Skip to main content

Young Squeaker Catfish Can Already Talk and Listen to Their Conspecifics

  • Chapter
  • First Online:

Abstract

Numerous fish species are able to produce sounds and communicate acoustically. Nevertheless, hearing and sound production in fishes is poorly understood and the ontogenetic development of acoustic communication has only been studied in a few species. So far the yellow marbled squeaker catfish Synodontis schoutedeni is the only species that has been shown to be able to communicate acoustically across generations at all postlarval stages of development. In two further fish species the smallest size groups were not yet able to detect sounds of equal conspecifics. Increasing body size in S. schoutedeni correlates with increasing hearing sensitivity for lower frequencies, decreasing hearing sensitivity at higher frequencies, increasing sound pressure level and duration of stridulation sounds, and decreases in stridulation sound dominant frequency. The excellent hearing sensitivities of S. schoutedeni, which are characteristic for Otophysi (fish with a Weberian apparatus), is probably the reason for their ability to communicate acoustically in early stages of development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abu-Gideiri JB, Nasr DH (1973) Sound production by Synodontis schall (Bloch-Schneider). Hydrobiologia 43(3–4):415–428

    Article  Google Scholar 

  • Amorim MCP (2006) Diversity in sound production in fish. In: Ladich F, Collin SP, Moller P, Kapoor BG (eds) Communication in fishes, vol 1. Science Publishers Inc., Enfield, pp 71–105

    Google Scholar 

  • Amorim MCP, Hawkins AD (2005) Ontogeny of acoustic and feeding behaviour in the grey gurnard, Eutrigla gurnardus. Ethology 111:255–269

    Article  Google Scholar 

  • Amoser S, Ladich F (2003) Diversity in noise-induced temporary hearing loss in otophysine fishes. J Acoust Soc Am 113:2170–2179

    Article  PubMed  Google Scholar 

  • Aristotle (1907) Historia animalium (The history of animals) (trans: Thompson DAW). John Bell, London. First published 350 BC

    Google Scholar 

  • Belanger AJ, Bobeica I, Higgs DM (2010) The effect of stimulus type and background noise on hearing abilities of the round goby Neogobius melanostomus. J Fish Biol 77(7):1488–1504

    Article  PubMed  CAS  Google Scholar 

  • Bertucci F, Scaion D, Beauchaud M, Attia J, Mathevon N (2012) Ontogenesis of agonistic vocalizations in the cichlid fish Metriaclima zebra. CR Biol 335(8):529–534

    Article  Google Scholar 

  • Bradbury JW, Vehrencamp SL (2011) Principles of animal communication, 2nd edn. Sinauer Associates Inc., Sunderland

    Google Scholar 

  • Braun CB, Grande T (2008) Evolution of peripheral mechanisms for the enhancement of sound reception. In: Webb JE, Fay RR, Popper AN (eds) Fish bioacoustics, vol 32, Springer handbook of auditory research. Springer, New York, pp 99–144

    Chapter  Google Scholar 

  • Colleye O, Frederich B, Vandewalle P, Casadevall M, Parmentier E (2009) Agonistic sounds in the skunk clownfish Amphiprion akallopisos: size-related variation in acoustic features. J Fish Biol 75:908–916

    Article  PubMed  CAS  Google Scholar 

  • Colleye O, Vandewalle P, Lanterbecq D, Lecchini D, Parmentier E (2011) Interspecific variation of calls in clownfishes: degree of similarity in closely related species. BMC Evol Biol 11(1):365

    Article  PubMed  Google Scholar 

  • Connaughton MA, Taylor MH (1996) Drumming, courtship, and spawning behavior in captive weakfish, Cynoscion regalis. Copeia 1:195–199

    Article  Google Scholar 

  • Coombs S, Montgomery JC (1999) The enigmatic lateral line system. In: Popper AN, Fay RR (eds) Comparative hearing: fishes and amphibians, vol 11, Springer handbook of auditory research. Springer, New York, pp 319–362

    Chapter  Google Scholar 

  • Crawford JD (1997) Hearing and acoustic communication in mormyrid electric fishes. Mar Freshw Behav Physiol 29:65–86

    Article  Google Scholar 

  • Crawford JD, Cook AP, Heberlein AS (1997) Bioacoustic behaviour of African fishes (Mormyridae): potential cues for species and individual recognition in Pollimyrus. J Acoust Soc Am 102(2):1200–1212

    Article  PubMed  CAS  Google Scholar 

  • Drescher O (2007) Meine Erlebnisse mit dem Marmorierten Fiederbartwels. D Aqu u Terr Z (DATZ) 60(12):16–20

    Google Scholar 

  • Egner SA, Mann DA (2005) Auditory sensitivity of sergeant major damselfish Abudefduf saxatilis from post-settlement juvenile to adult. Mar Ecol Prog Ser 285:213–222

    Article  Google Scholar 

  • Fay RR (1988) Hearing in vertebrates: a psychophysics databook. Hill-Fay Associates, Winnetka

    Google Scholar 

  • Fay RR (2011) Psychoacoustics: what fish hear. In: Farrell AP (ed) Encyclopedia of fish physiology: from genome to environment, vol 1. Academic Press, San Diego, pp 276–282

    Chapter  Google Scholar 

  • Ferraris CJ Jr (2007) Checklist of catfishes, recent and fossil (Osteichthyes: Siluriformes), and catalogue of siluriform primary types. Zootaxa 1418:1–628

    Google Scholar 

  • Feulner PGD, Plath M, Engelmann J, Kirschbaum F, Tiedemann R (2009) Electrifying love: electric fish use species-specific discharge for mate recognition. Biol Lett 5(2):225–228

    Article  PubMed  Google Scholar 

  • Fine ML, Ladich F (2003) Sound production, spine locking and related adaptations. In: Arratia G, Kapoor BG, Chardon M, Diogo R (eds) Catfishes, vol 2. Science Publishers Inc., Enfield, pp 249–290

    Google Scholar 

  • Froese R, Pauly D (2012) Fishbase. World Wide Web electronic publication. www.fishbase.org, version (12/2012)

  • Gerhardt HC, Huber F (2002) Acoustic communication in insects and anurans: common problems and diverse solutions. The University of Chicago Press, Chicago

    Google Scholar 

  • Hawkins AD (1993) Underwater sound and fish behaviour. In: Pitcher TJ (ed) Behaviour of teleost fishes. Chapman & Hall, London, pp 129–169

    Chapter  Google Scholar 

  • Henglmüller SM, Ladich F (1999) Development of agonistic behaviour and vocalization in croaking gourami. J Fish Biol 54:380–395

    Article  Google Scholar 

  • Higgs DM, Radford CR (2013) The contribution of the lateral line to “hearing” in fish. J Exp Biol 216(8):1484–1490

    Article  PubMed  CAS  Google Scholar 

  • Higgs DM, Souza MJ, Wilkins HR, Presson JC, Popper AN (2001) Age- and size related changes in the inner ear and hearing ability of the adult zebrafish (Danio rerio). JARO J Assoc Res Otolaryngol 3:174–184

    Article  Google Scholar 

  • Higgs DM, Rollo AK, Souza MJ, Popper AN (2003) Development of form and function in peripheral auditory structures of the zebrafish (Danio rerio). J Acoust Soc Am 113(2):1145–1154

    Article  PubMed  Google Scholar 

  • Hopp SL, Owren MJ, Evans CS (eds) (1998) Animal acoustic communication: sound analysis and research methods. Springer, Berlin/Heidelberg

    Google Scholar 

  • Iwashita A, Sakamoto M, Kojima T, Watanabe Y, Soeda H (1999) Growth effects on the auditory threshold of Red Sea bream. Nippon Suisan Gakk 65(5):833–838

    Article  Google Scholar 

  • Kasumyan AO (2008) Sounds and sound production in fishes. J Ichthyol 48(11):981–1030

    Article  Google Scholar 

  • Kenyon TN (1996) Ontogenetic changes in the auditory sensitivity of damselfishes (Pomacentridae). J Comp Physiol A 179:553–561

    Article  Google Scholar 

  • Kenyon TN, Ladich F, Yan HY (1998) A comparative study of hearing ability in fishes: the auditory brainstem response approach. J Comp Physiol A 182:307–318

    Article  PubMed  CAS  Google Scholar 

  • Kramer B (1990) Electrocommunication in teleost fishes: behavior and experiments, vol 29, Zoophysiology. Springer, Berlin/Heidelberg/New York

    Book  Google Scholar 

  • Ladich F (1999) Did auditory sensitivity and vocalization evolve independently in otophysan fishes? Brain Behav Evol 53:288–304

    Article  PubMed  CAS  Google Scholar 

  • Ladich F, Fay RR (2013) Auditory evoked potential audiometry in fish. Rev Fish Biol Fish 22(4):1–48

    Google Scholar 

  • Ladich F, Fine ML (2006) Sound-generating mechanisms in fishes: a unique diversity in vertebrates. In: Ladich F, Collin SP, Moller P, Kapoor BG (eds) Communication in fishes, vol 1. Science Publishers, Enfield, pp 3–44

    Google Scholar 

  • Ladich F, Myrberg AA (2006) Agonistic behaviour and acoustic communication. In: Ladich F, Collin SP, Moller P, Kapoor BG (eds) Communication in fishes, vol 1. Science Publishers, Enfield, pp 122–148

    Google Scholar 

  • Ladich F, Popper AN (2004) Parallel evolution in fish hearing organs. In: Manley G, Fay RR, Popper AN (eds) Evolution of the vertebrate auditory system. Springer, New York, pp 95–127

    Chapter  Google Scholar 

  • Ladich F, Yan HY (1998) Correlation between auditory sensitivity and vocalization in anabantoid fishes. J Comp Physiol A 182:737–746

    Article  PubMed  CAS  Google Scholar 

  • Ladich F, Bischof C, Schleinzer G, Fuchs A (1992) Intra- and interspecific differences in agonistc vocalization in croaking gouramis (Genus: Trichopsis, Anabantoidei, Teleostei). Bioacoustics 4:131–141

    Article  Google Scholar 

  • Lechner W, Ladich F (2008) Size matters: diversity in swimbladders and Weberian ossicles affects hearing in catfishes. J Exp Biol 211:1681–1689

    Article  PubMed  Google Scholar 

  • Lechner W, Wysocki LE, Ladich F (2010) Ontogenetic development of auditory sensitivity and sound production in the squeaker catfish Synodontis schoutedeni. BMC Biol 8(1):1–10

    Article  Google Scholar 

  • Lechner W, Heiss E, Schwaha T, Glösmann M, Ladich F (2011) Ontogenetic development of Weberian ossicles and hearing abilities in the African bullhead catfish. PLoS ONE 6(4):e18511

    Article  PubMed  CAS  Google Scholar 

  • Lobel PS, Mann DA (1995) Spawning sounds of the damselfish, Dascyllus albisella (Pomacentridae), and relationship to male size. Bioacoustics 6(3):187–198

    Article  Google Scholar 

  • Lugli M (2010) Sounds of shallow water fishes pitch within the quiet window of the habitat ambient noise. J Comp Physiol A 196:439–451

    Article  Google Scholar 

  • Mann DA (2006) Propagation of fish sounds. In: Ladich F, Collin SP, Moller P, Kapoor BG (eds) Communication in fishes, vol 1. Science Publishers, Enfield, pp 107–120

    Google Scholar 

  • Mann DA, Lu Z, Popper AN (1997) A clupeid fish can detect ultrasound. Nature 389:341

    Article  CAS  Google Scholar 

  • Moller P (2006) Electrocommunication: history, insights, and new questions. In: Ladich F, Collin SP, Moller P, Kapoor BG (eds) Communication in fishes, vol 2. Science Publishers Inc., Enfield, pp 579–598

    Google Scholar 

  • Myrberg AA (1981) Sound communication and interception in fishes. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and sound communication in fishes. Springer, New York, pp 395–426

    Chapter  Google Scholar 

  • Myrberg AA, Lugli M (2006) Reproductive behavior and acoustical interactions. In: Ladich F, Collin SP, Moller P, Kapoor BG (eds) Communication in fishes, vol 1. Science Publishers Inc., Enfield, pp 149–176

    Google Scholar 

  • Myrberg AA, Ha SJ, Shamblott HS (1993) The sounds of bicolor damselfish (Pomacentrus partitus): predictors of body size and a spectral basis for individual recognition and assessment. J Acoust Soc Am 94:3067–3070

    Article  Google Scholar 

  • Narins PM, Feng AS, Fay RR, Popper AN (eds) (2007) Hearing and sound communication in amphibians, vol 28, Springer handbook of auditory research. Springer, New York

    Google Scholar 

  • Parmentier E, Diogo R (2006) Evolutionary trends of swimbladder sound mechanisms in some teleost fishes. In: Ladich F, Collin SP, Moller P, Kapoor BG (eds) Communication in fishes, vol 1. Science Publishers Inc., Enfield, pp 45–70

    Google Scholar 

  • Parmentier E, Colleye O, Fine ML, Frédérich B, Vandewalle P, Herrel A (2007) Sound production in the clownfish Amphiprion clarkii. Science 316:1006

    Article  PubMed  CAS  Google Scholar 

  • Parmentier E, Colleye O, Mann D (2009) Hearing ability in three clownfish species. J Exp Biol 212:2023–2026

    Article  PubMed  Google Scholar 

  • Popper AN (1971) The effects of size on auditory capacities of the goldfish. J Aud Res 11:239–247

    Google Scholar 

  • Popper AN, Casper BM (2011) Fish bioacoustics: an introduction. In: Farrell AP (ed) Encyclopedia of fish physiology: from genome to environment, vol 1. Academic Press, San Diego, pp 236–243

    Chapter  Google Scholar 

  • Popper AN, Fay RR (2011) Rethinking sound detection by fishes. Hear Res 273(1–2):25–36

    Article  PubMed  Google Scholar 

  • Popper AN, Hastings MC (2009a) The effects of anthropogenic sources of sound on fishes. J Fish Biol 75:455–489

    Article  PubMed  CAS  Google Scholar 

  • Popper AN, Hastings MC (2009b) The effects of human-generated sound on fish. Integr Zool 4(1):43–52

    Article  PubMed  Google Scholar 

  • Popper AN, Fay RR, Platt C, Sand O (2003) Sound detection mechanisms and capabilities of teleost fishes. In: Collin SP, Marshall NJ (eds) Sensory processing in aquatic environments. Springer, New York, pp 3–38

    Chapter  Google Scholar 

  • Retzius G (1881) Das Gehörorgan der Wirbelthiere. I. Das Gehörorgan der Fische und Amphibien. Samson & Wallin, Stockholm

    Google Scholar 

  • Ryan MJ, Brenowitz EA (1985) The role of body size, phylogeny, and ambient noise in the evolution of bird song. Am Nat 126(1):87–100

    Article  Google Scholar 

  • Sisneros JA, Bass AH (2005) Ontogenetic changes in the response properties of individual, primary auditory afferents in the vocal plainfin midshipman fish Porichthys notatus Girard. J Exp Biol 208:3121–3131

    Article  PubMed  Google Scholar 

  • Slabbekoorn H, Peet M (2003) Birds sing at a higher pitch in urban noise. Nature 424:267

    Article  PubMed  CAS  Google Scholar 

  • Slabbekoorn H, Bouton N, van Opzeeland I, Coers A, ten Cate C, Popper AN (2010) A noisy spring: the impact of globally rising underwater sound levels on fish. Trends Ecol Evol 25(7):419–427

    Article  PubMed  Google Scholar 

  • Sörensen W (1895) Are the extrinsic muscles of the air-bladder in some Siluroidae and the “elastic spring” apparatus of others subordinate to the voluntary production of sounds? What is, according to our present knowledge, the function of the Weberian ossicles? J Anat Physiol 29:109–139, 205-229, 399-423, 518-552

    Google Scholar 

  • Vasconcelos RO, Ladich F (2008) Development of vocalization, auditory sensitivity and acoustic communication in the Lusitanian toadfish Halobatrachus didactylus. J Exp Biol 211:502–509

    Article  PubMed  Google Scholar 

  • Vasconcelos RO, Amorim MCP, Ladich F (2007) Effects of ship noise on the detectability of communication signals in the Lusitanian toadfish. J Exp Biol 210:2104–2112

    Article  PubMed  Google Scholar 

  • von Frisch K (1923) Ein Zwergwels, der kommt, wenn man ihm pfeift. Biol Zentralblatt 43:439–446

    Google Scholar 

  • Weber EH (1820) De Aure et Auditu Hominis et Animalium. Pars 1. De Aure Animalium Aquatilium. Gerhard Fleischer, Leipzig

    Google Scholar 

  • Wright KJ, Higgs DM, Leis JM (2011) Ontogenetic and interspecific variation in hearing ability in marine fish larvae. Mar Ecol Prog Ser 424:1–13

    Article  Google Scholar 

  • Wysocki LE, Ladich F (2001) The ontogenetic development of auditory sensitivity, vocalisation and acoustic communication in the labyrinth fish Trichopsis vittata. J Comp Physiol A 187:177–187

    Article  PubMed  CAS  Google Scholar 

  • Wysocki LE, Montey K, Popper AN (2009) The influence of ambient temperature and thermal acclimation on hearing in a eurythermal and a stenothermal otophysan fish. J Exp Biol 212:3091–3099

    Article  PubMed  Google Scholar 

  • Zeddies DG, Fay RR (2005) Development of the acoustically evoked behavioral response in zebrafish to pure tones. J Exp Biol 208:1363–1372

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

I am grateful to Tanja Schulz-Mirbach and Daniel Bowling for helpful comments and suggestions on the manuscript and to André Werner for the photography of Synodontis schoutedeni.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Lechner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lechner, W. (2014). Young Squeaker Catfish Can Already Talk and Listen to Their Conspecifics. In: Witzany, G. (eds) Biocommunication of Animals. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7414-8_18

Download citation

Publish with us

Policies and ethics