Skip to main content

Accelerated Aging Tests for Marine Energy Applications

  • Chapter
  • First Online:
Durability of Composites in a Marine Environment

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 208))

Abstract

Polymer matrix fibre reinforced composites have been employed in marine applications for over 50 years, and there is considerable experience of their long term behaviour. However, the recent development of systems designed to recover ocean energy, such as tidal turbines and wave energy generators, imposes much more severe constraints on materials than traditional structures. The requirements in terms of sea water aging and fatigue resistance require specific test programmes; this presentation will describe some of these applications and the tests needed to guarantee long term behavior of composites for these structures. Some results from studies performed in this area at Ifremer over the last 5 years will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. European Science Foundation (2010) Marine Board, Vision Document, Oct 2010

    Google Scholar 

  2. Bahaj AS (2011) Generating electricity from the oceans. Ren Sust Energy Reviews 15:3399–3416

    Article  Google Scholar 

  3. Renewables UK (2013) Wave and tidal energy in the UK, Feb

    Google Scholar 

  4. Fraenkel P (2010).In: Proceedings—Fluid Machinery Group—Ocean Power Fluid Machinery Seminar, Institution of Mechanical Engineers—19th Oct 2010, London

    Google Scholar 

  5. Renewable Energy Focus (2010) OpenHydro tidal turbine recovered—blades missing, Dec 2010http://www.renewableenergyfocus.com

  6. Smith CS (1990) Design of marine structures in composite materials. Elsevier Science, Publishers, London

    Google Scholar 

  7. Davies P, Lemoine L, (1992) Nautical applications of composite materials. Proceedings 3rd IFREMER Conference, Paris, France

    Google Scholar 

  8. Shenoi RA, Wellicome JF (eds) (2008) Composites in maritime structures. Cambridge University Press, Cambridge

    Google Scholar 

  9. Springer GS (ed) (1981) Environmental effects on composite materials, Technomic

    Google Scholar 

  10. Martin R (ed) (2008) Aging of Composites. Woodhead Publishing, Cambridge

    Google Scholar 

  11. Weitsman YJ (1991) Moisture in composites. In: Reifsnider KL (ed) Fatigue of composites. Elsevier, Netherland, pp 385–429

    Google Scholar 

  12. Weitsman YJ (2012) Fluid effects in polymers and polymeric composites. Springer, New York

    Google Scholar 

  13. Davies P, Mazeas F, Casari P et al (2001) Sea water aging of glass reinforced composites: shear behaviour and damage modelling. J Compos Mater 35(15):1343–1372

    Google Scholar 

  14. Charles RJ (1958) Static fatigue of glass I. J Appl Physics 29(11):1549–1560

    Article  Google Scholar 

  15. Price JN, Hull D (1983) Propagation of stress corrosion cracks in aligned glass fibre composite materials. J Mat Sci 18:2798–2810

    Article  Google Scholar 

  16. Pritchard G, Speake SD (1988) Effects of temperature on stress-rupture times in glass/polyester laminates. Composites 19(1):29–35

    Article  Google Scholar 

  17. Gaurier B, Davies P, Deuff A, Germain G (2013) Flume tank characterization of marine current turbine blade behaviour under wave and current loading. Renew Energy 59:1–12

    Article  Google Scholar 

  18. Harris B (ed) (2003) Fatigue in composites. Woodhead Publishers, Cambridge

    Google Scholar 

  19. Echtermeyer AT, Kensche C, Bach P, Poppen M, Lilholt H, Andersen SI et al (1996) Method to predict fatigue lifetimes of GRP wind turbine blades and comparison with experiments. In: Proceedings of European union wind energy conference. Göteborg, Sweden, 20–24 May 1996

    Google Scholar 

  20. Nijssen RPL, vanWingerde AM, vanDelft DRV (2007) Wind turbine rotor blade materials: estimating service lives. SAMPE J 43(2):7–15

    Google Scholar 

  21. Selvarathinam AS, Weitsman YJ (1998) Transverse cracking and delamination in cross-ply Gr/Ep composites under dry, saturated and immersed fatigue. Int J Fract 91(2):103–116

    Article  Google Scholar 

  22. Selvarathinam AS, Weitsman YJ (1999) A shear-lag analysis of transverse cracking and delamination in cross-ply carbon-fibre/epoxy composites under dry, saturated and immersed fatigue conditions. Comp Sci and Technol 59(14):2115–2123

    Article  Google Scholar 

  23. Vauthier E, Abry JC, Bailliez T, Chateauminois A (1998) Interactions between hygrothermal ageing and fatigue damage in unidirectional glass/epoxy composites. Compos Sci Technol 58:687–692

    Article  Google Scholar 

  24. Pauchard V, Chateauminois A, Grosjean F, Odru P (2002) In situ analysis of delayed fibre failure within water-aged GFRP under static fatigue conditions. Int J Fatigue 24:447–454

    Article  Google Scholar 

  25. Kotsikos G, Evans J, Gibson A, Hale J (2000) Environmentally enhanced fatigue damage in glass fibre reinforced composites characterised by acoustic emission. Comp. Part A 31(9):969–977

    Article  Google Scholar 

  26. Poodts E, Minak G, Zucchelli A (2013) Impact of seawater on the quasi static and fatigue flexural properties of GFRP. Compos Struct 97:222–230

    Article  Google Scholar 

  27. McBagonluri F, Garcia K, Hayes M, Verghese KNE, Lesko JJ (2000) Characterization of fatigue and combined environment on durability performance of glass/vinyl ester composite for infrastructure applications. Int J Fatigue 22:53–64

    Article  Google Scholar 

  28. Mandell JF (1978) Fatigue behavior of fiber-resin composites. In: Pritchard G (ed) Developments in reinforced plastics 2. Applied Sciences Publisher, London

    Google Scholar 

  29. Neumann S, Marom G (1987) Prediction of moisture diffusion parameters in composite materials under stress. J Comp Mats 21(1):68–80

    Article  Google Scholar 

  30. Suri C (1995) Study of the coupling of absorption and damage phenomena in a glass-epoxy composite, PhD thesis (in French). University of Franche Comté

    Google Scholar 

  31. Perreux D, Suri C (1997) A study of the coupling between the phenomena of water absorption and damage in glass/epoxy composite pipes. Comp Sci Tech 57(9–10):1403–1413

    Article  Google Scholar 

  32. Davies P, Choqueuse D (2008) Ageing of composites in marine vessels, chapter 12 in Ref. [10]

    Google Scholar 

  33. Choqueuse D, Davies P (2008) Ageing of composites in underwater applications, chapter 18 in Ref. [10]

    Google Scholar 

  34. Boisseau A (2011) Long term durability of composites for ocean energy conversion systems, PhD thesis. Available at: http://archimer.ifremer.fr/doc/00031/14247/

  35. Boisseau A, Davies P, Thiebaud F (2012) Sea water ageing of composites for ocean energy conversion systems: influence of glass fibre type on static behaviour. Appl Compos Mater 19:459–473

    Article  Google Scholar 

  36. Boisseau A, Davies P, Thiebaud F et al (2013) Fatigue behavior, of glass fibre reinforced composites for ocean energy conversion systems. Appl Compos Mater 20(2):145–155

    Article  Google Scholar 

  37. Davies P, Germain G, Gaurier B, Boisseau A, Perreux D (2013) Evaluation of the durability of composite tidal turbine blades. Roy Soc Philos Trans A 371

    Google Scholar 

  38. DNV, Offshore standard on composite components, DNV-OS-C501, Oct 2010

    Google Scholar 

  39. Lloyd G (2012) Guideline for the certification of ocean energy converters, part 1. Ocean Current turbines

    Google Scholar 

  40. Bordes M, Davies P, Cognard J-Y, Sohier L, Sauvant-Moynot V, Galy J (2009) Prediction of long term strength of adhesively bonded steel/epoxy joints in sea water. Int J Adhes Adhes 29(6):595–608

    Article  Google Scholar 

  41. Leger R, Roy A, Grandidier JC (2013) A study of the impact of humid aging on the strength of industrial adhesive joints. Int J Adhes and Adhes 44:66–77

    Article  Google Scholar 

  42. Blommaert C, van Paepegem et al. (2010) Large scale slamming tests on composite buoys for wave energy applications. In: Proceedings of 17th international conference on composite materials, (ICCM17). Edinburgh, 2010

    Google Scholar 

  43. Jean P, Wattez A, Ardoise G, Melis C, van Kessel R, Fourmon A, Barrabino E, Heemskerk J, Queau JP (2012) Standing wave tube electro active polymer wave energy converter. In: Proceedings of SPIE smart structures and materials conference, San Diego, Mar 2012

    Google Scholar 

  44. Weller S, Davies P, Thies P, Johanning L (2012) Durability of synthetic mooring lines for ocean energy devices. In: Proceedings of 4th international conference on ocean energy (ICOE), Dublin, Oct 2012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Davies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Davies, P. (2014). Accelerated Aging Tests for Marine Energy Applications. In: Davies, P., Rajapakse, Y. (eds) Durability of Composites in a Marine Environment. Solid Mechanics and Its Applications, vol 208. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7417-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7417-9_8

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7416-2

  • Online ISBN: 978-94-007-7417-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics