Skip to main content

Mathematical Modeling of G Protein-Coupled Receptor Function: What Can We Learn from Empirical and Mechanistic Models?

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 796))

Abstract

Empirical and mechanistic models differ in their approaches to the analysis of pharmacological effect. Whereas the parameters of the former are not physical constants those of the latter embody the nature, often complex, of biology. Empirical models are exclusively used for curve fitting, merely to characterize the shape of the E/[A] curves. Mechanistic models, on the contrary, enable the examination of mechanistic hypotheses by parameter simulation. Regretfully, the many parameters that mechanistic models may include can represent a great difficulty for curve fitting, representing, thus, a challenge for computational method development. In the present study some empirical and mechanistic models are shown and the connections, which may appear in a number of cases between them, are analyzed from the curves they yield. It may be concluded that systematic and careful curve shape analysis can be extremely useful for the understanding of receptor function, ligand classification and drug discovery, thus providing a common language for the communication between pharmacologists and medicinal chemists.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AS3D:

asymmetric/symmetric three-state dimer receptor model

EA:

evolutionary algorithm

GPCR:

G protein-coupled receptor

References

  • Albizu L, Balestre MN, Breton C et al (2006) Probing the existence of G protein-coupled receptor dimers by positive and negative ligand-dependent cooperative binding. Mol Pharmacol 70:1783–1791

    Article  PubMed  CAS  Google Scholar 

  • Armstrong D, Strange PG (2001) Dopamine D2 receptor dimer formation: evidence from ligand binding. J Biol Chem 276:22621–22629

    Article  PubMed  CAS  Google Scholar 

  • Ashyraliyev M, Fomekong-Nanfack Y, Kaandorp JA, Blom JG (2009) Systems biology: parameter estimation for biochemical models. FEBS J 276:886–902

    Article  PubMed  CAS  Google Scholar 

  • Barlow R, Blake JF (1989) Hill coefficients and the logistic equation. Trends Pharmacol Sci 10:440–441

    Article  PubMed  CAS  Google Scholar 

  • Bayburt TH, Leitz AJ, Xie G, Oprian DD, Sligar SG (2007) Transducin activation by nanoscale lipid bilayers containing one and two rhodopsins. J Biol Chem 282:14875–14881

    Article  PubMed  CAS  Google Scholar 

  • Black JW, Leff P (1983) Operational models of pharmacological agonism. Proc R Soc Lond B Biol Sci 220:141–162

    Article  PubMed  CAS  Google Scholar 

  • Boeynaems JM, Dumont JE (1980) Outlines of receptor theory. Elsevier/North-Holland, Amsterdam, pp 73–75

    Google Scholar 

  • Bouvier M, Heveker N, Jockers R, Marullo S, Milligan G (2007) BRET analysis of GPCR oligomerization: newer does not mean better. Nat Methods 4:3–4

    Article  PubMed  CAS  Google Scholar 

  • Brea J, Castro M, Giraldo J et al (2009) Evidence for distinct antagonist-revealed functional states of 5-hydroxytryptamine(2A) receptor homodimers. Mol Pharmacol 75:1380–1391

    Article  PubMed  CAS  Google Scholar 

  • Cagnoni S, Lutton E, Olague G (2008) Genetic and evolutionary computation for image processing and analysis. Hindawi Publishing Corporation, New York

    Google Scholar 

  • Carrillo JJ, Lopez-Gimenez JF, Milligan G (2004) Multiple interactions between transmembrane helices generate the oligomeric alpha1b-adrenoceptor. Mol Pharmacol 66:1123–1137

    Article  PubMed  CAS  Google Scholar 

  • Chabre M, le Maire M (2005) Monomeric G-protein-coupled receptor as a functional unit. Biochemistry 44:9395–9403

    Article  PubMed  CAS  Google Scholar 

  • Chidiac P, Green MA, Pawagi AB, Wells JW (1997) Cardiac muscarinic receptors. Cooperativity as the basis for multiple states of affinity. Biochemistry 36:7361–7379

    Article  PubMed  CAS  Google Scholar 

  • Christopoulos A, Kenakin T (2002) G protein-coupled receptor allosterism and complexing. Pharmacol Rev 54:323–374

    Article  PubMed  CAS  Google Scholar 

  • Clarke WP, Bond RA (1998) The elusive nature of intrinsic efficacy. Trends Pharmacol Sci 19:270–276

    Article  PubMed  CAS  Google Scholar 

  • Colquhoun D (1971) Lectures on biostatistics. Oxford University Press, London, pp 361–364

    Google Scholar 

  • Colquhoun D (1973) The relationship between classical and cooperative models for drug action. In: Rang HP (ed) A symposium on drug receptors. University Park Press, Baltimore, pp 149–182

    Google Scholar 

  • Costa T, Herz A (1989) Antagonists with negative intrinsic activity at delta opioid receptors coupled to GTP-binding proteins. Proc Natl Acad Sci U S A 86:7321–7325

    Article  PubMed  CAS  Google Scholar 

  • Damian M, Martin A, Mesnier D, Pin JP, Baneres JL (2006) Asymmetric conformational changes in a GPCR dimer controlled by G-proteins. EMBO J 25:5693–5702

    Article  PubMed  CAS  Google Scholar 

  • De Lean A, Stadel JM, Lefkowitz RJ (1980) A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled β-adrenergic receptor. J Biol Chem 255:7108–7117

    PubMed  Google Scholar 

  • del Castillo J, Katz B (1957) Interaction at end-plate receptors between different choline derivatives. Proc R Soc Lond B 146:369–381

    Article  Google Scholar 

  • Ernst OP, Gramse V, Kolbe M, Hofmann KP, Heck M (2007) Monomeric G protein-coupled receptor rhodopsin in solution activates its G protein transducin at the diffusion limit. Proc Natl Acad Sci U S A 104:10859–10864

    Article  PubMed  CAS  Google Scholar 

  • Ferre S, Woods AS, Navarro G, Aymerich M, Lluis C, Franco R (2010) Calcium-mediated modulation of the quaternary structure and function of adenosine A2A-dopamine D2 receptor heteromers. Curr Opin Pharmacol 10:67–72

    Article  PubMed  CAS  Google Scholar 

  • Franco R, Casadó V, Mallol J et al (2005) Dimer-based model for heptaspanning membrane receptors. Trends Biochem Sci 30:360–366

    Article  PubMed  CAS  Google Scholar 

  • Franco R, Casadó V, Mallol J et al (2006) The two-state dimer receptor model: a general model for receptor dimers. Mol Pharmacol 69:1905–1912

    Article  PubMed  CAS  Google Scholar 

  • Galandrin S, Bouvier M (2006) Distinct signaling profiles of beta1 and beta2 adrenergic receptor ligands toward adenylyl cyclase and mitogen-activated protein kinase reveals the pluridimensionality of efficacy. Mol Pharmacol 70:1575–1584

    Article  PubMed  CAS  Google Scholar 

  • Giraldo J (2003) Empirical models and Hill coefficients. Trends Pharmacol Sci 24:63–65

    Article  PubMed  CAS  Google Scholar 

  • Giraldo J (2004) Agonist induction, conformational selection, and mutant receptors. FEBS Lett 556:13–18

    Article  PubMed  CAS  Google Scholar 

  • Giraldo J (2008) On the fitting of binding data when receptor dimerization is suspected. Br J Pharmacol 155:17–23

    Article  PubMed  CAS  Google Scholar 

  • Giraldo J (2010) How inverse can a neutral antagonist be? Strategic questions after the rimonabant issue. Drug Discov Today 15:411–415

    Article  PubMed  CAS  Google Scholar 

  • Giraldo J, Vivas NM, Vila E, Badia A (2002) Assessing the (a)symmetry of concentration-effect curves: empirical versus mechanistic models. Pharmacol Ther 95:21–45

    Article  PubMed  CAS  Google Scholar 

  • Giraldo J, Serra J, Roche D, Rovira X (2007) Assessing receptor affinity for inverse agonists: Schild and Cheng-Prusoff methods revisited. Curr Drug Targets 8:197–202

    Article  PubMed  CAS  Google Scholar 

  • Gompertz B (1825) On the nature of the function expressive of the law of human mortality. Philos Trans R Soc Lond 36:513–585

    Google Scholar 

  • Goudet C, Kniazeff J, Hlavackova V et al (2005) Asymmetric functioning of dimeric metabotropic glutamate receptors disclosed by positive allosteric modulators. J Biol Chem 280:24380–24385

    Article  PubMed  CAS  Google Scholar 

  • Hall DA (2006) Predicting dose-response curve behavior: mathematical models of allosteric receptor-ligand interactions. In: Bowery NG (ed) Allosteric receptor modulation in drug targeting. Taylor & Francis, New York, pp 39–77

    Chapter  Google Scholar 

  • Han Y, Moreira IS, Urizar E, Weinstein H, Javitch JA (2009) Allosteric communication between protomers of dopamine class A GPCR dimers modulates activation. Nat Chem Biol 5:688–695

    Article  PubMed  CAS  Google Scholar 

  • Hill AV (1913) The combinations of haemoglobin with oxygen and with carbon monoxide. Biochem J 7:471–480

    PubMed  CAS  Google Scholar 

  • Hlavackova V, Goudet C, Kniazeff J et al (2005) Evidence for a single heptahelical domain being turned on upon activation of a dimeric GPCR. EMBO J 24: 499–509

    Article  PubMed  CAS  Google Scholar 

  • Holland JH (1975) Adaptation in natural and artificial systems. University Michigan Press, Ann Arbor

    Google Scholar 

  • James JR, Oliveira MI, Carmo AM, Iaboni A, Davis SJ (2006) A rigorous experimental framework for detecting protein oligomerization using bioluminescence resonance energy transfer. Nat Methods 3:1001–1006

    Article  PubMed  CAS  Google Scholar 

  • Jastrzebska B, Maeda T, Zhu L et al (2004) Functional characterization of rhodopsin monomers and dimers in detergents. J Biol Chem 279:54663–54675

    Article  PubMed  CAS  Google Scholar 

  • Jastrzebska B, Fotiadis D, Jang GF, Stenkamp RE, Engel A, Palczewski K (2006) Functional and structural characterization of rhodopsin oligomers. J Biol Chem 281:11917–11922

    Article  PubMed  CAS  Google Scholar 

  • Karlin A (1967) On the application of “a plausible model” of allosteric proteins to the receptor for acetylcholine. J Theor Biol 16:306–320

    Article  PubMed  CAS  Google Scholar 

  • Kenakin T (2002) Drug efficacy at G protein-coupled receptors. Annu Rev Pharmacol Toxicol 42:349–379

    Article  PubMed  CAS  Google Scholar 

  • Kenakin T (2007) Collateral efficacy in drug discovery: taking advantage of the good (allosteric) nature of 7TM receptors. Trends Pharmacol Sci 28:407–415

    Article  PubMed  CAS  Google Scholar 

  • Kenakin T, Watson C, Muniz-Medina V, Christopoulos A, Novick S (2012) A simple method for quantifying functional selectivity and agonist bias. ACS Chem Neurosci 3:193–203

    Article  PubMed  CAS  Google Scholar 

  • Kjelsberg MA, Cotecchia S, Ostrowski J, Caron MG, Lefkowitz RJ (1992) Constitutive activation of the alpha 1B-adrenergic receptor by all amino acid substitutions at a single site. Evidence for a region which constrains receptor activation. J Biol Chem 267: 1430–1433

    PubMed  CAS  Google Scholar 

  • Kobilka BK, Deupi X (2007) Conformational complexity of G-protein-coupled receptors. Trends Pharmacol Sci 28:397–406

    Article  PubMed  CAS  Google Scholar 

  • Kuszak AJ, Pitchiaya S, Anand JP, Mosberg HI, Walter NG, Sunahara RK (2009) Purification and functional reconstitution of monomeric mu-opioid receptors: allosteric modulation of agonist binding by Gi2. J Biol Chem. doi:10.1074/jbc.M109.026922

    PubMed  Google Scholar 

  • Leff P (1995) The two-state model of receptor activation. Trends Pharmacol Sci 16:89–97

    Article  PubMed  CAS  Google Scholar 

  • Leff P, Scaramellini C, Law C, McKechnie K (1997) A three-state receptor model of agonist action. Trends Pharmacol Sci 18:355–362

    PubMed  CAS  Google Scholar 

  • Lohse MJ (2010) Dimerization in GPCR mobility and signaling. Curr Opin Pharmacol 10:53–58

    Article  PubMed  CAS  Google Scholar 

  • Mailman RB (2007) GPCR functional selectivity has therapeutic impact. Trends Pharmacol Sci 28: 390–396

    Article  PubMed  CAS  Google Scholar 

  • Mancia F, Assur Z, Herman AG, Siegel R, Hendrickson WA (2008) Ligand sensitivity in dimeric associations of the serotonin 5HT2c receptor. EMBO Rep 9:363–369

    Article  PubMed  CAS  Google Scholar 

  • Meyer BH, Segura JM, Martinez KL et al (2006) FRET imaging reveals that functional neurokinin-1 receptors are monomeric and reside in membrane microdomains of live cells. Proc Natl Acad Sci U S A 103:2138–2143

    Article  PubMed  CAS  Google Scholar 

  • Milligan G (2004) G protein-coupled receptor dimerization: function and ligand pharmacology. Mol Pharmacol 66:1–7

    Article  PubMed  CAS  Google Scholar 

  • Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88–118

    Article  PubMed  CAS  Google Scholar 

  • Perez DM, Karnik SS (2005) Multiple signaling states of G-protein-coupled receptors. Pharmacol Rev 57:147–161

    Article  PubMed  CAS  Google Scholar 

  • Pin JP, Kniazeff J, Binet V et al (2004) Activation mechanism of the heterodimeric GABA(B) receptor. Biochem Pharmacol 68:1565–1572

    Article  PubMed  CAS  Google Scholar 

  • Pin JP, Neubig R, Bouvier M et al (2007) International Union of Basic and Clinical Pharmacology. LXVII. Recommendations for the recognition and nomenclature of G protein-coupled receptor heteromultimers. Pharmacol Rev 59:5–13

    Article  PubMed  CAS  Google Scholar 

  • Rajagopal S, Rajagopal K, Lefkowitz RJ (2010) Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat Rev Drug Discov 9:373–386

    Article  PubMed  CAS  Google Scholar 

  • Rajagopal S, Ahn S, Rominger DH et al (2011) Quantifying ligand bias at seven-transmembrane receptors. Mol Pharmacol 80:367–377

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen SG, DeVree BT, Zou Y et al (2011) Crystal structure of the beta(2) adrenergic receptor-Gs protein complex. Nature 477:549–557

    Article  PubMed  CAS  Google Scholar 

  • Ravikumar V, Panigrahi BK (2010) Comparative study of evolutionary computing methods for parameter estimation of quality signals. Int J Appl Evol Comput 1:28–59

    Article  Google Scholar 

  • Reiter E, Ahn S, Shukla AK, Lefkowitz RJ (2012) Molecular mechanism of β-arrestin-biased agonism at seven-transmembrane receptors. Annu Rev Pharmacol Toxicol 52:179–197

    Article  PubMed  CAS  Google Scholar 

  • Richards FJ (1959) A flexible growth function for empirical use. J Exp Bot 10:290–300

    Article  Google Scholar 

  • Rios CD, Jordan BA, Gomes I, Devi LA (2001) G-protein-coupled receptor dimerization: modulation of receptor function. Pharmacol Ther 92:71–87

    Article  PubMed  CAS  Google Scholar 

  • Rizki MM, Zmuda MA, Tamburino LA (2002) Evolving pattern recognition systems. IEEE Trans Evol Comput 6:594–609

    Article  Google Scholar 

  • Rovira X, Vivo M, Serra J, Roche D, Strange PG, Giraldo J (2009) Modelling the interdependence between the stoichiometry of receptor oligomerization and ligand binding for a coexisting dimer/tetramer receptor system. Br J Pharmacol 156:28–35

    Article  PubMed  CAS  Google Scholar 

  • Rovira X, Pin JP, Giraldo J (2010) The asymmetric/symmetric activation of GPCR dimers as a possible mechanistic rationale for multiple signalling pathways. Trends Pharmacol Sci 31:15–21

    Article  PubMed  CAS  Google Scholar 

  • Samama P, Cotecchia S, Costa T, Lefkowitz RJ (1993) A mutation-induced activated state of the β2-adrenergic receptor. Extending the ternary complex model. J Biol Chem 268:4625–4636

    PubMed  CAS  Google Scholar 

  • Sips R (1948) On the structure of a catalyst surface. J Chem Phys 16:490–495

    Article  CAS  Google Scholar 

  • Sips R (1950) On the structure of a catalyst surface. II. J Chem Phys 18:1024–1026

    Article  CAS  Google Scholar 

  • Slack R, Hall D (2012) Development of operational models of receptor activation including constitutive receptor activity and their use to determine the efficacy of the chemokine CCL17 at the CC chemokine receptor CCR4. Br J Pharmacol 166:1774–1792

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, McGarrigle D, Huang XY (2007) When a G protein-coupled receptor does not couple to a G protein. Mol Biosyst 3:849–854

    Article  PubMed  CAS  Google Scholar 

  • Terrillon S, Bouvier M (2004) Roles of G-protein-coupled receptor dimerization. EMBO J 5:30–34

    Article  CAS  Google Scholar 

  • Thron CD (1973) On the analysis of pharmacological experiments in terms of an allosteric receptor model. Mol Pharmacol 9:1–9

    PubMed  CAS  Google Scholar 

  • Urban JD, Clarke WP, von Zastrow M et al (2006) Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther 320:1–13

    Article  PubMed  Google Scholar 

  • Urizar E, Montanelli L, Loy T et al (2005) Glycoprotein hormone receptors: link between receptor homodimerization and negative cooperativity. EMBO J 24:1954–1964

    Article  PubMed  CAS  Google Scholar 

  • Van Der Graaf PH, Schoemaker RC (1999) Analysis of asymmetry of agonist concentration-effect curves. J Pharmacol Toxicol Methods 41:107–115

    Article  PubMed  Google Scholar 

  • Violin JD, Lefkowitz RJ (2007) Beta-arrestin-biased ligands at seven-transmembrane receptors. Trends Pharmacol Sci 28:416–422

    Article  PubMed  CAS  Google Scholar 

  • Wells JW (1992) Analysis and interpretation of binding at equilibrium. In: Hulme EC (ed) Receptor-ligand interactions. A practical approach. Oxford University Press, Oxford, pp 289–395

    Google Scholar 

  • White JF, Grodnitzky J, Louis JM et al (2007) Dimerization of the class A G protein-coupled neurotensin receptor NTS1 alters G protein interaction. Proc Natl Acad Sci U S A 104:12199–12204

    Article  PubMed  CAS  Google Scholar 

  • Whorton MR, Bokoch MP, Rasmussen SG et al (2007) A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. Proc Natl Acad Sci U S A 104:7682–7687

    Article  PubMed  CAS  Google Scholar 

  • Whorton MR, Jastrzebska B, Park PS et al (2008) Efficient coupling of transducin to monomeric rhodopsin in a phospholipid bilayer. J Biol Chem 283:4387–4394

    Article  PubMed  CAS  Google Scholar 

  • Wreggett KA, Wells JW (1995) Cooperativity manifest in the binding properties of purified cardiac muscarinic receptors. J Biol Chem 270:22488–22499

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Staszewski L, Tang H, Adler E, Zoller M, Li X (2004) Different functional roles of T1R subunits in the heteromeric taste receptors. Proc Natl Acad Sci U S A 101:14258–14263

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish projects SAF2010-19257, TIN2009-13618, TIN2012-33116, Fundació La Marató de TV3 (110230) and RecerCaixa 2010ACUP 00378. The 2nd author has been supported by the Ramón y Cajal Program of the Spanish Ministry of Economy and Competitiveness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Giraldo .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Fitting Mathematical Models to Experimental Data

In a pharmacological assay, the input agonist concentration, [A], and its associated output effect, E, are recorded under particular experimental conditions. Experimental data are given by a list of varying effects, Ei, i = 1,…,N, obtained using different agonist concentrations, [A]i, i = 1,…,N. A mathematical model of pharmacological effect is a mathematical equation E = f([A]), in which E represents the pharmacological effect, [A] is the concentration of the drug and f is a mathematical function containing a number of parameters.

The problem of fitting a mathematical model to a given experimental data list consists in finding the model parameters that produce the function E = f([A]) best approximating the experimental pairs ([A]i , Ei), i = 1,…N in the sense that the model values are as close as possible to the experimental measurements. In other words, the differences |f([A]i)-Ei| are as small as possible. In mathematical terms this is expressed in the following sum of squares which exclusively depends on the values of the model parameters:

$$ \mathrm{Energy}(\mathrm{Parameters})={{\sum\limits_{{\mathrm{i}=1}}^{\mathrm{N}} {\left| {\mathrm{f}\left( {{{{\left[ \mathrm{A} \right]}}_{\mathrm{i}}}} \right)-{{\mathrm{E}}_{\mathrm{i}}}} \right|^{2}}}} $$
(8.14)

which should be minimum for the optimal model parametric values (least squares fitting). We would like to note that such set of optimal parameters produce a curve that visually fits the profile of the scatter plot given by the experimental pairs ([A]i, Ei), i = 1,…N.

In the case of pharmacological models, the dependency between the concentration and the effect given by E = f([A]) is non-linear with respect the model parameters and, thus, Eq. 8.14 is known as non-linear regression.

1.2 Traditional Gradient-Based Nonlinear Regression Algorithms Versus Stochastic Approaches

Given that the best set of parameter estimates must be a minimum of the energy given by Eq. 8.14, they can be found by means of optimization techniques. There are two main families of optimization strategies: local and global.

Local approaches search for the closest local minimum given an initial seed point. They mainly rely on the gradient of the function to be minimized and update the initial guess using the direction of this gradient because is the direction of maximum decrease of the energy (gradient descent). Gradient descent methods are efficient minimizers as far as the energy function can be differentiated with respect the parameters (which is always the case in a least squares fitting of pharmacological models) and they provide an optimal solution as far as the energy function is convex (i.e. has a unique local minimum). In the case of multiple minima (which is a typical case for mechanistic pharmacological models), the gradient descent strongly depends on the initial seed. This limitation can be partially overcome by running the gradient descent algorithm using different initial seed points. This solution has two main shortcomings. First it increases the computational time of the minimization process and, second, given that there is no a-priory knowledge on the number and distribution of the local minima, there is not a clear strategy for choosing an initial set of seeds guaranteeing that the optimal solution (global minimum) will be reached.

Global approaches are a way of searching for global optimal solutions (global minimum) without the need of a special definition of the initial set of seeds. For special search spaces and cost functions, there is a solid mathematical theory ensuring convergence of some global algorithms (simulated annealing (Ashyraliyev et al. 2009)). Although, there is no proof of convergence for the general case. Evolutionary Algorithms (EAs) have proven their ability for optimizing non-analytic multi-modal functions in a wide range of real life problems, such as parameter estimation (Ravikumar and Panigrahi 2010), pattern and text recognition (Rizki et al. 2002) and image processing (Cagnoni et al. 2008). EAs are a class of stochastic optimization methods that simulate the process of natural evolution. Unlike gradient descent methods that evolve a single initial value each time, EAs maintain a population of possible solutions that evolve according to rules of selection and other operators, such as recombination and mutation (Holland 1975).

Each individual in the population receives a measure of its fitness in the environment. Selection focuses attention on high fitness individuals, thus, exploiting the available fitness information. Selection determines which individuals are chosen to produce offsprings. Recombination and mutation perturb those individuals, providing general heuristics for exploration. Recombination produces new individuals in combining the information contained in the parents and offsprings are mutated by small perturbations with low probability. Finally, survival step decides who survives (among parents and offsprings) to form the new population. This process iterates until stop criterion occurs. Figure 8.8 outlines the scheme of a standard EA.

Fig. 8.8
figure 8

Scheme of the mechanisms ruling an Evolutionary Algorithm (EA). EAs maintain a population of possible solutions and their fitness on the search space. In each iteration, selection determines which individuals are chosen to produce new solutions (exploitation). Recombination and mutation combine and perturb the individuals (exploration). Finally, the survival step decides who survives in the new population. This process iterates until the stop criterion occurs

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Roche, D., Gil, D., Giraldo, J. (2014). Mathematical Modeling of G Protein-Coupled Receptor Function: What Can We Learn from Empirical and Mechanistic Models?. In: Filizola, M. (eds) G Protein-Coupled Receptors - Modeling and Simulation. Advances in Experimental Medicine and Biology, vol 796. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7423-0_8

Download citation

Publish with us

Policies and ethics