Skip to main content

Durability of Composites in the Marine Environment

  • Chapter
  • First Online:
Durability of Composites in a Marine Environment

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 208))

Abstract

This chapter presents an overview of key considerations for the successful application of fibre reinforced composites in the marine environment. It is intended to complement and update an earlier text Searle and Summerscales (Effect of Water Absorption on Time–Temperature Dependent Strength of Unidirectional CFRP). After consideration of factors affecting the environmental resistance of conventional composites, the potential for natural fibre reinforced polymer composites is briefly discussed. Finally it is argued that Quantitative Life Cycle Assessment is essential to establish the “sustainability” of any system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pritchard G (1999) Reinforced plastics durability. Woodhead Publishing, Cambridge. ISBN: 1 85573 320 X

    Google Scholar 

  2. Harris B (2003) Fatigue in composites: science and technology of the fatigue response of fibre-reinforced plastics. Woodhead Publishing, Cambridge. ISBN: 978 1 85573 608 5

    Google Scholar 

  3. Martin R (2008) Ageing of composites. Woodhead Publishing, Cambridge. ISBN: 1 84569 352 3

    Google Scholar 

  4. Searle TJ, Summerscales J (1999) Review of the durability of marine laminates, chapter 7. In Pritchard G (1999) Reinforced plastics durability. Woodhead Publishing, Cambridge. ISBN: 1 85573 320 X, pp 219–266

    Google Scholar 

  5. Davies P, Choqueuse D, Roy A (2003) Fatigue and durability of marine composites, chapter 27. In: Harris B (2003) Fatigue in composites: science and technology of the fatigue response of fibre-reinforced plastics. Woodhead Publishing, Cambridge. ISBN: 978 1 85573 608 5, pp 709–729

    Google Scholar 

  6. Davies P, Choqueuse D (2008) Ageing of composites in marine vessels, chapter 12. In Martin R (2008) Ageing of composites. Woodhead Publishing, Cambridge. ISBN: 1 84569 352 3, pp 326–353

    Google Scholar 

  7. Choqueuse D, Davies P (2008) Ageing of composites in underwater applications, chapter 18. In Martin R (2008) Ageing of composites. Woodhead Publishing, Cambridge. ISBN: 1 84569 352 3, pp 467–517

    Google Scholar 

  8. Davies P, Choqueuse D, Devaux H (2012) Failure of polymer matrix composites in marine and off-shore applications, chapter 10. In: Robinson P, Greenhalgh E, Pinho S (eds) Failure mechanisms in polymer matrix composites: criteria, testing and industrial applications. Woodhead Publishing, Cambridge. ISBN: 987 1 84569 750 1, pp 300–336

    Google Scholar 

  9. Verdu J, Colin X (2012) Humid aging of polymers and organic matrix composites, Ifremer-ONR Workshop on the Durability of composites in a marine environment, Nantes, pp 27–33 of the abstracts book

    Google Scholar 

  10. Derrien K, Gilormini P (2009) The effect of moisture-induced swelling on the absorption capacity of transversely isotropic elastic polymer-matrix composites. Int J Solids Struct 46(6):1547–1553

    Google Scholar 

  11. Jacquemin F, Fréour S (2012) Water-mechanical property coupling, Ifremer-ONR Workshop on the durability of composites in a marine environment. Nantes, pp 41–46 of the abstracts book

    Google Scholar 

  12. Nakada M, Miyano Y (2012), Accelerated testing methodology for long term durability of CFRP, Ifremer-ONR Workshop on the Durability of composites in a marine environment, Nantes, pp 47–52 of the abstracts book

    Google Scholar 

  13. Perreux D (2012) Life prediction of composite materials under complex loading, Ifremer-ONR workshop on the durability of composites in a marine environment, Nantes, pp 75–80 of the abstracts book

    Google Scholar 

  14. Summerscales J (1994) Non-destructive measurement of the moisture content in fibre-reinforced plastics. Br J Nondestr Test 36(2):64–72

    Google Scholar 

  15. ISO 13003:2003 International standard: fibre-reinforced plastics: determination of fatigue properties under cyclic loading conditions. BSI Group, London

    Google Scholar 

  16. Basquin OH (1910) The exponential law of endurance tests. Proc Am Soc Test Mater 10(2):625–630

    Google Scholar 

  17. Stinchcomb WW, Reifsnider KL (1979) Fatigue damage mechanisms in composite materials: a review, ASTM STP675 Fatigue Mechanisms, American Society for Testing and Materials, pp 762–787

    Google Scholar 

  18. Post NL, Case SW, Lesko JJ (2008) Modeling the variable amplitude fatigue of composite materials: a review and evaluation of the state of the art for spectrum loading. Int J Fatigue 30(12):2064–2086

    Google Scholar 

  19. Passipoularidis VA, Philippidis TP (2009) A study of factors affecting life prediction of composites under spectrum loading. Int J Fatigue 31(3):408–417

    Google Scholar 

  20. Vassilopoulos AP, Manshadi BD, Keller T (2010) Influence of the constant life diagram formulation on the fatigue life prediction of composite materials. Int J Fatigue 32(4):659–669

    Google Scholar 

  21. Qian P-Y, Xu Y, Fusetani N (2010) Natural products as antifouling compounds: recent progress and future perspectives. Biofouling: J Bioadhesion Biofilm Res 26(2):223–234

    Google Scholar 

  22. Hoare C, Thompson RC (1997) Microscopic plastic: a shore thing. Mar Conserv 3(11):4

    Google Scholar 

  23. Thompson RC, Olsen Y, Mitchell RP, Davis A, Rowland SJ, John AWG, McGonigle D, Russell AE (2004) Lost at sea: where does all the plastic go? Science 304(5672):838

    Google Scholar 

  24. Thompson R, Moore C, Andrady A, Gregory M, Takada H, Weisberg S (2005) Letter: new directions in plastic debris. Science 310(5751):1117

    Google Scholar 

  25. Genzer J, Efimenko K (2006) Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review. Biofouling: J Bioadhesion Biofilm Res 22(5):339–360

    Google Scholar 

  26. Pérez-Roa RE, Anderson MA, Rittschof D, Orihuela B, Wendt D, Kowalke GL, Noguera DR (2008) Inhibition of barnacle (Amphibalanus amphitrite) cyprid settlement by means of localized, pulsed electric fields. Biofouling: J Bioadhesion Biofilm Res 24(3):177–184

    Google Scholar 

  27. Liedert R, Kesel AB (2005) Biomimetic fouling control using microstructured surfaces, Bionics: innovations inspired by nature SEB annual meeting, society for experimental biology, Barcelona. Poster paper

    Google Scholar 

  28. Kesel A, Liedert R (2006) Antifouling nach biologischem Vorbild, Hochschule Bremen Forschungsbericht 2006, pp 107–108

    Google Scholar 

  29. Ralston E, Swain G (2009) Bioinspiration—the solution for biofouling control? Bioinspiration Biomimetics 4(1):015007

    Google Scholar 

  30. Scardino AJ, de Nys R (2011) Mini review: biomimetic models and bioinspired surfaces for fouling control. Biofouling: J Bioadhesion Biofilm Res 27(1):73–86

    Google Scholar 

  31. Sullivan T, Regan F (2011) The characterization, replication and testing of dermal denticles of Scyliorhinus canicula for physical mechanisms of biofouling prevention. Bioinspiration Biomimetics 6(4):046001

    Google Scholar 

  32. Schumacher JF, Aldred N, Callow ME, Finlay JA, Callow JA, Clare AS, Brennan AB (2007) Species specific engineered antifouling topologies: correlations between the settlement of algal zoospores and barnacle cyprids. Biofouling Bioadhesion Biofilm Res 23(5–6):307–317

    Google Scholar 

  33. Euler M (1756) Théorie plus complète des machines qui sont mises en movement par la réaction de l’eau. L’Académie Royale des Sciences et Belles Lettres, Berlin

    Google Scholar 

  34. Reynolds O (1873) The causes of the racing of the engines of screw steamers investigated theoretically and by experiment. Trans Inst Naval Architects 14:56–67

    Google Scholar 

  35. Thornycroft JI, Barnaby SW (1895) Torpedo boat destroyers, minutes of the proceedings (Institution of Civil Engineers) 122:51–69

    Google Scholar 

  36. Strutt JW (1917) On the pressure developed in a liquid during the collapse of a spherical cavity. Philos Mag Ser 6 34(200):94–98

    Google Scholar 

  37. Eisenberg P (1950) On the mechanisms and prevention of cavitation. Navy Department David W Taylor Model Basin Report 712, Washington, DC

    Google Scholar 

  38. Karimi A, Martin JL (1986) Cavitation erosion of materials. Int Metals Rev 31(1):1–26

    Google Scholar 

  39. Anon (2003) World’s largest composite propeller successfully completes sea trials. Naval Architect 16

    Google Scholar 

  40. Anon (2012) The intelligent propeller made of carbon fiber. http://www.compositecarbonfiberprop.com/ Accessed 16:37 on 19 Aug 2013

  41. Black S (2011) Composite propeller for Royal Navy minehunter: composite-for-metal replacement brings multiple benefits. High-Perform Compos 19(5):70–72

    Google Scholar 

  42. Hardy G (2003) New composites reduce cavitations in giant marine propeller tests. Mater World 11(7):8

    Google Scholar 

  43. Leenders W, van Santen M (2010) Composite main propeller for Dutch minehunter. EuroNaval, Paris

    Google Scholar 

  44. Motley MR, Liu Z, Young YL (2009) Utilizing fluid–structure interactions to improve energy efficiency of composite marine propellers in spatially varying wake. Compos Struct 90(3):304–313

    Google Scholar 

  45. Searle TJ (1998) The manufacture of marine propellers in moulded anisotropic polymer composites, PhD thesis, University of Plymouth

    Google Scholar 

  46. Searle TJ (1999) Composites final frontier: a composites propeller for commercial marine applications. Design Eng 51–52

    Google Scholar 

  47. Searle T, Short D (1994) Are composite propellers the way forward for small boats? Mater World 2(2):69–70

    Google Scholar 

  48. Searle T, Chudley J, Short D (1993) Composites offer advantages for propellers. Reinf Plast 37(12):24–26

    Google Scholar 

  49. Anon (2012) Green marine build one of the world’s largest-ever composite rudders. http://www.greenmarine.co.uk/news/green-marine-build-one-of-the-world-s-largest-ever-composite-rudders/ Accessed 16:39 on 19 Aug 2013

  50. Anon (2012) Rudders and stocks. http://www.gmtcomposites.com/rudders-stocks Accessed 16:41 on 19 Aug 2013

  51. Griffiths R (2006) Rudder gets new twist with composites: the U.S. Navy’s specially contoured ship rudder commands composite construction. Compos Technol 12(4):60–62

    Google Scholar 

  52. Young YL (2007) Hydroelastic behavior of flexible composite propellers in wake inflow. Proceedings of the 16th international conference on composite materials, (ICCM 16). Kyoto/Tokyo

    Google Scholar 

  53. Young YL (2008) Fluid–structure interaction analysis of flexible composite marine propellers. J Fluids Struct 24(6):799–818

    Google Scholar 

  54. Kallas DH, Lichtman JZ (1968) Chapter 2: cavitation erosion. In: Rosato DV, Schwartz RT (eds) Environmental effects on polymeric materials, vol 1., Environments, Interscience, London-Sydney-New York, pp 223–280

    Google Scholar 

  55. Bhagat RB (1987) Cavitation erosion of composites: a materials perspective. J Mater Sci Lett 6(12):1473–1475

    Google Scholar 

  56. Djordjevic V, Kreiner J, Stojanovic Ζ (1988) Cavitation erosion approximation of composite materials. Preprints 33rd international symposium: materials—pathway to the future, SAMPE, Anaheim CA, pp 1561–1570

    Google Scholar 

  57. Rao PV (1988) Evaluation of epoxy resins in flow cavitation erosion. Wear 122(1):77–96

    Google Scholar 

  58. Saetre O (1991) Testing of composite pipes in high velocity seawater, 10th international OMAE conference. Stavanger, IIIB/577

    Google Scholar 

  59. Hammond DA, Amateau MF, Queeney RA (1993) Cavitation erosion performance of fiber reinforced composites. J Compos Mater 27(16):1522–1544

    Google Scholar 

  60. Lindheim T (1995) Erosion performance of glass fibre reinforced plastics (GRP), Revue de l’Institut Francais du Petrole, 50(1):83–95

    Google Scholar 

  61. Light KH (2005) Development of a cavitation erosion resistant advanced material system. MS dissertation, University of Maine, Aug 2005

    Google Scholar 

  62. Yamatogi T, Murayama H, Uzawa K, Kageyama K, Watanabe N (2009) Study of cavitation erosion of composite materials for marine propeller. Proceedings of ICCM-17. Edinburgh, 27–31 July 2009

    Google Scholar 

  63. Short D (2012) Private communication (e-mail of Monday 15 Oct 2012 at 17:23)

    Google Scholar 

  64. Hill C, Hughes M (2010) Natural fibre reinforced composites opportunities and challenges. J Biobased Mater Bioenergy 4:148–158

    Google Scholar 

  65. Pandey JK, Ahn SH, Lee CS, Mohanty AK, Misra M (2010) Recent advances in the application of natural fiber-reinforced composites. Macromol Mater Eng 295:975–989

    Google Scholar 

  66. Summerscales J, Dissanayake N, Hall W, Virk AS (2010) A review of bast fibres and their composites. Part 1: fibres as reinforcements. Compos A Appl Sci Manuf 41(10):1329–1335

    Google Scholar 

  67. Summerscales J, Dissanayake N, Hall W, Virk AS (2010) A review of bast fibres and their composites. Part 2: composites. Compos A Appl Sci Manuf 41(10):1336–1344

    Google Scholar 

  68. Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos B Eng 42(4):856–873

    Google Scholar 

  69. La Mantia FP, Morreale M (2011) Green composites: a brief review. Compos A Appl Sci Manuf 42(6):579–588

    Google Scholar 

  70. Zini E, Scandola M (2011) Green composites: an overview. Polym Compos 32(12):1905–1915

    Google Scholar 

  71. Mukherjee T, Kao N (2011) PLA based biopolymer reinforced with natural fibre: a review. J Polym Environ 19(3):714–725

    Google Scholar 

  72. Hughes M (2012) Defects in natural fibres: their origin, characteristics and implications for natural fibre-reinforced composites. J Mater Sci 47(2):599–609

    Google Scholar 

  73. Shahzad A (2012) Hemp fiber and its composites—a review. J Compos Mater 46(8):973–986

    Google Scholar 

  74. Faruk O, Bledzki AK, Fink H-P, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37(11):1552–1596

    Google Scholar 

  75. Ho M-P, Wang H, Lee J-H, Ho C-K, Lau K-T, Leng J, Hui D (2012) Critical factors on manufacturing processes of natural fibre composites. Compos B Eng 43(8):3549–3562

    Google Scholar 

  76. Summerscales J, Grove S (2013) Manufacturing methods for natural fibre composites, chapter 16. In: Hodzic A, Shanks R (eds) Handbook of natural fibre composites: properties, processes, failure and applications. Woodhead Publishing, Cambridge Accepted on 26 Sept 2012

    Google Scholar 

  77. Summerscales J, Virk AS, Hall W (2013) A review of bast fibres and their composites. Part 3: modelling. Compos Part A: Appl Sci Manuf 44(1):132–139

    Google Scholar 

  78. Costa FHMM, D’Almeida JRM (1999) Effect of water absorption on the mechanical properties of sisal and jute fiber composites. Polym-Plast Technol Eng 38(5):1081–1094

    Google Scholar 

  79. Abdul Khalil HPS, Rozman HD, Ahmad MN, Ismail H (2000) Acetylated plant-fiber reinforced polyester composites: a study of mechanical, hygrothermal, and aging characteristics. Polym-Plast Technol Eng 39(4):757–781

    Google Scholar 

  80. Hill CAS, Abdul Khalil HPS (2000) Effect of fiber treatments on mechanical properties of coir or oil palm fiber reinforced polyester composites. J Appl Polym Sci 78(9):1685–1697

    Google Scholar 

  81. Hill CAS, Abdul Khalil HPS, Hale MD (1998) A study of the potential of acetylation to improve the properties of plant fibres. Ind Crops Prod 8(1):53–63

    Google Scholar 

  82. Shah DU, Schubel PJ, Clifford MJ, Licence P (2012) Fatigue characterisation of plant fibre composites for rotor blade applications. JEC Compos Mag 73:51–54

    Google Scholar 

  83. Shah DU, Schubel PJ, Clifford MJ, Licence P (2013) Fatigue life evaluation of aligned plant fibre composites through S–N curves and constant-life diagrams. Compos Sci Technol 74:139–149

    Google Scholar 

  84. Ishimaru N, Tsukegi T, Wakisaka M, Shirai Y, Nishida H (2012) Effects of poly(l-lactic acid) hydrolysis on attachment of barnacle cypris larvae. Polym Degrad Stab 97(11):2170–2176

    Google Scholar 

  85. World Commission on Environment and Development (1987) Our common future (The Brundtland Report). Oxford Paperbacks, Oxford. ISBN: 0-19-282080-X

    Google Scholar 

  86. Dissanayake NPJ, Summerscales J (2013) Life cycle assessment for natural fibre composites. In: Thakur VK (ed) Green composites from natural resources. Taylor and Francis Group LLC, USA. ISBN: 978-1-4665-7069-6

    Google Scholar 

  87. ISO/TR 14047:2003(E) Environmental management: life cycle impact assessment—examples of application of ISO14042. International Organisation for Standards. ISBN: 0-580-43112-6

    Google Scholar 

  88. Azapagic A, Emsley A, Hamerton I (2003) In: Hamerton I (ed) Polymers, the environment and sustainable development. Wiley. ISBN: 0-471-87741-7

    Google Scholar 

  89. Azapagic A, Perdan S, Clift R (eds) (2004) Sustainable development in practice: case studies for engineers and scientists. Wiley, New York. ISBN: 0-470-85609-2

    Google Scholar 

  90. BS 8905:2011 Framework for the assessment of the sustainable use of materials: guidance. BSI Group, London

    Google Scholar 

  91. Singh M, Summerscales J, Wittamore K (2010) Disposal of composite boats and other marine composites, chapter 18 (pages 495–519). In: Goodship V (ed) Management, recycling and reuse of waste composites. Woodhead Publishing, Cambridge. ISBN: 978-1-84569-462-3 (book). ISBN: 978-1-84569-462-3 (e-book). CRC Press LLC, Boca Raton, 2010. ISBN: 978-1-4398-0104-8

    Google Scholar 

Download references

Acknowledgments

The author is grateful to colleagues, Jasper Graham-Jones and Stephen Grove, for their respective comments on the draft manuscript of this Chapter. Thanks are also due to Paul Harder Cohen (KMT Nord in Denmark) for additional references on cavitation erosion of composites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Summerscales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Summerscales, J. (2014). Durability of Composites in the Marine Environment. In: Davies, P., Rajapakse, Y. (eds) Durability of Composites in a Marine Environment. Solid Mechanics and Its Applications, vol 208. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7417-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7417-9_1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7416-2

  • Online ISBN: 978-94-007-7417-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics