Skip to main content

Kochia (Kochia scoparia (L.) Schrad) Unwanted or Wanted Plant for Forage Production in Harsh Environments

  • Chapter
  • First Online:
Sabkha Ecosystems

Part of the book series: Tasks for Vegetation Science ((TAVS,volume 47))

Abstract

Kochia (Kochia scoparia) have recently been considered as forage and fodder crop in marginal lands. Under severe drought and salinity kochia (35 dS m-1) could produce up to 16 and 8 t DM ha-1 biomass in spring and summer cropping, respectively. Kochia produce 90 % biomass at 75 % water application in comparison to 100 % water application. Therefore, deficit irrigation is a useful management technique for Kochia even under saline conditions. Seeds of Kochia can germinate in a wide range of temperature, different levels of water potential, salinity, pH and depth of flooding and showed a high recovery from stress condition. Quick germination and growth of Kochia and its desirable drought, salinity and extreme temperature tolerance indicate that it can be considered as a valuable forage plant in case of shortage of conventional forage occurs, particularly in arid and semiarid regions. Cultivation of Kochia using saline waters for rehabilitation of saline areas, that have been left barren, can be regarded as an approach in sustainable and low-input agriculture. Biomass and seeds of Kochia can help in food production for people settled in these regions and their animals. Kochia in addition to be a forage crop can also be used bioremediation, oilseed and biofuel crop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora 199:361–376

    Article  Google Scholar 

  2. Belligno A, Sardo V (2008) Studies on halophytes and salinity problems in Mediterranean agriculture. In: Lieth H, García Sucre M, Herzog B (eds) Mangroves and halophytes: restoration and utilization. Springer, Dordrecht, Netherland

    Google Scholar 

  3. Akhani H (2006) Biodiversity of halophytic and sabkha ecosystems in Iran. In: Khan MA, Boer B, Stanislavovich kust G, Barth HJ (eds) Sabkha ecosystems, West and Central Asia, vol 2. Springer, Dordrecht, Netherland

    Google Scholar 

  4. Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  Google Scholar 

  5. UNDP (1999) Human development report. www.undp/hdro/population.htm

  6. Khan MA, Duke NC (2001) Halophytes – a resource for the future. Wetl Ecol Manag 6:455–456

    Article  Google Scholar 

  7. Rogers ME, Craige AD, Munns R, Colmer TD, Nichols PGH, Malcolm CV, Barrett-lennard EG, Brown AJ, Semple WS, Evans PM, Cowley K, Hughes SJ, Snowball R, Bennett SJ, Sweeney GC, Dear BS, Ewing MA (2005) The potential for developing fodder plants for the salt-affected areas of Southern and Eastern Australia: an overview. Aust J Exp Agric 45:301–329

    Article  Google Scholar 

  8. Koyro HW, Geißler N, Hussin S, Huchzermeyer B (2008) Survival at extreme locations: life strategies of halophytes – the long way from system ecology, whole plant physiology, cell biochemistry and molecular aspects back to sustainable utilization at field sites. In: Abdelly C, Öztürk M, Ashraf M, Grignon C (eds) Biosa-line agriculture and high salinity tolerance. Birkhäuser Verlag, Basel

    Google Scholar 

  9. Friesen IF, Beckie HJ, Warwick SI, Van Acker RC (2009) The biology of Canadian weeds. 138. Kochia scoparia (L.) Schrad. Can J Plant Sci 89:141–167

    Article  Google Scholar 

  10. USDA (1967) Food and your weight, Bulletin no. 74. USDA, Washington, DC

    Google Scholar 

  11. Frankton C, Mulligan GA (1987) Weeds of Canada (No. 948). NC Press Limited, Toronto

    Google Scholar 

  12. Heap IM (2008) International survey of herbicide resistant weeds. [Online] Available: http://www.weedscience.org. Accessed 15 Mar 2008

  13. Guttieri MI, Eberlein CV, Thill DC (1995) Diverse mutations in the acetolactate synthase gene confer chlorsulfuron resistance in kochia (Kochia scoparia) biotypes. Weed Sci 43:175–178

    CAS  Google Scholar 

  14. Stallings GP, Thill DC, Mallory-smith CA, Shafii B (1995) Pollen-mediated gene flow of sulfonylurea-resistant Kochia (Kochia scoparia). Weed Sci 43:95–102

    CAS  Google Scholar 

  15. Mulugeta D, Maxwell BD, Fay PK, Dyer WE (1994) Kochia (Kochia sco-paria) pollen dispersion, viability and germination. Weed Sci 42:548–552

    CAS  Google Scholar 

  16. Blackwell WH, Powell MJ (1981) A preliminary note on pollination in the chenopodiaceae. Ann Mo Bot Gard 68:524–526

    Article  Google Scholar 

  17. Bell AR, Nalewaja JD, Schooler AB (1972) Light period, temperature, and Kochia flowering. Weed Sci 20:462–464

    Google Scholar 

  18. Braidek J, Fedec P, Jones D (1984) Field survey of halophytic plants of disturbed sites on the Canadian Prairies. Can J Plant Sci 64:745–751

    Article  Google Scholar 

  19. Everitt JH, Alaniz MA, Lee JB (1983) Seed germination characteristics of Kochia scoparia. J Range Manag 36:646–648

    Article  Google Scholar 

  20. Evetts IL, Burnside OC (1972) Germination and development of common milkweed and other species. Weed Sci 20:371–378

    CAS  Google Scholar 

  21. Sabouri S (2012) Study different aspects of germination of Kochia seed (Ko-chia scoparia (L.) Schard) as a new forage crops. Dissertation, Ferdowsi University of Mashhad

    Google Scholar 

  22. Niemegeers MA (1994) Kochia scoparia (L.) Schard: a potential agricultural crop. University of Saskatchewan, Saskatoon

    Google Scholar 

  23. Lugg DJ, Cuesta PA, Norcross GY (1983) Effect of N and P fertilization on yield and quality of Kochia grown in the greenhouse. Commun Soil Sci Plant Anal 14:859–875

    Article  Google Scholar 

  24. Kernan J, Souslski K, Green D, Knipfel J, Coxworth E (1986) Kochia and other forage as energy crops. Saskatchewan Research Council R-811-1-e-86

    Google Scholar 

  25. Khaninejad S, Kafi M, Nabati J (2011) Evaluation the effect of nitrogen and phosphorous levels on physiological characteristics and forage yield of Kochia scoparia in irrigating with two saline waters. In: Proceeding of the second national plant physiology conference, Yazd

    Google Scholar 

  26. Salehi M, Kafi M, Kiani A (2009) Growth analysis of Kochia (Kochia sco-paria (L.) Schrad) irrigated with saline water in summer cropping. Pak J Bot 41:1861–1870

    Google Scholar 

  27. Jami Al-Ahmad M, Kafi M (2007) Kochia (Kochia scoparia (L.): to be or not to be. In: Kafi M, Khan MA (eds) Crop and forage production using saline waters. Daya Publishers, India

    Google Scholar 

  28. Nussbaum ES, Wiese AF, Crutchfield DE, Chenault EW, Lavake D (1985) The effects of temperature and rainfall on emergence and growth of eight weeds. Weed Sci 33:165–170

    Google Scholar 

  29. Sabouri S, Kafi M, Nezami A, Banayan M (2011) Evaluation of base, optimum and ceiling temperature for Kochia scoparia. J Agroecol 3:191–197

    Google Scholar 

  30. Al-Ahmadi MJ, Kafi M (2006) Salinity effects on germination properties of Kochia scoparia. Asian J Plant Sci 5:71–75

    Article  Google Scholar 

  31. Salehi M (2010) Effects of salinity and deficit irrigation on biomass production and physiomorphological aspects of Kochia seed (Kochia scoparia (L.) Schard). Dissertation, Ferdowsi University of Mashhad

    Google Scholar 

  32. Salehi M, Kafi M (2011) Initial irrigation time with saline water on the salt tolerance and ion content of Kochia scoparia (L.) Schrad at seedling stages. Span J Agric Res 9:650–653

    Article  Google Scholar 

  33. Bresler E (1987) Application of a conceptual model to irrigation water requirement and salt tolerance of crops. Soil Sci Soc Am J 51:788–793

    Article  Google Scholar 

  34. Shalhevet J, Vinten A, Meiri A (1986) Irrigation interval as a factor in sweet corn response to salinity. Agron J 78:539–545

    Article  Google Scholar 

  35. Parra MA, Cruz Romero G (1980) On the dependence of salt tolerance of beans (Phaseolus vulgaris L.) on soil water matric potentials. Plant Soil 56:3–16

    Article  CAS  Google Scholar 

  36. Letey J, Dinar A, Knapp KC (1985) Crop-water production function model for saline irrigation waters. Soil Sci Soc Am J 49:1005–1009

    Article  Google Scholar 

  37. Shani U, Dudley IM (2001) Field studies of crop response to water and salt stress. Soil Sci Soc Am J 65:1522–1528

    Article  CAS  Google Scholar 

  38. Kafi M, Asadi H, Ganjeali A (2010) Possible utilization of high-salinity waters and application of low amounts of water for production of the halophyte Kochia scoparia as alternative fodder in saline agroecosystems. Agric Water Manag 97:139–147

    Article  Google Scholar 

  39. Foster C (1980) Kochia-Poorman’s alfalfa shows potential as feed. Rangel J 2:22–23

    Google Scholar 

  40. Sherrod IB (1971) Nutritive value of Kochia scoparia (L.) yield and chemical composition at three stages of maturity. Agron J 63:343–344

    Article  CAS  Google Scholar 

  41. Bassil ES, Kaffka SR (2002) Response of safflower (Carthamus tinctorius l.) to saline soils and irrigation. I. Consumptive water use. Agric Water Manag 54:67–80

    Article  Google Scholar 

  42. Bhantana P, Lazarovitch N (2010) Evapotranspiration, crop coefficient and growth of two young pomegranates (Punica granatum l.) varieties under salt stress. Agric Water Manag 97:715–722

    Article  Google Scholar 

  43. Gul B, Ansari R, Aziz I, Khan MA (2010) Salt tolerance of Kochia scoparia: a new fodder crop for highly saline arid regions. Pak J Bot 42:2479–2487

    CAS  Google Scholar 

  44. Kafi M, Nabati J, Khaninejad S, Masomi A, Zare Mehrjerdi M (2011) Evaluation of characteristics forage in different Kochia (Kochia scoparia) ecotypes in tow salinity levels irrigation. Electron J Crop Prod 4:229–238

    Google Scholar 

  45. Soleimani MR, Kafi M, Ziaee SM, Shabahang J, Davari K (2008) Effect of limited irrigation with saline water on seed yield and seed quality of two local populations of Kochia scoparia (L.) Schrad. J Agric Sci Nat Resour 15:148–156

    Google Scholar 

  46. Ziaee S, Kafi M, Shabahang J, Khazaee H, Soleimani M (2009) Effect of plant density and harvesting time on oil and protein yield of Kochia (Kochia sco-paria (L.) Schrad.) under saline irrigation conditions. J Water Soil Sci 13:639–646

    Google Scholar 

  47. Cary JW (1971) Energy levels of water in a community of plants as influenced by soil moisture. Ecology 52:710–714

    Article  Google Scholar 

  48. Phillips WM, Launchbaugh JL (1958) Preliminary studies of the root system of Kochia scoparia at Hays, Kansas. Weeds 6:19–23

    Article  Google Scholar 

  49. Davis R, Johnson W, Wood F (1967) Weed root profiles. Agron J 59:555–556

    Article  Google Scholar 

  50. Kadereit G, Borsch T, Weising K, Freitag H (2003) Phylogeny of Amaran-thaceae and Chenopodiaceae and the evolution of C4 photosynthesis. Int J Plant Sci 164:959–986

    Article  CAS  Google Scholar 

  51. Pyankov VI, Artyusheva EG, Edwards G (1999) Formation of C4 syndrome in leaves and cotyledons of Kochia scoparia and Salsola collina (Chenopodiaceae). Russ J Plant Physiol 46:452–466

    CAS  Google Scholar 

  52. Muhaidat R, Sage RF, Dengler NG (2007) Diversity of Kranz anatomy and biochemistry in C4 eudicots. Am J Bot 94:362–381

    Article  CAS  Google Scholar 

  53. Brownell PF, Crossland CJ (1972) The requirement of sodium as micronutrient by species having the C4 dicarboxylic photosynthetic pathway. Plant Physiol 49:794–797

    Article  CAS  Google Scholar 

  54. Collins RP, Jones MB (1986) The influence of climatic factors on the distribution of C4 species in Europe. Plant Ecol 64:121–129

    Article  Google Scholar 

  55. Cymbaluk NF, Millar JD (1986) Oxalate concentration in feeds and its metabolism by ponies. Can J Anim Sci 66:1107–1116

    Article  CAS  Google Scholar 

  56. Whang WK, Hahn DR (1991) Saponins from the fructus of Kochia scoparia. Arch Pharm Res 14:176–180

    Article  Google Scholar 

  57. Rankins JDL, Smith GS (1991) Nutritional and toxicological evaluations of Kochia hay (Kochia scoparia) fed to lambs. J Anim Sci 69:2925–2931

    Article  Google Scholar 

  58. Sprowls R (1981) Problems observed in horses, cattle and sheep grazing [Kochia scoparia, forage crop]. In: Proceedings of the annual meeting – American Association of Veterinary Laboratory Diagnosticians, Madison 397–406

    Google Scholar 

  59. Shi GL, Zhao IL, Liu SQ, Cao H, Clarke SR, Sun JH (2006) Acaricidal activities of extracts of Kochia scoparia against Tetranychus urticea, Tetranchus cin-nabarinus, and Tetranychus viennensis (acari:tetranychidea). J Econ Entomol 99:858–863

    Article  CAS  Google Scholar 

  60. Erickson EL, Moxon AL (1947) Forage from Kochia. Agricultural Experiment Station, South Dakota State College 384

    Google Scholar 

  61. Pumhirum P, Towiwat P, Mahakit P (1997) Aeroallergen sensitivity of Thai patients with allergic rhinitis. Asian-Pac J Allerg Immunol 15:183–185

    Google Scholar 

  62. Suliaman FA, Holmes WF, Kwick S, Khouri FR, Atard R (1997) Pattern of immediate type hypersensitivity reactions in the Eastern province, Saudi Arabia. Ann Allerg Asthma Immunol 78:415–418

    Article  CAS  Google Scholar 

  63. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  64. Balnokin YV, Myasoedov NA, Shamsutdinov ZS, Shamsutdinov NZ (2005) Significant of Na and K for sustained hydration of organ tissues in ecologically distinct halophytes of the family chenopodiaceae. Russ J Plant Physiol 52:882–890

    Google Scholar 

  65. Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plant 133:651–669

    Article  CAS  Google Scholar 

  66. Bilski JJ, Foy CD (1988) Differential tolerances of weed species to aluminum, manganese, and salinity. J Plant Nutr 11:93–105

    Article  CAS  Google Scholar 

  67. Pitman MG (1984) Transport across the root and shoot/root interaction. In: Staples RC, Toennissen GH (eds) Salinity tolerance in plants: strategies for crop improvement. John Wiley & Sons, New York

    Google Scholar 

  68. Wang S, Zhu XY (1994) Studies on the characteristics of ion absorption and distribution in Puccinella tenuiflora. Acta Pratacult Sin 3:39–43

    CAS  Google Scholar 

  69. Welkie GW, Caldwell M (1970) Leaf anatomy of species in some dicotyledon families as related to the C3 and C4 pathways of carbon fixation. Can J Bot 48:2135–2146

    Article  Google Scholar 

  70. Baker HG (1974) The evolution of weeds. Annu Rev Ecol Syst 5:1–24

    Article  Google Scholar 

  71. Katerji N, Van Hoorn JW, Hamdy A, Mastrorilli M (2003) Salinity effect on crop development and yield analysis of salt tolerance according to several classification methods. Agric Water Manag 63:37–66

    Article  Google Scholar 

  72. Richard RA (1992) Increasing salinity tolerance of grain crops: is it worth-while? Plant Soil 146:89–98

    Article  Google Scholar 

  73. Rengasamy P, Chittleborought D, Helyar K (2003) Root-zone constraints and plant-based solution for dryland salinity. Plant Soil 257:249–260

    Article  CAS  Google Scholar 

  74. Steppuhn H, Wall K (1993) Kochia scoparia emergence from saline soil under various water regimes. J Range Manag 46:533–538

    Article  Google Scholar 

  75. Finley IJ, Sherrod IB (1971) Nutritive value of Kochia scoparia: intake and digestibility of forage harvested at different maturity stages. J Dairy Sci 54:231–234

    Article  Google Scholar 

  76. Moyer JR, Hironaka R (1993) Digestible energy and protein content of some annual weeds, alfalfa, bromegrass, and tame oats. Can J Plant Sci 73:1305–1308

    Article  CAS  Google Scholar 

  77. Madrid J, Hernandez F, Pulgar MA, Cid JM (1996) Nutritive value of Kochia scoparia (L.) and ammoniated barley straw for goats. Small Rumin Res 19:213–218

    Article  Google Scholar 

  78. Mir Z, Bittman S, Townley-smith I (1991) Nutritive value of Kochia (Kochia scoparia) hay or silage grown in a black soil zone in Northeastern Saskatchewan for sheep. Can J Anim Sci 71:107–114

    Article  Google Scholar 

  79. Cohen RDH, Iwaasa AD, Mann ME, Coxworth E, Kernan JA (1989) Studies on the feeding valte of Kochia scoparia Schrad. hay for beef cattle. Can J Anim Sci 69:735–743

    Article  Google Scholar 

  80. Steppuhn H, Green DG, Knipfel JE, Coxworth E, Kernan JA (1994) Response of Kochia scoparia to nitrogen fertilization on a saline soil. Can J Soil Sci 74:267–275

    Article  CAS  Google Scholar 

  81. Farajian Mashhadi MA, Kafi M, Nezami A, Sharif Rohani M (2013) Qualitative and quantitative forage production in intercropping of Kochia (Kochia sco-paria (L.) with blue panic grass (Panicum antidotale) under irrigation with saline water. J Agroecol 4:282–293

    Google Scholar 

  82. Dickie CW, Berryman J (1979) Polioencephalo-malacia and photosensitization associated with Kochia scoparia consumption in range cattle. J Am Vet Med Assoc 175:463–465

    CAS  Google Scholar 

  83. Coxworth E, Green D, Kernan J (1988) Improving the agronomic and feed value of Kochia: Saskatchewan Research Council. SRC technical report no. R-814-4-b-88

    Google Scholar 

  84. Drost-karbowska K, Kowalewski Z, Phillipson JD (1987) Isolation of harmane and harmine from Kochia scoparia (L.). Lioydia 41:289–290

    Google Scholar 

  85. Coxworth E, Salmon RE (1972) Kochia seed as a component of the diet of Turkey poults: effects of different methods of saponin removal of inactivation. Can J Anim Sci 52:721–729

    Article  CAS  Google Scholar 

  86. Green D, Knipfel J, Kernan J, Coxworth E (1986) Evaluation of Kochia as high yielding forage for saline soils. Paper presented at soils and crops workshop, University of Saskatchewan, Saskatoon, Canada

    Google Scholar 

  87. Redmann RE, Fedec P (1987) Mineral ion composition of halophytes and associated soils in Western Canada. Commun Soil Sci Plant 18:559–580

    Article  CAS  Google Scholar 

  88. Lasat MM, Norvell WA, Kochian IV (1997) Potential for phytoextraction of 137cs from a contaminated soil. Plant Soil 195:99–106

    Article  CAS  Google Scholar 

  89. Robson D, Knight J, Fanell R, Germida J (2004) Natural revegetation of hydrocarbon-contaminated soil in semi-arid grasslands. Can J Bot 82:22–30

    Article  Google Scholar 

  90. Perkovich BA, Anderson TA, Kruger EL, Coats JR (1996) Enhanced mineralization of atrazine in Kochia scoparia rhizospheric soil from a pesticide-contaminated site. Pestic Sci 46:391–396

    Article  CAS  Google Scholar 

  91. Steppuhn H, MT V g, Grieve CM (2005) Root-zone salinity. II. Indices for tolerance in agricultural crops. Crop Sci 45:221–232

    Article  Google Scholar 

  92. Snow W (2004) Chemical and physical structure of fatty acids. http://www.supplementquality.com/news/fatty_acid_structure.html

  93. Weber DJ, Ansari R, Gul B, Khan MA (2007) Potential of halophytes as source of edible oil. J Arid Environ 68:315–321

    Article  Google Scholar 

  94. Whitney H, Sayanova O, Lewis MJ, Pickett J, Napier JA (2000) Isolation of two putative acyl-acl carrier protein desaturation enzymes from Kochia scoparia. Paper presented at 14th International symposium on plant lipids, Cardiff University, Cardiff

    Google Scholar 

  95. Farrell AE, Plevin RJ, Turner BT, Jones AD, O’hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 311:506–508

    Article  CAS  Google Scholar 

  96. Dominik R, Janssen R (2007) Biofuel technology handbook. WIP Renewable Energies, Munich

    Google Scholar 

  97. Abideen Z, Ansari R, Khan MA (2011) Halophytes: potential source of lignocellulosic biomass for ethanol production. Biomass Bioenerg 35:1818–1822

    Article  CAS  Google Scholar 

  98. Rozema J, Flowers TJ (2008) Crops for a salinized world. Science 322:1478–1480

    Article  CAS  Google Scholar 

  99. Palmqvist E, Hahn-hägerdal B (2000) Fermentation of lignocellulosic hydrolysates: inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33

    Article  CAS  Google Scholar 

  100. Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26

    Article  CAS  Google Scholar 

  101. Liu ZL, Slininger PJ, Gorsich SW (2005) Enhanced biotransformation of fur-fural and hydroxymethylfurfural by newly developed ethanologenic yeast strains. In: Davison B, Evans R, Finkelstein M, Mcmillan JD (eds) Proceedings of 26th symposium on biotechnology for fuels and chemicals. Humana Press, Totowa

    Google Scholar 

  102. Lee W, Lee J, Shin C, Park S, Chang H, Chang Y (1999) Ethanol production using concentrated oak wood hydrolysates and methods to detoxify. Appl Microbiol Biotechnol 78:547–559

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Kafi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kafi, M., Gul, B., Salehi, M. (2014). Kochia (Kochia scoparia (L.) Schrad) Unwanted or Wanted Plant for Forage Production in Harsh Environments. In: Khan, M.A., Böer, B., Öztürk, M., Al Abdessalaam, T.Z., Clüsener-Godt, M., Gul, B. (eds) Sabkha Ecosystems. Tasks for Vegetation Science, vol 47. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7411-7_11

Download citation

Publish with us

Policies and ethics