biosynthesis. Ubiquitin ligases are also involved in regulation of R proteins-mediated defense responses. Major function of ubiquitin ligases may be in conferring stability to R proteins, probably by degrading the proteins involved in reducing the stability of R proteins. Small ubiquitin-like modifier (SUMO) plays a significant role in SA-mediated systemic acquired resistance. Ubiquitin-proteasome is involved in triggering defense responses and virulent pathogens may subvert ubiquitin-proteasome system to cause disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen P, Kragelund BB, Olsen AN, Larsen FH, Chua NH, Poulsen FM, Skriver K (2004) Structure and biochemical function of a prototypical Arabidopsis U-box domain. J Biol Chem 279:40053–40061

    PubMed  CAS  Google Scholar 

  • Austin MJ, Muskett P, Kahn K, Feys BJ, Jones JD, Parker JE (2002) Regulatory role of SGT1 in early R gene-mediated plant defenses. Science 295:2077–2080

    PubMed  CAS  Google Scholar 

  • Azevedo C, Santos-Ross MJ, Shirasu K (2001) The U-box protein family in plants. Trends Plant Sci 6:354–358

    PubMed  CAS  Google Scholar 

  • Azevedo C, Sadanandom A, Kitagawa K, Freialdenhoven A, Shirasu K, Schulze-Lefert P (2002) The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science 295:2073–2076

    PubMed  CAS  Google Scholar 

  • Azevedo C, Betsuyaku S, Peart J, Takahashi A, Noel L, Sadanandom A, Casals C, Parker J, Shirasu K (2006) Role of SGT1 in resistance protein accumulation in plant immunity. EMBO J 25:2007–2016

    PubMed  CAS  Google Scholar 

  • Balbi V, Devoto A (2008) Jasmonate signalling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios. New Phytol 177:301–318

    PubMed  CAS  Google Scholar 

  • Bieri S, Mauch S, Shen QH, Peart J, Devoto A, Casals C, Ceron F, Schulze S, Steinbiss HH, Shirasu K, Schulze-Lefert P (2004) RAR1 positively controls steady state levels of barley MLA resistance proteins and enables sufficient MLA6 accumulation for effective resistance. Plant Cell 16:3480–3495

    PubMed  CAS  Google Scholar 

  • Binder BM, Walker JM, Gagne JM, Emborg TJ, Hemmann G, Bleecker AB, Vierstra RD (2007) The Arabidopsis EIN3 binding F-Box proteins EBF1 and EBF2 have distinct but overlapping roles in ethylene signaling. Plant Cell 19:509–523

    PubMed  CAS  Google Scholar 

  • Book AJ, Yang P, Scalf M, Smith LM, Viersta RD (2005) Tripeptidyl peptidase II. An oligomeric protease complex from Arabidopsis. Plant Physiol 138:1046–1057

    PubMed  CAS  Google Scholar 

  • Borden KL, Freemont PS (1996) The RING finger domain: a recent example of a sequence-structure family. Curr Opin Struct Biol 55:395–401

    Google Scholar 

  • Bostick M, Lochhead SR, Honda A, Palmer S, Callis J (2004) Related to ubiquitin 1 and 2 are redundant and essential and regulate vegetative growth, auxin signaling, and ethylene production in Arabidopsis. Plant Cell 16:2418–2432

    PubMed  CAS  Google Scholar 

  • Chae HS, Faure F, Kieber JJ (2003) The eto1, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein. Plant Cell 15:545–559

    PubMed  CAS  Google Scholar 

  • Chen H, McCaig BC, Melotto M, He SY, Howe GA (2004) Regulation of plant argininase by wounding, jasmonate, and the phytotoxin coronatine. J Biol Chem 279:45998–46007

    PubMed  CAS  Google Scholar 

  • Chern M, Canlas PE, Ronald PC (2008) Strong suppression of systemic acquired resistance in Arabidopsis by NRR is dependent on its ability to interact with NPR1 and its putative repressive domain. Mol Plant 1:552–559

    PubMed  CAS  Google Scholar 

  • Cheung M-Y, Zeng N-Y, Tong S-W, Li FW-Y, Zhao K-J, Zhang Q, Sun SS-M, Lam H-M (2007) Expression of a RING-HC protein from rice improves resistance to Pseudomonas syringae pv. tomato DC3000 in transgenic Arabidopsis thaliana. J Exp Bot 58:4147–4159

    PubMed  CAS  Google Scholar 

  • Chini A, Fonseca S, Fernández G, Adie B, Chico JM, Lorenzo O, Garcia-Casado G, Lόpez-Vidriero I, Lozano FM, Ponce MR, Micol JL, Solano R (2007) The JAZ family of repressors is the missing link in jasmonate signaling. Nature 448:666–671

    PubMed  CAS  Google Scholar 

  • Clechanover A (1998) The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J 17:7151–7160

    Google Scholar 

  • Conrath U, Klessig DF, Bachmair A (1998) Tobacco plants perturbed in the ubiquitin-dependent protein degradation system accumulate callose, salicylic acid, and pathogenesis-related protein 1. Plant Cell Rep 17:876–880

    CAS  Google Scholar 

  • del Pozo JC, Dharmasiri S, Hellmann H, Walker L, Gray WM, Estelle M (2002) AXR1-ECR1-dependent conjugation of RUB1 to the Arabidopsis cullin AtCUL1 is required for auxin response. Plant Cell 14:421–433

    PubMed  Google Scholar 

  • Deshaies RJ (1999) SCF and cullin/ring H2-based ubiquitin ligases. Annu Rev Cell Dev Biol 15:435–467

    PubMed  CAS  Google Scholar 

  • Devoto A, Turner JC (2003) Regulation of jasmonate-mediated plant responses in Arabidopsis. Ann Bot 92:329–337

    PubMed  CAS  Google Scholar 

  • Devoto A, Nieto-Rostro M, Xie D, Ellis C, Harmston R, Patrick E, Davis J, Sherratt L, Coleman M, Turner JG (2002) COI1 links jasmonate signaling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. Plant J 32:457–466

    PubMed  CAS  Google Scholar 

  • Downes BP, Stupar RM, Gingerich DJ, Vierstra RD (2003) The HECT ubiquitin-protein ligase (UPL) family in Arabidopsis: UPL3 has a specific role in trichome development. Plant J 35:729–742

    PubMed  CAS  Google Scholar 

  • Dreher K, Callis J (2007) Ubiquitin, hormones and biotic stress in plants. Ann Bot 99:787–822

    PubMed  CAS  Google Scholar 

  • Ellis C, Turner JG (2001) The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens. Plant Cell 13:1025–1033

    PubMed  CAS  Google Scholar 

  • Eulgem T, Weighman VJ, Chang H-S, McDowell JM, Holub EB, Glazebrook J, Zhu T, Dangl JL (2004) Gene expression signatures from three genetically separable resistance gene signaling pathways for downy mildew resistance. Plant Physiol 135:1129–1144

    PubMed  CAS  Google Scholar 

  • Feng S, Ma L, Wang X, Xie D, Dinesh-Kumar SP, Wei N, Deng XW (2003) The COP9 signalosome interacts physically with SCFCOI1 and modulates jasmonate responses. Plant Cell 15:1083–1094

    PubMed  CAS  Google Scholar 

  • Fernández-Calvo P, Chini A, Fernández-Barbero G, Chico J-M, Gimenez-Ibanez S, Geerinck J, Eeckhout D, Schweizer F, Godoy M, Franco-Zorrilla JM, Pauwels L, Witters E, Puga MI, Paz-Ares J, Goossens A, Reymond P, De Jaeger G, Solano R (2011) The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 23:701–715

    PubMed  Google Scholar 

  • Feys BJF, Benedetti CE, Penfold CN, Turner JG (1994) Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell 6:751–759

    PubMed  CAS  Google Scholar 

  • Feys BJ, Moisan LJ, Newman MA, Parker JE (2001) Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. EMBO J 20:5400–5411

    PubMed  CAS  Google Scholar 

  • Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R (2009) (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol 5c:344–350

    Google Scholar 

  • Fu DQ, Ghabrial S, Kachroo A (2009) GmRAR1 and Gm SGT1 are required for basal, R gene-mediated and systemic acquired resistance in soybean. Mol Plant Microbe Interact 22:86–95

    PubMed  CAS  Google Scholar 

  • Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M (2000) Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12:393–404

    PubMed  CAS  Google Scholar 

  • Gaughan L, Logan IR, Neal DE, Robson CN (2005) Regulation of androgen receptor and histone deacetylase 1 by Mdm2-mediated ubiquitylation. Nucleic Acids Res 33:13–26

    PubMed  CAS  Google Scholar 

  • González-Lamothe R, Tsitsigiannis DJ, Ludwig AA, Panicot M, Shirasu K, Jones JD (2006) The U-box protein CMPG1 is required for efficient activation of defense mechanisms triggered by multiple resistance genes in tobacco and tomato. Plant Cell 18:1067–1083

    PubMed  Google Scholar 

  • Guo H, Ecker JR (2003) Plant responses to ethylene gas are mediated by SCF(EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. Cell 115:667–677

    PubMed  CAS  Google Scholar 

  • Gupta V, Willits MG, Glazebrook J (2000) Arabidopsis thaliana EDS4 contributes to salicylic acid (SA)-dependent expression of defense responses: evidence for inhibition of jasmonic acid signaling by SA. Mol Plant Microbe Interact 13:503–511

    PubMed  CAS  Google Scholar 

  • Haas AL, Warms JV, Hershko A, Rose IA (1982) Ubiquitin-activating enzyme: mechanism and role in protein-ubiquitin conjugation. J Biol Chem 257:2543–2548

    PubMed  CAS  Google Scholar 

  • Heise A, Lippok B, Kirsch C, Hahlbrock K (2002) Two immediate-early pathogen-responsive members of the AtCMPG gene family in Arabidopsis thaliana and the W-box-containing elicitor-response element of AtCMPG1. Proc Natl Acad Sci U S A 99:9049–9054

    PubMed  CAS  Google Scholar 

  • Hilpert B, Bohlmann H, op den Camp R, Przybyla D, Miersch O, Cuchala A, Apel K (2001) Isolation and characterization of signal transduction mutants of Arabidopsis thaliana that constitutively activate the octadecanoid pathway and form necrotic microlesions. Plant J 26:1–14

    Google Scholar 

  • Hondo D, Hase S, Kanayama Y, Yoshikawa N, Takenaka S, Takahashi H (2007) The LeATL6-associated ubiquitin/proteasome system may contribute to fungal elicitor-activated defense response via the jasmonic acid-dependent signaling pathway in tomato. Mol Plant Microbe Interact 20:72–81

    Google Scholar 

  • Hong JK, Jung HW, Lee BK, Lee SC, Lee YK, Hwang BK (2004) An osmotin-like protein gene, CAOSM1, from pepper: differential expression and in situ localization of its mRNA during pathogen infection and abiotic stress. Physiol Mol Plant Pathol 64:301–310

    CAS  Google Scholar 

  • Ishida T, Fujiwara S, Miura K, Stacey N, Yoshimura M, Schneider K, Adachi S, Minamisawa K, Umeda M, Sugimoto K (2009) E3 ligase HIGH PLOIDY2 regulates endocycle onset and meristem maintenance in Arabidopsis. Plant Cell 21:2284–2297

    PubMed  CAS  Google Scholar 

  • Iwai T, Miyasaka A, Seo S, Ohashi Y (2006) Contribution of ethylene biosynthesis for resistance to blast fungus infection in young rice plants. Plant Physiol 142:1202–1215

    PubMed  CAS  Google Scholar 

  • Jaskiewicz M, Conrath U, Peterhänsel C (2011) Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Rep 12:50–55

    PubMed  CAS  Google Scholar 

  • Jirage D, Tootle TL, Reuber TL, Frost LN, Feys BJ, Parker JE (1999) Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. Proc Natl Acad Sci U S A 96:13583–13588

    PubMed  CAS  Google Scholar 

  • Katsir L, Schilmiller A, Staswick P, He SY, Howe GA (2008) COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc Natl Acad Sci U S A 105:7100–7105

    PubMed  CAS  Google Scholar 

  • Kawakami T, Chiba T, Suzuki T, Iwai K, Yamanaka K (2001) NEDD8 recruits E2-ubiquitin to SCF E3 ligase. EMBO J 20:4003–4012

    PubMed  CAS  Google Scholar 

  • Kawamura Y, Hase S, Takenaka S, Kanayama Y, Yoshioka H, Kamoun S, Takahashi H (2009) INF1 elicitin activates jasmonic acid- and ethylene-mediated signaling pathways and induces resistance to bacterial wilt disease in tomato. J Phytopathol 157:287–297

    CAS  Google Scholar 

  • Kawchuck LM, Hachey J, Lynch DR, Kulcsar F, van Rooijen G, Waterer DR, Robertson A, Kokko E, Byers R, Howard RJ, Fischer R, Prufer D (2001) Tomato Ve disease resistance genes encode cell surface-like receptors. Proc Natl Acad Sci U S A 98:6511–6515

    Google Scholar 

  • Kazan K, Manners JM (2008) Jasmonate signaling: toward an integrated view. Plant Physiol 146:1459–1468

    PubMed  CAS  Google Scholar 

  • Kazan K, Manners JM (2013) MYC2: the master in action. Mol Plant 6:686–703

    Google Scholar 

  • Kepinski S, Leyser O (2003) SCF-mediated proteolysis and negative regulation in ethylene signaling. Cell 115:647–648

    PubMed  CAS  Google Scholar 

  • Kim HS, Delaney TP (2002) Arabidopsis SON1 is an F-box protein that regulates a novel induced defense response independent of both salicylic acid and systemic acquired resistance. Plant Cell 14:1469–1482

    PubMed  CAS  Google Scholar 

  • Kirkpatrick DS, Hathaway NA, Hanna J, Elsasser S, Rush J, Finley D, King RW, Gygi SP (2006) Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology. Nat Cell Biol 8:700–710

    PubMed  CAS  Google Scholar 

  • Kirsch C, Logemann E, Lippok B, Schmelzer E, Hahlbrock K (2001) A highly specific pathogen-responsive promoter element from the immediate-early activated CMPG1 gene in Petroselinum crispum. Plant J 26:217–227

    PubMed  CAS  Google Scholar 

  • Kitagawa K, Skowyra D, Elledge SJ, Harper JW, Hieter P (1999) SGT1 encodes an essential component of the yeast kinetochore assembly pathway and a novel subunit of the SCF ubiquitin ligase complex. Mol Cell 4:21–33

    PubMed  CAS  Google Scholar 

  • Kitajima S, Koyama T, Ohme-Takagi M, Shinshi H, Sato F (2000) Characterization of gene expression of NsERFs, transcription factors of basic PR genes from Nicotiana sylvestris. Plant Cell Physiol 41:817–824

    PubMed  CAS  Google Scholar 

  • Koyama T, Okada T, Kitajima S, Ohme-Takagi M, Shinshi H, Sato F (2003) Isolation of tobacco ubiquitin-conjugating enzyme cDNA in a yeast two-hybrid system with tobacco ERF3 as bait and its characterization of specific interaction. J Exp Bot 54:1175–1181

    PubMed  CAS  Google Scholar 

  • Kresge N, Simoni RD, Hill RL (2007) The biosynthesis of polyamines: the work of Herbert Tabor and Celia White Tabor. J Biol Chem 282:e26–e28

    CAS  Google Scholar 

  • Kud J, Zhao Z, Du X, Liu Y, Zhao Y, Xiao F (2013) SGT1 interacts with the Prf resistance protein and is required for Prf accumulation and Prf-mediated defense signaling. Biochem Biophys Res Commun 431:501–505

    PubMed  CAS  Google Scholar 

  • Larsen PB, Cancel JD (2004) A recessive mutation in the RUB1-conjugating enzyme, RCE1, reveals a requirement for RUB modification for control of ethylene biosynthesis and proper induction of basic chitinase and PDF1.2 in Arabidopsis. Plant J 38:626–638

    PubMed  CAS  Google Scholar 

  • Lee S-W, Han S-W, Bartley LE, Ronald PC (2006) Unique characteristics of Xanthomonas oryzae pv. oryzae AvrXa21 and implications for plant innate immunity. Proc Natl Acad Sci U S A 103:18395–18400

    PubMed  CAS  Google Scholar 

  • Lee J, Nam J, Park HC, Na G, Miura K, Jin JB, Yoo CY, Baek D, Kim DH, Jeong JC, Kim D, Lee SY, Salt DE, Mengiste T, Gong Q, Ma S, Bohnert HJ, Kwak S-S, Bressan RA, Hasegawa PM, Yun D-J (2007) Salicylic acid-mediated innate immunity in Arabidopsis is regulated by SIZ1 SUMO E3 ligase. Plant J 49:79–90

    PubMed  CAS  Google Scholar 

  • Lee S-W, Han S, Sririyanum M, Park C, Seo Y, Ronald PC (2009) A type 1-secreted, sulfated peptide triggers XA21-mediated innate immunity. Science 326:850–853

    PubMed  CAS  Google Scholar 

  • Lee DH, Choi HW, Hwang BK (2011) The pepper E3 ubiquitin ligase RING1 gene, CaRING1, is required for cell death and the salicylic acid-dependent defense response. Plant Physiol 156:2011–2025

    PubMed  CAS  Google Scholar 

  • Lippok B, Birkenbihl RP, Rivory G, Brummer J, Schmelzer E, Logemann E, Somssich IE (2007) Expression of AtWRKY33 encoding a pathogen- or PAMP-responsive WRKY transcription factor is regulated by a composite DNA motif containing W box elements. Mol Plant Microbe Interact 20:420–429

    PubMed  CAS  Google Scholar 

  • Liu Y, Schiff M, Serino G, Deng X-W, Dinesh-Kumar SP (2002) Role of SCF ubiquitin-ligase and COP9 signalosome in the N gene-mediated resistance response to Tobacco mosaic virus. Plant Cell 14:1483–1496

    PubMed  CAS  Google Scholar 

  • Lorenzo O, Solano R (2005) Molecular players regulating the jasmonate signaling network. Curr Opin Plant Biol 8:532–540

    PubMed  CAS  Google Scholar 

  • Lorenzo O, Chico JM, Sánchez-Serrano JJ, Solano R (2004) JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16:1938–1950

    PubMed  CAS  Google Scholar 

  • Lozano-Durán R, Bejarano ER (2011) Geminivirus C2 protein might be the key player for geminiviral co-option of SCF-mediated ubiquitination. Plant Signal Behav 6:999–1001

    PubMed  Google Scholar 

  • Lozano-Durán R, Rosas-Diaz T, Gusmaroli G, Luna AP, Taconnat L, Deng XW, Bejarano ER (2011) Geminiviruses subvert ubiquitination by altering CSN-mediated derubylation of SCF E3 ligase complexes and inhibit jasmonate signaling in Arabidopsis thaliana. Plant Cell 23:1014–1032

    PubMed  Google Scholar 

  • Mandaokar A, Thines B, Shin B, Lange BM, Choi G, Koo YJ, Yoo YJ, Choi YD, Choi G, Browse J (2006) Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling. Plant J 46:984–1008

    PubMed  CAS  Google Scholar 

  • March-Diaz R, Garcia-Domỉnguez M, Lozano-Juste J, Leόn J, Florencio FJ, Reyes JC (2008) Histone H2A.Z and homologues of components of the SWR1 complex are required to control immunity in Arabidopsis. Plant J 53:475–487

    PubMed  CAS  Google Scholar 

  • Melotto M, Underwood W, He SY (2008) Role of stomata in plant innate immunity and foliar bacterial diseases. Annu Rev Phytopathol 46:101–122

    PubMed  CAS  Google Scholar 

  • Miura K, Hasegawa PM (2010) Sumoylation and other ubiquitin-like post-translational modifications in plants. Trends Cell Biol 20:223–232

    PubMed  CAS  Google Scholar 

  • Moon J, Zhao Y, Dai X, Zhang W, Gray WM, Huq E, Estelle M (2007) A new CULLIN1 mutant has altered responses to hormones and light in Arabidopsis. Plant Physiol 143:684–696

    PubMed  CAS  Google Scholar 

  • Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935–944

    PubMed  CAS  Google Scholar 

  • Navarro L, Zipfel C, Rowland O, Keller I, Robatzek S, Boller T, Jones JD (2004) The transcriptional innate immune response to flg22. Interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis. Plant Physiol 135:1113–1128

    PubMed  CAS  Google Scholar 

  • Nawrath C, Heck S, Parinthawong N, Metraux JP (2002) EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of MATE transporter family. Plant Cell 14:275–286

    PubMed  CAS  Google Scholar 

  • Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7:173–182

    PubMed  CAS  Google Scholar 

  • Ohta M, Ohme-Takagi M, Shinshi H (2000) Three ethylene-responsive transcription factors in tobacco with distinct transactivation functions. Plant J 22:29–38

    PubMed  CAS  Google Scholar 

  • Park CH, Chen S, Shirsekar G, Zhou B, Khang CH, Songkumam P, Afzal AJ, Ning Y, Wang R, Bellizzi M, Valent B, Wang GL (2012) The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice. Plant Cell 24:4748–4762

    PubMed  CAS  Google Scholar 

  • Pauwels L, Barbero GF, Geerinck J, Tilleman S, Grunewald W, Pérez AC, Chico JM, Bossche RV, Sewell J, Gill E, Garcia-Casado G, Witters E, Inzé D, Long JA, De Jaeger G, Solano R, Goossens A (2010) NINJA connects the co-repressor TOPLESS to jasmonate signaling. Nature 464:788–791

    PubMed  CAS  Google Scholar 

  • Peart JR, Lu R, Sadanandom A, Malcuit I, Moffett P, Brice DC, Schauser L, Jaggard DAW, Xiao S, Coleman MJ, Dow M, Jones JDG, Shirasu K, Baulcombe DC (2002) Ubiquitin ligase-associated protein SGT1 is required for host and nonhost disease resistance in plants. Proc Natl Acad Sci U S A 99:10865–10869

    PubMed  CAS  Google Scholar 

  • Peters JM, Franke WW, Kleinschmidt JA (1994) Distinct 19S and 20S subcomplexes of the 26S proteasome and their distribution in the nucleus and the cytoplasm. J Biol Chem 269:7709–7718

    PubMed  CAS  Google Scholar 

  • Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503–533

    PubMed  CAS  Google Scholar 

  • Pickart CM, Eddins MJ (2004) Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta 1695:55–72

    PubMed  CAS  Google Scholar 

  • Potuschak T, Lechner E, Parmentier Y, Yanagisawa S, Grava S, Koncz C, Genschik P (2003) EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins EBF1 and EBF2. Cell 115:679–689

    PubMed  CAS  Google Scholar 

  • Qi RC, Song SS, Ren QC, Wu DW, Huang H, Chen Y, Fan M, Peng W, Ren CM, Xie DX (2011) The jasmonate-ZIM domain proteins interact with the WD-repeat/bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. Plant Cell 23:1795–1814

    PubMed  CAS  Google Scholar 

  • Ralph SG, Hudgins JW, Jancsik S, Franceschi VR, Bohlmann J (2007) Aminocyclopropane carboxylic acid synthase is a regulated step in ethylene-dependent induced conifer defense. Full-length cDNA cloning of a multigene family, differential constitutive, and wound- and insect-induced expression, and cellular and subcellular localization in spruce and Douglas Fir. Plant Physiol 143:410–424

    PubMed  CAS  Google Scholar 

  • Risseeuw EP, Daskalchuk TE, Banks TW, Liu E, Cotelesage J, Hellmann H, Estelle M, Somers DE, Crosby WI (2003) Protein interaction analysis of SCF ubiquitin E3 ligase subunits from Arabidopsis. Plant J 34:753–767

    PubMed  CAS  Google Scholar 

  • Rustérucci C, Aviv DH, Holt BF, Dangl JL, Parker JE (2001) The disease resistance signaling components EDS1 and PAD4 are essential regulators of the cell death pathway controlled by LSD1 in Arabidopsis. Plant Cell 13:2211–2224

    PubMed  Google Scholar 

  • Sahana N, Kaur H, Basavaraj H, Tena F, Jain RK, Palukaitis P, Canto T, Praveen S (2012) Inhibition of the host proteasome facilitates papaya ringspot virus accumulation and proteasomal catalytic activity is modulated by viral factor HcPro. PLoS One 7:e52546

    PubMed  CAS  Google Scholar 

  • Salinas-Mondragón RE, Garcidueñas-Piña C, Guzmán P (1999) Early elicitor induction in members of a novel multigene family coding for highly related RING-H2 proteins in Arabidopsis thaliana. Plant Mol Biol 40:579–590

    PubMed  Google Scholar 

  • Seo W-S, Lee S-K, Song M-Y, Suh J-P, Hahn T-R, Ronald P, Jeon J-S (2008) The HSP90-SGT1-RAR1 molecular chaperone complex: a core modulator in plant immunity. J Plant Biol 51:1–10

    CAS  Google Scholar 

  • Serrano M, Paara S, Alcaraz LD, Guzman P (2006) The ATL gene family from Arabidopsis thaliana and Oryza sativa comprises a large number of putative ubiquitin ligases of the RING-H2 type. J Mol Evol 62:434–445

    PubMed  CAS  Google Scholar 

  • Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu EF, Sharon M, Browse J, He SY, Rizo J, Howe GA, Zheng N (2010) Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468:400–405

    PubMed  CAS  Google Scholar 

  • Smalle J, Vierstra RD (2004) The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol 55:555–590

    PubMed  CAS  Google Scholar 

  • Song W-Y, Wang G-L, Chen L-L, Kim H-S, Pi L-Y, Holsten T, Gardner J, Wang B, Zhai W-X, Zhu L-H, Fauquet C, Ronald P (1995) A receptor kinase-like protein encoded by the rice disease resistance gene Xa21. Science 270:1804–1806

    PubMed  CAS  Google Scholar 

  • Song JT, Lu H, McDowell JM, Greenberg JT (2004) A key role for ALD1 in activation of local and systemic defenses in Arabidopsis. Plant J 40:200–212

    PubMed  CAS  Google Scholar 

  • Staswick PE, Tiryaki I (2004) The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16:2117–2127

    PubMed  CAS  Google Scholar 

  • Stone SL, Callis J (2007) Ubiquitin ligases mediate growth and development by promoting protein death. Curr Opin Plant Biol 10:624–632

    PubMed  CAS  Google Scholar 

  • Stone SL, Hauksdottir H, Troy A, Herschleb J, Kraft E, Callis J (2005) Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiol 137:13–30

    PubMed  CAS  Google Scholar 

  • Takahashi H, Hase S, Kanayama Y, Takenaka S (2010) Identification of a protein that interacts with LeATL6 ubiquitin-protein ligases E3 upregulated in tomato treated with elicitin-like cell wall proteins of Pythium oligandrum. J Phytopathol 158:132–136

    CAS  Google Scholar 

  • Takai R, Matsuda N, Nakano A, Hasegawa K, Akimoto C, Shibuya N, Minami E (2002) EL5, a rice N-acetylchitooligosaccharide elicitor-responsive RING-H2 finger protein, is a ubiquitin ligase which functions in vitro in co-operation with an elicitor-responsive ubiquitin-conjugating enzyme, OsUBC5b. Plant J 30:447–455

    PubMed  CAS  Google Scholar 

  • Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCF:COI1 complex during jasmonate signaling. Nature 448:661

    PubMed  CAS  Google Scholar 

  • Thrower JS, Hoffmann L, Rechsteiner M, Pickart CM (2000) Recognition of the polyubiquitin proteolytic signal. EMBO J 19:94–102

    PubMed  CAS  Google Scholar 

  • Tör M, Gordon P, Cuzick A, Eulgem T, Sinapidou E, Mert-Turk F, Can C, Dangl JL, Holub EB (2002) Arabidopsis SGT1b is required for defense signaling conferred by several downy mildew resistance genes. Plant Cell 14:993–1003

    PubMed  Google Scholar 

  • Trujillo M, Ichimura K, Casais C, Shirasu K (2008) Negative regulation of PAMP-triggered immunity by an E3 ubiquitin ligase triplet in Arabidopsis. Curr Biol 18:1396–1401

    PubMed  CAS  Google Scholar 

  • van den Burg HA, Takken FLW (2009) Does chromatin remodeling mark systemic acquired resistance? Trends Plant Sci 14:286–294

    PubMed  Google Scholar 

  • van den Burg HA, Takken FLW (2010) SUMO-, MAPK- and resistance protein-signaling converge at transcription complexes that regulate plant innate immunity. Plant Signal Behav 5:1507–1601

    Google Scholar 

  • van den Burg HA, Tsitsigiannis DI, Rowland O, Lo J, Rallapalli G, Maclean D, Takken FL, Jones JD (2008) The F-box protein ACRE189/ACIF1 regulates cell death and defense responses activated during pathogen recognition in tobacco and tomato. Plant Cell 20:697–719

    PubMed  Google Scholar 

  • Van Loon LC, Rep M, Pieterse C (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    PubMed  Google Scholar 

  • Vierstra RD (2003) The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci 8:135–142

    PubMed  CAS  Google Scholar 

  • Vogel JP, Woeste KE, Theologis A, Kicher JJ (1998) Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. Proc Natl Acad Sci U S A 95:4766–4771

    PubMed  CAS  Google Scholar 

  • Vorwerk S, Schiff C, Santamaria M, Koh S, Nishimura M, Vogel J, Somerville C, Somerville S (2007) EDR2 negatively regulates salicylic acid-based defenses and cell death during powdery mildew infections of Arabidopsis thaliana. BMC Plant Biol 7:35

    PubMed  Google Scholar 

  • Wang X, Feng S, Nakayama N, Crosby WL, Irish V, Deng XW, Wei N (2003) The COP9 signalosome interacts with SCFUFO and participates in Arabidopsis flower development. Plant Cell 15:1071–1082

    PubMed  CAS  Google Scholar 

  • Wang D, Amonsiripanitch N, Dong X (2006) A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathog 2:e123

    PubMed  Google Scholar 

  • Wang Y, Gao M, Li Q, Wang L, Jeon J-S, Qu N, Zhang Y, He Z (2008) OsRAR1 and OsSGT1 physically interact and function in rice basal disease resistance. Mol Plant Microbe Interact 21:294–303

    PubMed  CAS  Google Scholar 

  • Wiermer M, Feys BJ, Parker JE (2005) Plant immunity: the EDS1 regulatory node. Curr Opin Plant Biol 8:383–389

    PubMed  CAS  Google Scholar 

  • Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280:1091–1094

    PubMed  CAS  Google Scholar 

  • Xing D, Chen Z (2006) Effects of mutations and constitutive overexpression of EDS1 and PAD4 on plant resistance to different types of microbial pathogens. Plant Sci 171:251–262

    CAS  Google Scholar 

  • Xu LH, Liu FQ, Wang ZL, Peng W, Huang RF, Huang RF, Huang DF, Xie DX (2001) An Arabidopsis mutant cex1 exhibits constant accumulation of jasmonate-regulated AtVSP, Thi2.1 and PDF1.2. FEBS Lett 494:161–164

    PubMed  CAS  Google Scholar 

  • Xu L, Liu F, Lechner E, Genschik P, Crosby WL, Ma H, Peng W, Huang D, Xie D (2002) The SCF(COI1) ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 14:1919–1935

    PubMed  CAS  Google Scholar 

  • Yamamoto S, Suzuki K, Shinshi H (1999) Elicitor-responsive, ethylene-independent activation of GCC box-mediated transcription that is regulated by both protein phosphorylation and dephosphorylation in cultured tobacco cells. Plant J 20:571–579

    PubMed  CAS  Google Scholar 

  • Yang X, Menon S, Lykke-Andersen K, Tsuge T, Di X, Wang X, Rodriguez-Suarez-Suarez RJ, Zhang H, Wei N (2002) The COP9 signalosome inhibits p27klp1 degradation and impedes G1-S phase progression via deneddylation of SCF Cul1. Curr Biol 12:667–672

    PubMed  CAS  Google Scholar 

  • Yang CW, Gonzalez-Lamothe R, Ewan RA, Rowland O, Yoshioka H, Shenton M, Ye H, O’Donnell E, Jones JD, Sadanandom A (2006) The E3 ubiquitin ligase activity of Arabidopsis PLANT U-BOX17 and its functional tobacco homolog ACRE276 are required for cell death and defense. Plant Cell 18:1084–1098

    PubMed  CAS  Google Scholar 

  • Yao T, Ndoja A (2012) Regulation of gene expression by the ubiquitin-proteasome system. Semin Cell Dev Biol 23:523–529

    PubMed  CAS  Google Scholar 

  • Yao C, Wu Y, Nie H, Tang D (2012) RPN1a, a 26S proteasome subunit, is required for innate immunity in Arabidopsis. Plant J 71:1015–1028

    PubMed  CAS  Google Scholar 

  • Zeng LR, Qu S, Bordeos A, Yang C, Baraoidan M, Yan H, Xie Q, Nahm BH, Leung H, Wang GL (2004) Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell 16:2795–2808

    PubMed  CAS  Google Scholar 

  • Zeng LR, Vega-Sanchez ME, Zhu T, Wang GL (2006) Ubiquitination-mediated protein degradation and modification: an emerging theme in plant-microbe interactions. Cell Res 16:413–426

    PubMed  CAS  Google Scholar 

  • Zhang Y, Goritschnig S, Dong X, Li X (2003) A gain of function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in suppressor of npr1-1, constitutive 1. Plant Cell 15:2636–2646

    PubMed  CAS  Google Scholar 

  • Zhang X, Wu Q, Ren J, Qian W, He S, Huang K, Yu XC, Gao Y, Huang P, An C (2012) Two novel RING-type ubiquitin ligases, RGLG4 and RGLG4, are essential for jasmonate-mediated responses in Arabidopsis. Plant Physiol 160:808–822

    PubMed  CAS  Google Scholar 

  • Zheng N, Wang P, Jeffrey PD, Pavletich NP (2000) Structure of a c-Cbi-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell 102:533–539

    PubMed  CAS  Google Scholar 

  • Zhou N, Tootle T, Tsui F, Klessig D, Glazebrook J (1998) PAD4 functions upstream from salicylic acid to control defense responses to Arabidopsis. Plant Cell 10:1021–1030

    PubMed  CAS  Google Scholar 

  • Zhou C, Zhang L, Duan J, Miki B, Wu K (2005) Histone deacetylase19 is involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis. Plant Cell 17:1196–1204

    PubMed  CAS  Google Scholar 

  • Zhou F, Mosher S, Tian M, Sassi G, Parker J, Klessig DF (2008) The Arabidopsis gain-of-function mutant ssi4 requires RAR1 and SGT1b differentially for defense activation and morphological alterations. Mol Plant Microbe Interact 21:40–49

    PubMed  CAS  Google Scholar 

  • Zhu Q, Wani G, Wang QE, El-mahdy M, Snapka RM, Wani AA (2005) Deubiquitination by proteasome is coordinated with substrate translocation for proteolysis in vivo. Exp Cell Res 307:436–451

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vidhyasekaran, P. (2014). Ubiquitin-Proteasome System-Mediated Protein Degradation in Defense Signaling. In: PAMP Signals in Plant Innate Immunity. Signaling and Communication in Plants, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7426-1_10

Download citation

Publish with us

Policies and ethics