Skip to main content

From Halophyte Research to Halophytes Farming

  • Chapter
  • First Online:
Sabkha Ecosystems

Part of the book series: Tasks for Vegetation Science ((TAVS,volume 47))

Abstract

The need for halophytes in saline agriculture is rising, as the increasing population seeks to feed itself with ever-decreasing soil sources and dwindling freshwater supplies. Two main steps are needed to establish sustainable halophyte farming: (i) the selection of an economically important and ecologically relevant halophyte and (ii) the development of good management practices for irrigation. The success of both steps will depend on the efforts of many actors in science, technology, environment, agronomy, industry and farming.

Crucial halophyte scientific missions are to work on the multiple uses of halophytes and their salt tolerance limits. Those investigations should also contribute to the understanding of salt mechanisms in halophytes.

In this chapter, we will show recent findings on the use of halophytes and their behavior under saline conditions, and discuss how the farmers, the industrials and consumers can benefit from such scientific knowledge to enhance the development of halophyte farming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdelly C, Barhoumi Z, Ghanya T, Debez A, Ben Hamed K, Sleimi N, Ouerghi Z, Smaoui A, Huchzermeyer B, Grignon C (2006) Potential utilisation of halophytes for the rehabilitation and valorisation of salt-affected areas in Tunisia. In: Öztürk M, Waisel Y, Khan MA, Görk G (eds) Biosaline agriculture and salinity tolerance in plants. Birkhäuser Verlag, Basel

    Google Scholar 

  2. Abdelly C, Debez A, Samoui A, Grignon C (2011) Halophyte-fodder species association may improve nutrient availability and biomass production of the Sabkha ecosystem. In: Ozturk M et al (eds) Sabkha ecosystems, tasks for vegetation science. Springer, Dordrecht, The Netherlands, pp 85–94

    Google Scholar 

  3. Breckle SM (2002) Salinity, halophytes and salt affected natural ecosystems. In: Laüchli A, Lüttge U (eds) Salinity: environment- plants- molecules. Dordrecht, The Netherlands, pp 53–77

    Google Scholar 

  4. Aslam Z (1999) Aster tripolium: a winter forage: introduction for salt-affected soils. In: Hamdy A, Lieth H, Todorović M, Moschenko M (eds) Halophyte uses in different climates, vol 2, Progress in biometeorology 14. Backhuys Publishers, Leiden, pp 95–103

    Google Scholar 

  5. Lieth H, Moschenko M (1998) Sustainable use of halophytes, 2nd edn. USF University Osnabrueck, Osnabrueck

    Google Scholar 

  6. Barrett-Lennard EG, Malcolm CV (1995) Saltland pastures in Australia: a practical guide. Department of Agriculture Western Australia, Perth

    Google Scholar 

  7. Menzel U, Lieth H (1999) Halophyte Database Vers. 2.0. Halophyte uses in different climates I: ecological and ecophysiological studies. In: Lieth H, Moschenko M, Lohman M, Koyro HW, Hamdy A (eds) Progress in biometeorology. Backhuys Publishers, Leiden, The Netherlands, pp 158–258

    Google Scholar 

  8. Choukr-Allah R, Malcolm CV, Hamdy A (eds) (1996) Halophytes and biosaline agriculture. Marcel Dekker, New York

    Google Scholar 

  9. Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18:227–25

    Article  Google Scholar 

  10. Odum EP (1974) Halophytes, energetics and ecosystems. In: Reinold RJ, Queen H (eds) Ecology of halophytes. Academic/New Press, New York, pp 599–602

    Chapter  Google Scholar 

  11. Glenn EP, O’Leary J (1985) Productivity and irrigation requirements of halophytes grown with seawater in the Sonoran Desert. J Arid Environ 9:81–91

    Google Scholar 

  12. Goodin JR, Epstein E, McKell CM, O’Leary JW (1990) Saline agriculture, salt tolerant plants for developing countries. National Academy Press, Washington, DC

    Google Scholar 

  13. Glenn EP, O’Leary JW, Watson MC, Thompson TL, Kuehl RO (1991) Salicornia bigelovii Torr.: an oilseed halophyte for seawater irrigation. Science 251:1065–1067

    Article  CAS  Google Scholar 

  14. Aronson JA, Pasternak D, Danon A (1988) Introduction and first evaluation of 120 halophytes under seawater irrigation. In: Whitehead EE et al (eds) Arid lands today and tomorrow: proceedings of an international research and development conference. Westview Press, Boulder, pp 737–746

    Google Scholar 

  15. Gallagher JL (1985) Halophytic crops for cultivation at seawater salinity. Plant Soil 89:323–336

    Article  Google Scholar 

  16. Zurayk R, Baalbaki R (1996) Inula crithmoides: a candidate plant for saline agriculture. Arid Soil Res Rehab 10:213–223

    Article  Google Scholar 

  17. Weber DJ, Ansari R, Gul B, Khan MA (2007) Potential of halophytes as sources of edible oil. J Arid Environ 68:315–321

    Article  Google Scholar 

  18. Marcone MF (2003) Batis maritima (Saltwort/Beachwort): a nutritious, halophytic, seed bearings, perennial shrub for cultivation of otherwise unproductive agricultural land affected by salinity. Food Res Int 36:123–130

    Article  Google Scholar 

  19. Ksouri R, Megdiche W, Jallali I, Debez A, Magné C, Isoda H, Abdelly C (2012) Medicinal halophytes: potent source of health promoting biomolecules with medical, nutraceutical and food applications. Crit Rev Biotechnol 32:289–326

    Article  CAS  Google Scholar 

  20. El Shaer H (2010) Halophytes and salt tolerant plants as potential forages for ruminants in the Near East region. Small Rumin Res 91:3–12

    Article  Google Scholar 

  21. Masters DG, Benes SE, Norman HC (2007) Biosaline agriculture for forage and livestock production. Agric Ecosyst Environ 119:234–248

    Article  CAS  Google Scholar 

  22. Abideen Z, Ansari R, Khan MA (2011) Halophytes: potential source of ligno-cellulosic biomass for ethanol production. Biomass Bioenerg 35:818–822

    Article  Google Scholar 

  23. Su-Lian Lv, Li-Jun Lian, Pei-Lin Tao, Zhao-Xia Li, Ke-Wei Zhang, Ju-Ren Zhang (2009) Overexpression of Thellungiella halophila H+-PPase (TsVP) in cotton enhances drought stress resistance of plants. Planta 229:899–910

    Article  Google Scholar 

  24. Colmer TD, Flowers TJ, Munns R (2006) Use of wild relatives to improve salt tolerance in wheat. J Exp Bot 57:1059–1078

    Article  CAS  Google Scholar 

  25. Munns R, Richard JA, Islam A, Colmer TD (2011) Hordeum marinum-wheat amphiploids maintain higher leaf K+:Na+ and suffer less leaf injury than wheat parents in saline conditions. Plant Soil 348:365–377

    Article  CAS  Google Scholar 

  26. Sharma HC, Crouch JH, Sharma KK, Seetharama N, Hash CT (2002) Applications of biotechnology for crop improvement: prospects and constraints. Plant Sci 163:381–395

    Article  CAS  Google Scholar 

  27. Wei Y, Guangmin X, Daying Z, Huimin C (2001) Transfer of salt tolerance from Aeluropus littoralis sinensis to wheat (Triticum aestivum L.) via asymmetric somatic hybridization. Plant Sci 161:259–266

    Article  Google Scholar 

  28. Suiyun C, Guangmin X, Taiyong Q et al (2004) Introgression of salt tolerance from somatic hybrids between common wheat and Thinopyrum ponticum. Plant Sci 167:773–779

    Article  Google Scholar 

  29. Grigoriadou K, Maloupa E (2008) Micropropagation and salt tolerance of in vitro grown Crithmum maritimum L. Plant Cell Tiss Org Cult 94:209–217

    Article  Google Scholar 

  30. Seliskar DM, Gallagher JL (2000) Exploiting wild population diversity and soma clonal variation in the salt marsh grass Distichlis spicata (Poaceae) for marsh creation and restoration. Am J Bot 87:141–146

    Article  CAS  Google Scholar 

  31. Joshi M, Mishra A, Jha B (2011) NaCl plays a key role for in vitro micropropagation of Salicornia brachiata, an extreme halophyte. Ind Crop Prod 35:313–316

    Article  Google Scholar 

  32. Al-Bahrany AM, Al-Khayri JM (2003) Micropropagation of grey mangrove Avicennia marina. Plant Cell Tissue Org Cult 72:87–93

    Article  CAS  Google Scholar 

  33. Kura-Hotta M, Mimura M, Tsujimura T, Washitani-Nemoto S, Mimura T (2001) High salt-treatment induced Na+ extrusion and low salt treatment-induced Na+ accumulation in suspension cultured cells of the mangrove plant Bruguiera sexangula. Plant Cell Environ 24:1105–1112

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ben Hamed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hamed, K.B., Magné, C., Abdelly, C. (2014). From Halophyte Research to Halophytes Farming. In: Khan, M.A., Böer, B., Öztürk, M., Al Abdessalaam, T.Z., Clüsener-Godt, M., Gul, B. (eds) Sabkha Ecosystems. Tasks for Vegetation Science, vol 47. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7411-7_9

Download citation

Publish with us

Policies and ethics