Skip to main content

Communication in the Ultraviolet: Unravelling the Secret Language of Fish

  • Chapter
  • First Online:

Abstract

Ultraviolet vision is found in animals from across the animal kingdom including some mammals but excluding primates such as humans. Working under the assumption that what is conspicuous for us should also be conspicuous for other animals; scientists have often overlooked the role of UV vision in animal ecology. Indeed, despite the discovery of UV sensitivity well over a century ago, it has only been in the last 30 years that theoreticians and behavioural scientists have begun to interpret the world through the eyes of other animals, including the role UV light plays in signalling. Here, I discuss the conditions necessary for UV communication, focussing on its use in fish. I then go on to describe progress on the role UV plays in the language of fish.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allison WT, Dann SG, Helvik JV, Bradley C, Moyer HD, Hawryshyn CW (2003) Ontogeny of ultraviolet-sensitive cones in the retina of rainbow trout (Oncorhynchus mykiss). J Comp Neurol 461:294–306

    PubMed  Google Scholar 

  • Allison WT, Dann SG, Veldhoen KM, Hawryshyn CW (2006) Degeneration and regeneration of ultraviolet cone photoreceptors during development in rainbow trout. J Comp Neurol 499:702–715

    PubMed  CAS  Google Scholar 

  • Archard GA, Cuthill IC, Partridge JC (2009) Light environment and mating behavior in Trinidadian guppies (Poecilia reticulata). Behav Ecol Sociobiol 64:169–182

    Google Scholar 

  • Arnold K, Neumeyer C (1987) Wavelengths discrimination in the turtle Pseudemys scripta elegans. Vis Res 27:1501–1511

    PubMed  CAS  Google Scholar 

  • Autrum H, von Zwehl V (1964) Spektrale Empfindlichkeit einzelner Sehzellen des Bienenauges. Z vgl Physiol 48:357–384

    Google Scholar 

  • Avery JA, Bowmaker JK, Djamgoz MBA, Downing JEG (1982) Ultraviolet sensitive receptors in freshwater fish. J Physiol 334:23–24

    Google Scholar 

  • Bagnara JT, Fernandez PJ, Fujii R (2007) On the blue coloration of vertebrates. Pigment Cell Res 20:14–26

    PubMed  CAS  Google Scholar 

  • Bennett ATD (1994) Ultraviolet vision in birds: what is its function? Vis Res 34:1471–1478

    PubMed  CAS  Google Scholar 

  • Bennett ATD, Cuthill IC, Norris KJ (1994) Sexual selection and the mismeasure of color. Am Nat 144:848–860

    Google Scholar 

  • Bennett ATD, Cuthill IC, Partridge JC, Maier EJ (1996) Ultraviolet vision and mate choice in zebra finches. Nature 380:433–435

    CAS  Google Scholar 

  • Boulcott PD, Walton K, Braithwaite VA (2005) The role of ultraviolet wavelengths in the mate-choice decisions of female three-spined sticklebacks. J Exp Biol 208:1453–1458

    PubMed  CAS  Google Scholar 

  • Bowmaker JK (2008) Evolution of vertebrate visual pigments. Vis Res 48:2022–2041

    PubMed  CAS  Google Scholar 

  • Browman HI, Novales-Flamarique I, Hawryshyn CW (1994) Ultraviolet photoreception contributes to prey search behaviour in two species of zooplanktivorous fishes. J Exp Biol 186:187–198

    Google Scholar 

  • Chen D, Collins JS, Goldsmith TH (1984) The ultraviolet receptor of bird retinas. Science 225:337–340

    PubMed  CAS  Google Scholar 

  • Cheng CL, Flamarique IN, Harosi FI, Rickers-Haunerland J, Haunerland NH (2006) Photoreceptor layer of salmonid fishes: transformation and loss of single cones in juvenile fish. J Comp Neurol 495:213–235

    PubMed  Google Scholar 

  • Collin SP, Pettigrew JD (1988) Retinal topography in reef teleosts, I. Some species with well-developed areae but poorly-developed streaks. Brain Behav Evol 31:269–282

    PubMed  CAS  Google Scholar 

  • Cott HB (1940) Adaptive colouration in animals. Methuen, London

    Google Scholar 

  • Cronin TW, Marshall NJ, Quinn CA, King CA (1994) Ultraviolet photoreception in mantis shrimp. Vis Res 34:1443–1452

    PubMed  CAS  Google Scholar 

  • Cummings ME, Rosenthal GG, Ryan MJ (2003) A private ultraviolet channel in visual communication. Proc R Soc Lond Ser B Biol Sci 270:897–904

    Google Scholar 

  • Douglas RH (1986) Photopic spectral sensitivity of a teleost fish, the roach (Rutilus rutilus), with special reference to its ultraviolet sensitivity. J Comp Physiol A 159:415–421

    PubMed  CAS  Google Scholar 

  • Douglas RH, McGuigan CM (1989) The spectral transmission of freshwater teleost ocular media – an interspecific comparison and a guide to potential ultraviolet sensitivity. Vis Res 29:871–879

    PubMed  CAS  Google Scholar 

  • Dunlap WC, Williams DM, Chalker BE, Banaszak AT (1989) Biochemical photoadaptation in vision: U.V.-absorbing pigments in fish eye tissues. Comp Biochem Physiol B Biochem Mol Biol 93:601–607

    Google Scholar 

  • Dunlap WC, Shick JM, Yamamoto Y (2000) UV protection in marine organisms. I. Sunscreens, oxidative stress and antioxidants. In: Yoshikawa T, Toyokuni S, Yamamoto Y, Naito Y (eds) Free radicals in chemistry, biology and medicine. OICA International, London, pp 200–214

    Google Scholar 

  • Endler JA (1990) On the measurement and classification of colour in studies of animal colour patterns. Biol J Linn Soc 41:315–352

    Google Scholar 

  • Flamarique IN (2013) Opsin switch reveals function of the ultraviolet cone in fish foraging. Proc R Soc Lond Ser B Biol Sci 280:20122490

    Google Scholar 

  • Fleishman LJ, Loew ER, Leal M (1993) Ultraviolet vision in lizards. Nature 365:397

    Google Scholar 

  • Ghiradella H, Aneshansley D, Eisner T, Silberglied RE, Hinton HE (1972) Ultraviolet reflection of a male butterfly: interference color caused by thin-layer elaboration of wing scales. Science 178:1214–1217

    PubMed  CAS  Google Scholar 

  • Goda M, Fujii R (1995) Blue chromatophores in two species of callionymid fish. Zool Sci 12:811–813

    Google Scholar 

  • Goda M, Ohata M, Ikoma H, Fujiyoshi Y, Sugimoto M, Fujii R (2011) Integumental reddish-violet coloration owing to novel dichromatic chromatophores in the teleost fish, Pseudochromis diadema. Pigment Cell Melanoma Res 24:614–617

    PubMed  CAS  Google Scholar 

  • Goldsmith TH (1980) Hummingbirds see near ultraviolet light. Science 207:786–788

    PubMed  CAS  Google Scholar 

  • Govardovskii VI, Zueva LV (1974) Spectral sensitivity of the frog eye in the ultraviolet and visible region. Vis Res 14:1317–1321

    PubMed  CAS  Google Scholar 

  • Halpern BS, Walbridge S, Selkoe KA et al (2008) A global map of human impact on marine ecosystems. Science 319:948–952

    PubMed  CAS  Google Scholar 

  • Harosi FI, Hashimoto Y (1983) Ultraviolet visual pigment in a vertebrate: a tetrachromatic cone system in the dace. Science 222:1021–1023

    PubMed  CAS  Google Scholar 

  • Hawryshyn CW, Beauchamp R (1985) Ultraviolet photosensitivity in goldfish: an independent U.V. retinal mechanism. Vis Res 25:11–20

    PubMed  CAS  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ et al (2008) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Google Scholar 

  • Hofmann CM, O’Quin KE, Marshall NJ, Cronin TW, Seehausen O, Carleton KL (2009) The eyes have it: regulatory and structural changes both underlie cichlid visual pigment diversity. PLoS Biol 7:e1000266

    PubMed  Google Scholar 

  • Hunt DM, Wilkie SE, Bowmaker JK, Poopalasundaram S (2001) Vision in the ultraviolet. Cell Mol Life Sci 58:1583–1598

    PubMed  CAS  Google Scholar 

  • Huth HH (1972) Der Sehbereich des Violettohr-Kolibris. Naturwissenschaften 59:650

    PubMed  CAS  Google Scholar 

  • Jacobs GH (1992) Ultraviolet vision in vertebrates. Am Zool 32:544–554

    Google Scholar 

  • Jacobs GH, Deegan JF (1994) Sensitivity to ultraviolet light in the gerbil (Meriones unguiculatus): characteristics and mechanisms. Vis Res 34:1433–1441

    PubMed  CAS  Google Scholar 

  • Jacobs GH, Neitz J, Deegan JF (1991) Retinal receptors in rodents maximally sensitive to ultraviolet light. Nature 353:655–656

    PubMed  CAS  Google Scholar 

  • Jerlov NG (1976) Marine optics. Elsevier Scientific, Amsterdam/New York

    Google Scholar 

  • Kasukawa H, Oshima N, Fujii R (1986) Control of chromatophore movements in dermal chromatic units of blue damselfish–II. The motile iridophore. Comp Biochem Physiol C 83:1–7

    PubMed  CAS  Google Scholar 

  • Kelber A, Osorio D (2010) From spectral information to animal colour vision: experiments and concepts. Proc R Soc B Biol Sci 277:1617–1625

    Google Scholar 

  • Kelly DJ, Bothwell ML (2002) Avoidance of solar ultraviolet radiation by juvenile coho salmon (Oncorhynchus kisutch). Can J Fish Aquat Sci 59:474–482

    Google Scholar 

  • Kochendoerfer GG, Lin SW, Sakmar TP, Mathies RA (1999) How color visual pigments are tuned. Trends Biochem Sci 24:300–305

    PubMed  CAS  Google Scholar 

  • Kodric-Brown A, Johnson SC (2002) Ultraviolet reflectance patterns of male guppies enhance their attractiveness to females. Anim Behav 63:391–396

    Google Scholar 

  • Koehler PG, Agee HR, Leppla NC, Patterson RS (1987) Spectral sensitivity and behavioural response to light quality in the German cockroach (Dictyoptera: Blatallidae). Ann Entomol Soc Am 80:820

    Google Scholar 

  • Land MF (1972) The physics and biology of animal reflectors. Prog Biophys Mol Biol 24:75–106

    PubMed  CAS  Google Scholar 

  • Leclercq E, Taylor JF, Migaud H (2010) Morphological skin colour changes in teleosts. Fish Fish 11:159–193

    Google Scholar 

  • Leis JM, Siebeck U, Dixson DL (2011) How Nemo finds home: neuroecology of larva dispersal and population connectivity in marine, demersal fishes. Integr Comp Biol 51:826–843

    PubMed  Google Scholar 

  • Loew ER, Govardovskii VI, Rohlich P, Szel A (1996) Microspectrophotometric and immunocytochemical identification of ultraviolet photoreceptors in geckos. Vis Neurosci 13:247–256

    PubMed  CAS  Google Scholar 

  • Longley WH (1917) Studies upon the biological significance of animal coloration I – the colors and color changes of West Indian reef-fishes. J Exp Zool 23:533–601

    Google Scholar 

  • Lorenz K (1962) The function of colour in coral reef fishes. Proc R Inst G B 39:282–296

    Google Scholar 

  • Losey GS (2003) Crypsis and communication functions of UV-visible coloration in two coral reef damselfish, Dascyllus aruanus and D. reticulatus. Anim Behav 66:299–307

    Google Scholar 

  • Losey GS, Cronin TW, Goldsmith TH, Hyde D, Marshall NJ, McFarland WN (1999) The UV visual world of fishes: a review. J Fish Biol 54:921–943

    Google Scholar 

  • Losey GS, McFarland WN, Loew ER, Zamzow JP, Nelson PA, Marshall NJ (2003) Visual biology of Hawaiian coral reef fishes. I. Ocular transmission and visual pigments. Copeia 203:433–454

    Google Scholar 

  • Lubbock J (1875) Observations on bees, wasps, and ants. Part II. J Linn Soc xii:227–251

    Google Scholar 

  • Lubbock J (1888) Ants, bees and wasps: a record of observations on the habits of the social hymenoptera. Kegan Paul, Trench & Co, London

    Google Scholar 

  • Lythgoe JN (1979) The ecology of vision. Clarendon, Oxford

    Google Scholar 

  • Macias Garcia C, de Perera TB (2002) Ultraviolet-based female preferences in a viviparous fish. Behav Ecol Sociobiol 52:1–6

    Google Scholar 

  • Malloy KD, Holman MA, Mitchell D, Detrich HW 3rd (1997) Solar UVB-induced DNA damage and photoenzymatic DNA repair in antarctic zooplankton. Proc Natl Acad Sci USA 94:1258–1263

    PubMed  CAS  Google Scholar 

  • Marshall NJ (2000a) Communication and camouflage with the same ‘bright’ colours in reef fishes. Philos Trans R Soc Lond B 355:1243–1248

    CAS  Google Scholar 

  • Marshall NJ (2000b) The visual ecology of reef fish colours. In: Espmark Y, Amundsen T, Rosenqvist G (eds) Animal signals: adaptive significance of signalling and signal design in animal communication. Tapir Publishers, Trondheim, pp 83–120

    Google Scholar 

  • Marshall NJ, Jennings K, McFarland WN, Loew ER, Losey GS (2003) Visual biology of Hawaiian coral reef fishes. II. Colors of Hawaiian coral reef fish. Copeia 203:455–466

    Google Scholar 

  • Marshall NJ, Vorobyev M, Siebeck UE (2006) What does a reef fish see when it sees a reef fish? Eating ‘Nemo’. In: Kapoor BG, Ladich F, Collin SP, Raschi WG (eds) Fish communication. Science Publisher, Inc, Enfield, pp 393–422

    Google Scholar 

  • Mäthger LM, Land MF, Siebeck UE, Marshall NJ (2003) Rapid colour changes in multilayer reflecting stripes in the paradise whiptail, Pentapodus paradiseus. J Exp Biol 206:3607–3613

    PubMed  Google Scholar 

  • Menzel R, Steinmann E, De Souza J, Backhaus W (1988) Spectral sensitivity of photoreceptors and colour vision in the solitary bee, Osmia rufa. J Exp Biol 136:35–52

    Google Scholar 

  • Merker E (1932) Die Sichtbarkeit ultravioletten Lichtes. Naturwissenschaften 20:41–49

    CAS  Google Scholar 

  • Merker E (1937) Die physikalische Leistung des Fischauges in kurzwelligem Licht. Zoologische Jahrbücher der Abteilung für allgemeine Zoologie und Physiologie 58:330–364

    Google Scholar 

  • Merker E (1939) Die Physiologische Leistung des Fischauges in kurzwelligem Licht. Zoologische Jahrbücher-Abteilung für Allgemeine Zoologie und Physiologie der Tiere 59:391–428

    Google Scholar 

  • Modarressie R, Rick IP, Bakker TCM (2006) UV matters in shoaling decisions. Proc R Soc Lond Ser B Biol Sci 273:849–854

    Google Scholar 

  • Modarressie R, Rick IP, Bakker TCM (2013) Ultraviolet reflection enhances the risk of predation in a vertebrate. Curr Zool 59:151–159

    Google Scholar 

  • Neumeyer C (1984) On spectral sensitivity in the goldfish. Evidence for neural interactions between different “cone mechanisms”. Vis Res 24:1223–1231

    PubMed  CAS  Google Scholar 

  • Palacios AG, Varela FJ (1992) Colour mixing in the pigeon (Columbia livia) II: a psychophysical determination in the middle, short and near-UV wavelength range. Vis Res 32:1947–1953

    PubMed  CAS  Google Scholar 

  • Perry RJ, McNaughton PA (1991) Response properties of cones from the retina of the tiger salamander. J Physiol 433:561–587

    PubMed  CAS  Google Scholar 

  • Rick IP, Bakker TCM (2008a) Color signaling in conspicuous red sticklebacks: do ultraviolet signals surpass others? BMC Evol Biol 8:189

    PubMed  Google Scholar 

  • Rick IP, Bakker TCM (2008b) Males do not see only red: UV wavelengths and male territorial aggression in the three-spined stickleback (Gasterosteus aculeatus). Naturwissenschaften 95:631–638

    PubMed  CAS  Google Scholar 

  • Rick IP, Bakker TCM (2008c) UV wavelengths make female three-spined sticklebacks (Gasterosteus aculeatus) more attractive for males. Behav Ecol Sociobiol 62:439–445

    Google Scholar 

  • Rick IP, Modarressie R, Bakker TCM (2004) Male three-spined sticklebacks reflect in ultraviolet light. Behaviour 141:1531–1541

    Google Scholar 

  • Rick IP, Modarressie R, Bakker TCM (2006) UV wavelengths affect female mate choice in three-spined sticklebacks. Anim Behav 71:307–313

    Google Scholar 

  • Rowland WJ (1994) Proximate determinants of stickleback behaviour: an evolutionary perspective. In: Bell MA, Foster SA (eds) The evolutionary biology of the threespine stickleback. Oxford University Press, New York, pp 297–344

    Google Scholar 

  • Seehausen O, van Alphen JJM, Witte F (1997) Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science 277:1808–1811

    CAS  Google Scholar 

  • Shand J, Davies WL, Thomas N et al (2008) The influence of ontogeny and light environment on the expression of visual pigment opsins in the retina of the black bream, Acanthopagrus butcheri. J Exp Biol 211:1495–1503

    PubMed  CAS  Google Scholar 

  • Siebeck UE (2004) Communication in coral reef fish: the role of ultraviolet colour patterns in damselfish territorial behaviour. Anim Behav 68:273–282

    Google Scholar 

  • Siebeck UE, Marshall NJ (2000) Transmission of ocular media in labrid fishes. Philos Trans R Soc Lond B Biol Sci 355:1257–1261

    PubMed  CAS  Google Scholar 

  • Siebeck UE, Marshall NJ (2001) Ocular media transmission of coral reef fish – can coral reef fish see ultraviolet light? Vis Res 41:133–149

    PubMed  CAS  Google Scholar 

  • Siebeck UE, Marshall NJ (2007) Potential ultraviolet vision in pre-settlement larvae and settled reef fish – a comparison across 23 families. Vis Res 47:2337–2352

    PubMed  CAS  Google Scholar 

  • Siebeck UE, Collin SP, Ghoddusi M, Marshall NJ (2003) Occlusable corneas in toadfishes: light transmission, movement and ultrastructure of pigment during light- and dark-adaptation. J Exp Biol 206:2177–2190

    PubMed  Google Scholar 

  • Siebeck UE, Parker AN, Sprenger D, Mathger LM, Wallis G (2010) A species of reef fish that uses ultraviolet patterns for covert face recognition. Curr Biol 20:407–410

    PubMed  CAS  Google Scholar 

  • Silberglied RE (1979) Communication in the ultraviolet. Annu Rev Ecol Syst 10:373–398

    Google Scholar 

  • Sillman AJ, Govardovskii VI, Roehlich P, Southard JA, Loew ER (1997) The photoreceptors and visual pigments of the garter snake (Thamnophis sirtalis): a microspectrophotometric, scanning, electron microscopic and immunocytochemical study. J Comp Physiol 181:89–101

    CAS  Google Scholar 

  • Sinha RP, Hader DP (2002) UV-induced DNA damage and repair: a review. Photochem Photobiol Sci 1:225–236

    PubMed  CAS  Google Scholar 

  • Smith EJ, Partridge JC, Parsons KN et al (2002) Ultraviolet vision and mate choice in the guppy (Poecilia reticulata). Behav Ecol 13:11–19

    Google Scholar 

  • Sutherland JC, Griffin KP (1981) Absorption-spectrum of DNA for wavelengths greater than 300-nm. Radiat Res 86:399–410

    PubMed  CAS  Google Scholar 

  • Sweet M, Kirkham N, Bendall M, Currey L, Bythell J, Heupel M (2012) Evidence of melanoma in wild marine fish populations. PLoS One 7:e41989

    PubMed  CAS  Google Scholar 

  • Tedetti M, Sempere R (2006) Penetration of ultraviolet radiation in the marine environment: a review. Photochem Photobiol 82:389–397

    PubMed  CAS  Google Scholar 

  • Tett P (1990) The photic zone. In: Herring PJ, Campbell AK, Whitfield M, Maddock L (eds) Light and life in the sea. Cambridge University Press, Cambridge, pp 59–87

    Google Scholar 

  • von Frisch K (1953) Aus dem Leben der Bienen. Springer, Berlin/Goettingen/Heidelberg

    Google Scholar 

  • White EM, Partridge UC, Church SC (2003) Ultraviolet dermal reflexion and mate choice in the guppy, Poecilia reticulata. Anim Behav 65:693–700

    Google Scholar 

  • Williamson CE, Metzgar SL, Lovera PA, Moeller RE (1997) Solar ultraviolet radiation and the spawning habitat of yellow perch, Perca flavescens. Ecol Appl 7:1017–1023

    Google Scholar 

  • Winter Y, Lopez J, von Helversen O (2003) Ultraviolet vision in a bat. Nature 425:612–614

    PubMed  CAS  Google Scholar 

  • Wucherer MF, Michiels NK (2012) A fluorescent chromatophore changes the level of fluorescence in a reef fish. PLoS One 7:e37913

    PubMed  CAS  Google Scholar 

  • Zamzow JP (2004) Effects of diet, ultraviolet exposure, and gender on the ultraviolet absorbance of fish mucus and ocular structures. Mar Biol 144:1057–1064

    Google Scholar 

  • Zamzow JP, Losey GS (2002) Ultraviolet radiation absorbance by coral reef fish mucus: photo-protection and visual communication. Environ Biol Fish 63:41–47

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike E. Siebeck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Siebeck, U.E. (2014). Communication in the Ultraviolet: Unravelling the Secret Language of Fish. In: Witzany, G. (eds) Biocommunication of Animals. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7414-8_17

Download citation

Publish with us

Policies and ethics