Skip to main content

Vibrational Communication: Spiders to Kangaroo Rats

  • Chapter
  • First Online:
Book cover Biocommunication of Animals

Abstract

An amazing variety of animals communicate by vibrational signals. The behavior is common, diverse and occurs in multiple taxa ranging from spiders and insects to rodents and elephants. Production of vibrations is a mechanical event of stomping, tapping, drumming, rubbing surfaces together (stridulation) and trembling the body (trembulation) to transmit both airborne and seismic signals. Ground-borne vibrations are transmit through a diversity of substrates, including soil, rocks, leaf litter and plant stems and leaves. Receptors for the signals consist of ears and mechanoreceptors in mammals and specialized structures in arthropods. Mate attraction is an important function of substrate-borne vibrations, which are often combined with visual displays in multimodal courtship displays. In spiders substrate-borne vibrations function as sexually selected signals of fitness. Besides attracting mates, insects use vibrations to communicate between parent and offspring, members of the social group, food recruitment and in predator defense. Substrate-borne vibrations also are important in predator–prey interactions. Footdrumming as a communication system is the most developed in territorial kangaroo rats (Dipodomys). The species specific drumming patterns can be complex, and the bannertailed kangaroo rat (D. spectabilis) drums individually distinct footdrumming signatures to communicate territorial ownership. Kangaroo rats also drum during competitive interactions and courtship. In the presence of snakes the kangaroo rats footdrum in individual defense to inform the snake the kangaroo rat is aware and will no longer be easy prey.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahtiainen JJ, Alatalo RV, Kortet R, Rantala MJ (2004) Sexual advertisement and immune function in an arachnid species (Lycosidae). Behav Ecol 15:602–606

    Google Scholar 

  • Ahtiainen JJ, Alatalo RV, Kortet R, Rantala MJ (2005) A trade-off between sexual signaling and immune function in a natural population of the drumming wolf spider Hygrolycosa rubrofasciata. J Evol Biol 18:985–991

    PubMed  CAS  Google Scholar 

  • Aisenberg A, Costa FG, González M (2011) Male sexual cannibalism in a sand-dwelling wolf spider with sex role reversal. Biol J Linn Soc 103:68–75

    Google Scholar 

  • Alatalo RV, Kotiaho J, Mappes J, Parri S (1998) Mate choice for offspring performance: major benefits or minor costs? Proc R Soc Lond B 265:2297–2301

    Google Scholar 

  • Arcadi AC, Mugurusi F, Robert D (2004) A comparison of buttress drumming by male chimpanzees from two populations. Primates 45:135–139

    Google Scholar 

  • Bender H (2006) Structure and function of the eastern grey kangaroo (Macropus giganteus) foot thump. J Zool 268:415–422

    Google Scholar 

  • Boucher M, Schneider SS (2009) Communication signals used in worker-drone interactions in the honeybee. Anim Behav 78:247–254

    Google Scholar 

  • Bouley DM, Alarcón CN, Ilxsbrandt T, O’Connell-Rodwell CEO (2007) The distribution, density and three-dimensional histomorphology of Pacinian corpuscles in the foot of the Asian elephant (Elephas maximus) and their potential role in seismic communication. J Anat 211:428–435

    PubMed  CAS  Google Scholar 

  • Bro-Jorgensen J (2009) Dynamics of multiple signaling systems: animal communication in a world of flux. Trends Ecol Evol 25:292–300

    PubMed  Google Scholar 

  • Caldwell MS, McDaniel WKM (2009) Frequency information in the vibration-cued escape hatching of red-eyed treefrogs. J Exp Biol 212:566–575

    PubMed  Google Scholar 

  • Caldwell MS, McDaniel JG, Warkentin KM (2010) Is it safe? Red-eyed treefrog embryos assessing predation risk use two features of rain vibrations to avoid false alarms. Anim Behav 79:255–260

    Google Scholar 

  • Candolin U (2003) The use of multiple cues in mate choice. Biol Rev 7:575–595

    Google Scholar 

  • Caro TM (1995) Pursuit-deterrence revisited. Trends Ecol Evol 10:500–503

    PubMed  CAS  Google Scholar 

  • Caro TM, Graham CM, Stoner CJ, Vargas JK (2004) Adaptive significance of antipredator behaviour in artiodactyls. Anim Behav 67:205–228

    Google Scholar 

  • Castellanos I, Barbosa P (2006) Evaluation of predation risk by caterpillar using substrate-borne vibrations. Anim Behav 72:461–469

    Google Scholar 

  • Cocroft RB, Hamel JA (2010) Vibrational communication in the “other insect societies”: a diversity of ecology, signals and signal function. In: O’Connell-Rodwell CE (ed) The use of vibrations in communication: properties, mechanisms and function across taxa. Transworld Research Network, Trivandrum, pp 47–68

    Google Scholar 

  • Cocroft RB, Rodríguez RL (2005) The behavioral ecology of insect vibrational communication. Bioscience 55:323–334

    Google Scholar 

  • Cocroft RB, Shugart HJ, Konrad KT, Tibbs K (2006) Variation in plant substrates and its consequences for insect vibrational communication. Ethology 112:779–789

    Google Scholar 

  • Cocroft RB, Rodríguez RL, Hunt RE (2010) Host shifts and signal divergence: mating signals covary with host use in a complex of specialized plant-feeding insects. J Linn Soc 99:60–72

    Google Scholar 

  • Čokl A, Virant-Doberlet M (2003) Communication with substrate-borne signals in small plant-dwelling species. Annu Rev Entomol 48:29–50

    PubMed  Google Scholar 

  • Čokl A, Zorović M, Žunič A, Virant-Doberlet M (2005) Tuning of host plants with vibratory songs of Nezara viridula L (Heteroptera: Pentatomidae). J Exp Biol 208:1481–1488

    PubMed  Google Scholar 

  • Čokl A, Zorović M, Millar JG (2007) Vibrational communication along plants by the stink bugs Nezara viridula and Murgantia histrionica. Behav Proc 75:40–54

    Google Scholar 

  • Crocroft RB (2011) The public world of insect vibrational communication. Mol Ecol 20:2041–2043

    Google Scholar 

  • Darbro JM, Harrington LC (2007) Avian defensive behavior and blood-feeding success of the West Nile vector mosquito, Culex pipiens. Behav Ecol 18:750–757

    Google Scholar 

  • de Groot M, Čokl A, Virant-Doberlet M (2011) Species identity cues: possibilities for error during vibrational communication on plant stems. Behav Ecol 22:1209–1217

    Google Scholar 

  • de Kort SR, Eldermire ERB, Cramer ERA, Vehrencamp SL (2009) The deterrent effect of bird song in territory defense. Behav Ecol 20:200–206

    PubMed  Google Scholar 

  • De Luca PA, Cocroft RB (2009) Age-related changes in an insect mating signal have no effect on female choice. Behav Ecol Sociobiol 63:1787–1798

    Google Scholar 

  • Delaney KJ, Roberts JA, Uetz GW (2007) Male signaling behavior and sexual selection in a wolf spider (Araneae: Lycosidae): a test for duel functions. Behav Ecol Sociobiol 62:67–75

    Google Scholar 

  • DeVries PJ (1990) Enhancement of symbioses between butterfly caterpillars and ants by vibrational communication. Science 248:1104–1106

    PubMed  CAS  Google Scholar 

  • Digweed SM, Rendall D (2009) Predator-associated vocalizations in North American red squirrels, Tamias hudsonicus: are alarm calls predator specific? Anim Behav 78:1135–1144

    Google Scholar 

  • Dutto MS, Calbacho-Rosa L, Peretti AV (2011) Signalling and sexual conflict: female spiders use stridulation to inform males of sexual receptivity. Ethology 117:1040–1049

    Google Scholar 

  • Eberhard MJB, Eberhard SH (2012) Evolution and diversity of vibrational signals in Mantophasmatodea (Insecta). J Insect Behav. doi:10.1007/s10905-012-9352-6

    Google Scholar 

  • Elgar MA (1992) Sexual cannibalism in spiders and other invertebrates. In: Elgar MA, Crespi BJ (eds) Cannibalism: ecology and evolution among diverse taxa. Oxford University Press, Oxford, pp 128–155

    Google Scholar 

  • Elias DO, Mason AC (2010) Signaling in variable environments: substrate-borne signaling mechanisms and communication behavior in spiders. In: O’Connel-Rodwell CE (ed) The use of vibrations in communication: properties, mechanisms and function across taxa. Transworld Research Network, Trivandrum, pp 25–46

    Google Scholar 

  • Elias DO, Mason AC, Hoy RR (2004) The effect of substrate on the efficacy of seismic courtship signal transmission in the jumping spider Habronattus dossenus (Araneae:Salticidae). J Exp Biol 207:4105–4110

    PubMed  Google Scholar 

  • Elias DO, Hebets EA, Hoy RR (2006) Female preference for complex/novel signals in a spider. Behav Ecol 17:765–771

    Google Scholar 

  • Elias DO, Hebets EA, Hoy RR, Mason AC (2005) Seismic signals are crucial for male mating success in a visual specialist jumping spider (Araneae: Salticidae). Anim Behav 69:931–938

    Google Scholar 

  • Elias DO, Kasumovic MM, Punzalan D, Andrade MCB, Mason AC (2008) Assessment during aggressive contests between male jumping spiders. Anim Behav 76:901–910

    PubMed  Google Scholar 

  • Ellias DO, Mason AC, Hebets EA (2010a) A signal-substrate match in the substrate-borne component of a multimodal courtship display. Curr Zool 56:370–378

    Google Scholar 

  • Elias DO, Sivalinghem S, Mason AC, Andrade MCB, Kasumovic MM (2010b) Vibratory communication in the jumping spider Phidippus clarus: substrate-borne courtship signals are important for male mating success. Ethology. doi:10.1111

    Google Scholar 

  • Elias DO, Maddison WP, Peckmezian C, Girard MB, Mason AC (2012) Orchestrating the score: complex multimodal courtship in the Habronattus coecatus group of Habronattus jumping spider. Biol J Linn Soc 105:522–547

    Google Scholar 

  • Endler JA, Bosolo AL (1998) Sensory ecology, receiver biases and sexual selection. Trends Ecol Evol 13:415–420

    PubMed  CAS  Google Scholar 

  • Eriksson A, Anfora G, Lucchi A, Virant-Doberlet M, Mazzoni V (2011) Inter-plant vibrational communication in a Leafhopper insect. PLoS One 6(5):e19692. doi:10.1371/journal.pone.0019692

    PubMed  CAS  Google Scholar 

  • Fabre CCG, Hedwig B, Conduit G, Lawrence PA, Goodwin SF, Casal J (2012) Substrate-borne vibratory communication during courtship in Drosophila melanogaster. Curr Biol 22:2180–2185

    PubMed  CAS  Google Scholar 

  • Fowler-Finn KD, Rodriguez RL (2012) The evolution of experience-mediated plasticity in mate preference. J Evol Biol 25:1855–1863

    PubMed  CAS  Google Scholar 

  • Francescoli G, Altuna CA (1998) Vibrational communication in subterranean rodents: the possible origin of different strategies. Evol Commun 2:217–231

    Google Scholar 

  • Fratzl P, Barth FG (2009) Biomaterial systems for mechanosensing and actuation. Nature 462:442–448

    PubMed  CAS  Google Scholar 

  • Gibson JS, Uetz GW (2008) Seismic communication and mate choice in wolf spiders: components of male seismic signals and mating success. Anim Behav 75:1253–1262

    Google Scholar 

  • Gingl E, Burger AM, Barth FG (2006) Intracellular recording for a spider vibration receptor. J Comp Physiol A 192:551–558

    Google Scholar 

  • Girard MB, Kasumovic MM, Elias DO (2011) Multi-Modal Courtship in the Peacock Spider, Maratus volans (O.P.-Cambridge, 1874). PLoS One 6(9):e25390

    PubMed  CAS  Google Scholar 

  • Gordon SD, Uetz GW (2011) Multimodal communication of wolf spiders on different substrates: evidence for behavioural plasticity. Anim Behav 81:367–375

    Google Scholar 

  • Gregory JE, MaIntyre AK, Proske U (1986) Vibration-evoked responses from lamellated corpuscles in the legs of kangaroos. Exp Brain Res 62:648–653

    PubMed  CAS  Google Scholar 

  • Gridi-Papp M, Narins PN (2010) Seismic detection and communication in amphibians. In: O’Connel-Rodwell CE (ed) The use of vibrations in communication: properties, mechanisms and function across taxa. Transworld Research Network, Trivandrum, pp 69–83

    Google Scholar 

  • Guedes RNC, Matheson SM, Frei B, Smith ML, Yack JE (2012) Vibration detection and discrimination in the masked birch caterpillar (Drepana arcuata). J Comp Physiol A 198:325–335

    CAS  Google Scholar 

  • Guilford T, Dawkins MS (1991) Receiver psychology and the evolution of animal signals. Anim Behav 42:1–14

    Google Scholar 

  • Hebets EA (2005) Attention-altering interactions in the multimodal courtship display of the wolf spider Schizocosa uetzi. Behav Ecol 16:75–82

    Google Scholar 

  • Hebets EA (2008) Seismic signal dominance in the multimodal courtship display of the wolf spider Schizocosa stridulans. Behav Ecol 19:1250–1257

    PubMed  Google Scholar 

  • Hebets EA, Papaj DR (2005) Complex signal function: developing a framework of testable hypotheses. Behav Ecol Sociobiol 57:197–214

    Google Scholar 

  • Hebets EA, Uetz GW (1999) Female responses to isolated signals from multimodal male courtship displays in wolf spider genus Schizocosa (Araneae: Lycosidae). Anim Behav 57:865–872

    PubMed  Google Scholar 

  • Hebets EA, Elias DO, Mason AC, Miller GL, Stratton GE (2008) Substrate-dependent signaling success in the wolf spider, Schizocosa retrorsa. Anim Behav 75:605–615

    Google Scholar 

  • Hebets EA, Vink CJ, Sullivan-Beckers L, Rosenthal M (2013) The dominance of seismic signaling and selection for signal complexity in Schizocosa multimodal courtship displays. Behav Ecol Sociobiol 67:1483–1498

    Google Scholar 

  • Hekkala ER (1995) Mating system of the endangered giant kangaroo rat Dipodomys ingens. M.A. thesis, San Francisco State University, San Francisco

    Google Scholar 

  • Hill PSM (2008) Vibrational communication in animals. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Hill PSM (2009) How do animals use substrate-borne vibrations as an information source. Naturwissenschaften 96:1355–1371

    PubMed  CAS  Google Scholar 

  • Hunt B (1961) On the nature of vibrations receptors in the hind limb of the cat. J Physiol (Lond) 155:175–186

    CAS  Google Scholar 

  • Jackson RR, Wilcox RS (1990) Aggressive mimicry, prey-specific predatory behaviour and predator-recognition in the predator–prey interactions of Portia fimbriata and Euryattus sp., jumping spiders from Queensland. Behav Ecol Sociobiol 26:111–119

    Google Scholar 

  • Jarvis JUM, Bennett NC (1991) Ecology and behaviour of the family Bathyergidae. In: Sherman PW, Jarvis JUM, Alexander RD (eds) The biology of the naked mole-rat. Princeton University Press, Princeton, pp 66–96

    Google Scholar 

  • Jones WT (1984) Natal philoparty in bannertailed kangaroo rats. Behav Ecol Sociobiol 15:151–155

    Google Scholar 

  • Kasumovic MM, Elias DO, Punzalaln D, Mason AC, Andrade MCB (2009) Experience affects the outcome of agonistic contexts without affecting the selective advantage of size. Anim Behav 77:1533–1538

    PubMed  Google Scholar 

  • Kavaliers M, Colwell DD, Choleris E (2005) Kinship, familiarity and social status modulates social learning about “micropredators” (biting flies) in deer mice. Behav Ecol Sociobiol 58:60–71

    Google Scholar 

  • Kavcic A, Čokl A, Laumann RA, Blassioli-Moraes BM (2013) Tremulatory and abdomen vibration signals enable communication through air in the stink bug Euschistus heros. PLoS One. doi:10.1371/journal.pone.0056503

    PubMed  Google Scholar 

  • Kimchi T, Reshef M, Terkel J (2005) Evidence for the use of reflected self-generated seismic waves for spatial orientation in a blind subterranean mammal. J Exp Biol 208:647–659

    PubMed  Google Scholar 

  • King MB, Duvall D (1990) Prairie rattlesnake seasonal migrations: episodes of movement, vernal foraging and sex differences. Anim Behav 39:924–935

    Google Scholar 

  • Kirchner WH (1994) Hearing in honeybees: the mechanical response of the bee’s antenna to near field sound. J Comp Physiol A 175:261–265

    Google Scholar 

  • Kojima W, Takanashi T, Ishikawa Y (2012) Vibratory communication in the soil: pupal signals deter larval intrusion in a group-living beetle Trypoxylus dichotoma. Behav Ecol Sociobiol 66:171–179

    Google Scholar 

  • Kotiaho JS (2000) Testing the assumptions of conditional handicap theory: costs and condition dependence of a sexually selected trait. Behav Ecol Sociobiol 48:188–194

    Google Scholar 

  • Kotiaho JS, Alatalo RV, Mappes J, Parri S (1996) Sexual selection in a wolf spider: male drumming activity, body size, and viability. Evolution 50:1977–1981

    Google Scholar 

  • Kotiaho JS, Alatalo RV, Mappes J, Nielsen MG, Parri S, Rivero A (1998) Energetic costs of size and sexual signalling in a wolf spider. Proc R Soc Lond B 265:2203–2209

    Google Scholar 

  • Kotiaho JS, Alatalo RV, Mappes J, Parri S (1999) Honesty of agonistic signalling and effects of size and motivation asymmetry in contests. Acta Ethol 2:13–21

    Google Scholar 

  • Lewis ER, Narins PM, Cortopassi KA, Yamada WM, Poinar SW, Moore W, Yu XL (2001) Do male white-lipped frogs use seismic signals for intraspecific communication? Am Sci 41:1185–1199

    Google Scholar 

  • Lewis ER, Narins PM, Jarvis JUM, Bronner G, Mason MJ (2006) Preliminary evidence for the use of microseismic cues for navigation by the Nambid golden mole. J Acoust Soc Am 119:1260–1268

    PubMed  Google Scholar 

  • Lindstrom L, Ahtiainen JJ, Je M, Kotiaho JS, Lyytinen A, Alatalo RV (2006) Negatively condition dependent predation cost of a positively condition dependent sexual signaling. J Evol Biol 19:649–656

    PubMed  CAS  Google Scholar 

  • Maklakov AA, Bilde T, Lubin Y (2003) Vibratory courtship in a web-building spider: signal quality or stimulating the female. Anim Behav 66:623–640

    Google Scholar 

  • Mappes J, Alato RV, Kotiaho J, Parri S (1996) Viability costs of condition-dependent sexual male display in a drumming wolf spider. Proc R Soc Lond B Biol Sci 263:785–789

    Google Scholar 

  • Mason MJ, Narins PM (2001) Seismic signal use by fossorial mammals. Am Zool 41:1171–1184

    Google Scholar 

  • Maynard Smith J, Harper D (2003) Animal signals. Oxford University Press, Oxford

    Google Scholar 

  • McGregor PK (1991) The singer and the song: on the receiving end of bird song. Biol Rev 66:57–81

    Google Scholar 

  • McNett GD, Cocroft RB (2008) Host shifts favor vibrational signal divergence in Enchenopa binotata treehoppers. Behav Ecol 19:650–656

    Google Scholar 

  • McNett GD, Miles RN, Hometcovschi D, Cocroft RB (2006) A method for two-dimensional characterization of animal vibrational signals transmitted along plant stems. J Comp Physiol A 192:1245–1251

    Google Scholar 

  • McNett GD, Luan LH, Cocroft RB (2010) Wind-induced noise alters signaler and receiver behavior in vibrational communication. Behav Ecol Sociobiol 64:2043–2051

    Google Scholar 

  • McVean A, Field LH (1996) Communication by substratum vibrations in the New Zealand tree weta, Hemideina Femorata (Stenopelmatidae: Orthoptera. J Zool (Lond) 239:101–122

    Google Scholar 

  • Morales MA, Barone JL, Henry CS (2008) Acoustic alarm signalling facilitates predator protection of treehoppers by mutualistic ant bodyguards. Proc R Soc B 275:1935–1941

    PubMed  Google Scholar 

  • Narins PM, Reichman OJ, Jarvis JUM, Lewis ER (1992) Seismic signal transmission between burrows of the Cape mole-rat, Georychus capensis. J Comp Physiol A 170:13–21

    PubMed  CAS  Google Scholar 

  • Nelson XJ, Jackson RR (2012) How spiders practice aggressive mimicry. Curr Zool 58:619–628

    Google Scholar 

  • Nomakuchi S, Yanagi T, Bab N, Takahira A, Hironaka M, Filippi L (2012) Provisioning call by mothers of a subsocial shield bug. J Zool 288:50–56

    Google Scholar 

  • OiConnell-Rodwell CE (2010) The use of vibrations in communication: properties, mechanisms and function across taxa. Transworld Research Network, Trivandrum

    Google Scholar 

  • O’Connell-Rodwell CE, Arnason BT, Hart LA (2000) Seismic properties of Asian elephant vocalizations and locomotion. J Acoust Soc Am 108:3066–3072

    PubMed  Google Scholar 

  • O’Connell-Rodwell CE, Wood JD, Kinzley C, Rodwell TC, Poole JH, Puria S (2007) Wild African elephants (Loxodonta africana) discriminate between familiar and unfamiliar conspecific seismic alarm calls. J Acoust Soc Am 122:823–830

    PubMed  Google Scholar 

  • Parri S, Alatalo RV, Kotiaho J, Mappes J (1997) Female choice for male drumming in the wolf spider Hygrolycosa rubrofasciata. Anim Behav 53:305–312

    Google Scholar 

  • Parri S, Alatalo RV, Kotiaho JS, Mappes J, Rivero A (2002) Sexual selection in the wolf spider. Behav Ecol 13:615–621

    Google Scholar 

  • Partan SR, Marler P (1999) Communication goes multimodal. Science 283:1272–1273

    PubMed  CAS  Google Scholar 

  • Partan SR, Marler P (2005) Issues in the classification of multimodal communication signals. Am Nat 166:231–245

    PubMed  Google Scholar 

  • Pfannenstiel RS, Hunt RE, Yeargan KV (1995) Orientation of a hemipteran predator to vibrations produced by feeding caterpillars. J Insect Behav 8:1–9

    Google Scholar 

  • Prenter J, MacNeil C, Elwoood RW (2006) Sexual cannibalism and mate choice. Anim Behav 71:481–490

    Google Scholar 

  • Proske U (1969) Vibration-sensitive mechanoreceptors in snake skin. Exp Neurol 23:187–194

    PubMed  CAS  Google Scholar 

  • Rado R, Levi N, Hauser H, Witcher J, Adler N, Intrator N, Wollberg Z, Terkel J (1987) Seismic signalling as a means of communication in a subterranean mammal. Anim Behav 35:1249–1266

    Google Scholar 

  • Rado R, Himelfarb M, Arensburg B, Terkel J, Wollberg Z (1989) Are seismic communication signals transmitted by bone conduction in the blind mole rat? Hear Res 41:23–30

    PubMed  CAS  Google Scholar 

  • Randall JA (1984) Territorial defense and advertisement by footdrumming in bannertailed kangaroo rats (Dipodomys spectabilis) at high and low population densities. Behav Ecol Sociobiol 16:11–20

    Google Scholar 

  • Randall JA (1989) Individual footdrumming signatures in bannertailed kangaroo rats Dipodomys spectabilis. Anim Behav 38:620–630

    Google Scholar 

  • Randall JA (1991) Mating strategies of a nocturnal desert rodent (Dipodomys spectabilis). Behav Ecol Sociobiol 28:215–220

    Google Scholar 

  • Randall JA (1993) Discrimination of footdrumming signatures by kangaroo rats, Dipodomys spectabilis. Anim Behav 47:45–54

    Google Scholar 

  • Randall JA (1995) Modification of footdrumming signatures by kangaroo rats: changing territories and gaining new neighbors. Anim Behav 49:1227–1237

    Google Scholar 

  • Randall JA (1997) Species-specific footdrumming in kangaroo rats: Dipodomys ingens, D. deserti, D. spectabilis. Anim Behav 54:1167–1175

    PubMed  Google Scholar 

  • Randall JA (2001) Evolution and function of drumming as communication in mammals. Am Zool 41:1143–1156

    Google Scholar 

  • Randall JA (2010) Drummers and stompers: vibrational communication in mammals. In: O’Connel-Rodwell CE (ed) The use of vibrations in communication: properties, mechanisms and function across taxa. Transworld Research Network, Trivandrum, pp 99–120

    Google Scholar 

  • Randall JA, Boltas King DK (2001) Assessment and defence of solitary kangaroo rats under risk of predation by snakes. Anim Behav 61:579–587

    Google Scholar 

  • Randall JA, Lewis ER (1997) Seismic communication between the burrows of kangaroo rats, Dipodomys spectabilis. J Comp Physiol A 181:525–531

    PubMed  CAS  Google Scholar 

  • Randall JA, Matocq MD (1997) Why do kangaroo rats (Dipodomys spectabilis) footdrum at snakes? Behav Ecol 8:404–413

    Google Scholar 

  • Randall JA, Rogovin KA (2002) Variation in and meaning of alarm calls in a social desert rodent Rhombomys opimus. Ethology 108:513–527

    Google Scholar 

  • Randall JA, Stevens CM (1987) Footdrumming and other anti-predator responses in the bannertailed kangaroo rat (Dipodomys spectabilis). Behav Ecol Sociobiol 20:187–194

    Google Scholar 

  • Randall JA, Rogovin KA, Shier DM (2000) Antipredator behavior of a social desert rodent: footdrumming and alarm calling in the great gerbil Rhombomys opimus. Behav Ecol Sociobiol 48:110–118

    Google Scholar 

  • Randall JA, Hekkala ER, Cooper LD, Barfield J (2002) Familiarity and flexible mating strategies of a solitary rodent, Dipodomys ingens. Anim Behav 64:11–21

    Google Scholar 

  • Randall JA, Parker PG, Eimes J, Rogovin KA (2005) Flexible social structure of a desert rodent, Rhombomys opimus: philopatry, kinship, and ecological constraints. Behav Ecol 16:961–973

    Google Scholar 

  • Rasmussen LEL, Munger BL (1996) The sensorineural specialization of the trunk tip (finger) of the Asian elephant, Elephas maximus. Anat Rec 246:127–134

    PubMed  CAS  Google Scholar 

  • Rathbun GB (1979) The social structure and ecology of elephant shrews. Z Tierpsychol Suppl 20:1–76

    Google Scholar 

  • Rivero A, Alatalo RV, Kotiaho JS, Mappes J, Parri S (2000) Acoustic signalling in a wolf spider: can signal characteristics predict male quality? Anim Behav 60:187–194

    PubMed  Google Scholar 

  • Roberts AJ, Taylor PW, Uetz GW (2007) Consequences of complex signaling: predator detection of multimodal cues. Behav Ecol 18:236–240

    Google Scholar 

  • Rodríguez RL, Sullivan LE, Cocroft RB (2004) Vibrational communication and reproductive isolation in the Enchenopa binotata species complex of treehoppers (Hemiptera: Membracidae). Evolution 58:571–578

    PubMed  Google Scholar 

  • Rodríguez RL, Ramaswamy K, Cocroft RB (2006) Evidence that female preferences have shaped male signal evolution in a clade of specialized plant-feeding insects. Proc R Soc Lond B Biol Sci 273:2585–2593

    Google Scholar 

  • Rodríguez RL, Sullivan LM, Snyder RL, Cocroft RB (2008) Host shifts and beginning of signal divergence. Evolution 62:12–20

    PubMed  Google Scholar 

  • Roggenbuck H, Pekár S, Schneider JM (2011) Sexual cannibalism in the European garden spider Araneus diadematus: roles of female hunger and mate size dimorphism. Anim Behav 81:749–755

    Google Scholar 

  • Rose TA, Munn AJ, Ramp D, Banks PB (2006) Foot-thumping as an alarm signal in macropodoid marsupials: prevalence and hypotheses of function. Mam Rev 36:281–298

    Google Scholar 

  • Rosenthal GC, Martinez TAY, de León FJG, Ryan MJ (2001) Shared preferences by predators and females for male ornaments in swordfish. Am Nat 158:146–154

    PubMed  CAS  Google Scholar 

  • Routtenberg A, Kramis RC (1967) “Footstomping” in the gerbil: rewarding brain stimulation, sexual behavior and foot shock. Nature 214:172–174

    Google Scholar 

  • Rundus AS, Santer RD, Hebets EA (2010) Multimodal courtship efficacy of Schizocosa retrorsa wolf spiders: implications of an additional signal modality. Behav Ecol 21:701–707

    Google Scholar 

  • Shaffer LA, Long GR (2004) Low-frequency distortion product otoacoustic emissions in two species of kangaroo rats: implications for auditory sensitivity. J Comp Physiol A 190:55–60

    CAS  Google Scholar 

  • Shier DM (2003) Sociality and communication in Heermann’s kangaroo rat (Dipodomys heermanni). MS thesis, San Francisco State University, San Francisco, pp 1–75

    Google Scholar 

  • Shier DM, Randall JA (2007) Use of different signaling modalities to communicate status by dominant and subordinate Heermann’s kangaroo rats (Dipodomys heermanni). Behav Ecol Sociobiol 61:1023–1032

    Google Scholar 

  • Sivalinghem S, Kasumovic MM, Mason AC, Andrade MCB, Elias DO (2010) Vibratory communication in the jumping spider Phidippus clarus: polyandry mating courtship signals, and mating success. Behav Ecol 21:1308–1314

    Google Scholar 

  • Sloggett JJ, Zeilstra I (2008) Waving or tapping? Vibrational stimuli and the general function of toe twitching in frogs and toads (Amphibia: Anura). Anim Behav 76:e1–e4

    Google Scholar 

  • Stenfelt S, Puria S (2010) Consider bone-conducted human hearing. In: O’Connel-Rodwell CE (ed) The use of vibrations in communication: properties, mechanisms and function across taxa. Transworld Research Network, Trivandrum, pp 141–161

    Google Scholar 

  • Stewart KW (2001) Vibrational communication (drumming) and mate-searching behavior of stoneflies (Plecoptera); evolutionary considerations. In: Domínques E (ed) Trends in research in Ephemerptera and Plecoptera, Springer, New York, pp. 217–225

    Google Scholar 

  • Stoltz JA, Elias DO, Andrade MCB (2008) Female reward courtship by competing males in a cannibalistic spider. Behav Ecol Sociobiol 62:689–697

    Google Scholar 

  • Stoltz JA, Elias DO, Andrade MCB (2009) Male courtship effort determines female response to competitive rivals in redback spiders. Anim Behav 77:79–85

    Google Scholar 

  • Stritih N, Čokl A (2012) Mating behaviour and vibratory signalling in non-hearing cave crickets reflect primitive communication of Ensifera. PLoS One 7(10):e47646. doi:10.1371/journal.pone.0047646

    PubMed  CAS  Google Scholar 

  • Sullivan-Beckers L, Hebets EA (2011) Modality-specific experience with female feedback increases efficacy of courtship signalling in male wolf spiders. Anim Behav 82:1051–1057

    Google Scholar 

  • Tarsitano N, Jackson RR, Kirchner WH (2000) Signals and signal choices made by the Araneophagic jumping spider Portia fimbriata while hunting orb-weaving spiders Zygiella x-notata and Zosis geniculatus. Ethology 106:595–615

    Google Scholar 

  • Taylor JRA, Patek SN (2010) Crustacean seismic communication: heard but not present? In: O’Connel-Rodwell CE (ed) The use of vibrations in communication: properties, mechanisms and function across taxa. Transworld Research Network, Trivandrum, pp 9–23

    Google Scholar 

  • Taylor RC, Buchanan BW, Doherty JL (2007) Sexual selection in the squirrel treefrog Hyla squirella: the role of multimodal cue assessment in female choice. Anim Behav 74:1753–1763

    Google Scholar 

  • Travassos MA, Pierce NE (2000) Acoustics, context and function of vibrational signalling in a lycaenid butterfly–ant mutualism. Anim Behav 60:13–26

    PubMed  Google Scholar 

  • Uhl G, Elias DO (2011) Communication. In: Heberstein ME (ed) Spider behavior: versatility and flexibility. University Press, Cambridge, pp 127–189

    Google Scholar 

  • Utez GW, Roberts JA (2002) Multisensory cues and multimodal communication in spiders: insights from video/audio playback studies. Brain Behav Evol 59:222–230

    Google Scholar 

  • Utez GW, Roberts JA, Taylor PW (2009) Multimodal communication and male choice in wolf spiders: female response to multimodal verses unimodal signals. Anim Behav 78:299–305

    Google Scholar 

  • Virant-Doberlet M, King RA, Polajnar J, Symondson WOC (2011) Molecular diagnostics reveal spiders that exploit prey vibrational signals used in sexual communication. Mol Ecol 20:2204–2216

    PubMed  Google Scholar 

  • Warkentin KM (2005) How do embryos assess risk? Vibrational cues in predator-induced hatching of red-eyed treefrogs. Anim Behav 70:59–71

    Google Scholar 

  • Waser PM, Busch JD, McCormick CR, DeWoody JA (2005) Parentage analysis detects cryptic precapture dispersal in a philopatric rodent. Mol Ecol 15:1919–1937

    Google Scholar 

  • Waser PM, Berning ML, Pfeifer A (2012) Mechanisms of kin discrimination inferred from pedigrees and the spatial distribution of mates. Mol Ecol 21:554–561

    PubMed  Google Scholar 

  • Wignall AE, Taylor PW (2011) Assassin bug uses aggressive mimicry to lure spider prey. Proc R Soc B 278:1427–1433

    PubMed  Google Scholar 

  • Wignall AE, Jackson RR, Wilcox RS, Taylor PW (2011) Exploitation of environmental noise by an araneophagis assassin bug. Anim Behav 82:1037–1042

    Google Scholar 

  • Wilgers DJ, Hebets EA (2012) Seismic signaling for female mate choice in a multi-modal signaling wolf spider. Ethology 118:387–397

    Google Scholar 

  • Wood JD, O’Connell-Rodwell CE (2010) Studying vibrational communication: equipment options, recording, playback and analysis techniques. In: O’Connel-Rodwell CE (ed) The use of vibrations in communication: properties, mechanisms and function across taxa. Transworld Research Network, Trivandrum, pp 163–181

    Google Scholar 

  • Yack JE, Smith ML, Weatherhead PJ (2001) Caterpillar talk: acoustically mediated territoriality in larval Lepidoptera. Proc Natl Acad Sci USA 98:11371–11375

    PubMed  CAS  Google Scholar 

  • Young BA (2010) Vibration detection in snakes. In: O’Connel-Rodwell CE (ed) The use of vibrations in communication: properties, mechanisms and function across taxa. Transworld Research Network, Trivandrum, pp 85–98

    Google Scholar 

  • Zahavi A (1977) The cost of honesty (further remarks on the handicap principle). J Theor Biol 67:603–605

    PubMed  CAS  Google Scholar 

  • Zuk M, Kolluru GR (1998) Exploitation of sexual signals by predators and parasitoids. Q Rev Biol 73:415–438

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan A. Randall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Randall, J.A. (2014). Vibrational Communication: Spiders to Kangaroo Rats. In: Witzany, G. (eds) Biocommunication of Animals. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7414-8_7

Download citation

Publish with us

Policies and ethics