Skip to main content

Brassica oleracea (Botrytis Group)

  • Chapter
  • First Online:
Edible Medicinal And Non-Medicinal Plants

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Selected References

  • Aggarwal BB, Ichikawa H (2005) Molecular targets and anticancer potential of indole-3-carbinol and its derivatives. Cell Cycle 4(9):1201–1215

    CAS  PubMed  Google Scholar 

  • Bailey GS, Hendricks JD, Shelton DW, Nixon JE, Pawlowski NE (1987) Enhancement of carcinogenesis by the natural anticarcinogen indole-3-carbinol. J Natl Cancer Inst 78(5):931–934

    CAS  PubMed  Google Scholar 

  • Barrieu F, Thomas D, Marty-Mazars D, Charbonnier M, Marty F (1998) Tonoplast intrinsic proteins from cauliflower (Brassica oleracea L. var. botrytis): immunological analysis, cDNA cloning and evidence for expression in meristematic tissues. Planta 204(3):335–344

    CAS  PubMed  Google Scholar 

  • Bjeldanes LF, Kim JY, Grose KR, Bartholomew JC, Bradfield CA (1991) Aromatic hydrocarbon responsiveness-receptor agonists generated from indole-3-carbinol in vitro and in vivo: comparisons with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Proc Natl Acad Sci USA 88(21):9543–9547

    CAS  PubMed Central  PubMed  Google Scholar 

  • Branca F, Li G, Goyal S, Quiros CF (2002) Survey of aliphatic glucosinolates in Sicilian wild and cultivated Brassicaceae. Phytochemistry 59(7):717–724

    CAS  PubMed  Google Scholar 

  • Brignall MS (2001) Prevention and treatment of cancer with indole-3-carbinol. Altern Med Rev 6(6):580–589

    CAS  PubMed  Google Scholar 

  • Buttery RG, Guadagni DG, Ling LC, Seifert RM, Lipton W (1976) Additional volatile components of cabbage, broccoli, and cauliflower. J Agric Food Chem 24(4):829–832

    CAS  Google Scholar 

  • Cabello-Hurtado F, Gicquel M, Esnault M-A (2012) Evaluation of the antioxidant potential of cauliflower (Brassica oleracea) from a glucosinolate content perspective. Food Chem 132(2):1003–1009

    CAS  Google Scholar 

  • Carlson DG, Daxenbichler ME, Van Etten CH, Kwolek WF, Williams PH (1987) Glucosinolates in crucifer vegetables: broccoli, Brussels sprouts, cauliflower, collards, kale, mustard greens, and kohlrabi. J Am Soc Hortic Sci 112:173–178

    CAS  Google Scholar 

  • Cartea ME, Francisco M, Soengas P, Velasco P (2011) Phenolic compounds in Brassica vegetables. Molecules 16:251–280

    CAS  Google Scholar 

  • Chatterji U, Riby JE, Taniguchi T, Bjeldanes EL, Bjeldanes LF, Firestone GL (2004) Indole-3-carbinol stimulates transcription of the interferon gamma receptor 1 gene and augments interferon responsiveness in human breast cancer cells. Carcinogenesis 25(7):1119–1128

    CAS  PubMed  Google Scholar 

  • Chen YH, Yang D (2002) Differential effects of vegetable-derived indoles on the induction of quinone reductase in hepatoma cells. J Nutr Sci Vitaminol (Tokyo) 48(6):477–482

    CAS  Google Scholar 

  • Chen I, Safe S, Bjeldanes L (1996) Indole-3-carbinol and diindolylmethane as aryl hydrocarbon (Ah) receptor agonists and antagonists in T47D human breast cancer cells. Biochem Pharmacol 51(8):1069–1076

    CAS  PubMed  Google Scholar 

  • Chen YH, Dai HJ, Chang HP (2003) Suppression of inducible nitric oxide production by indole and isothiocyanate derivatives from Brassica plants in stimulated macrophages. Planta Med 69(8):696–700

    CAS  PubMed  Google Scholar 

  • Chinni SR, Sarkar FH (2002) Akt inactivation is a key event in indole-3-carbinol-induced apoptosis in PC-3 cells. Clin Cancer Res 8(4):1228–1236

    CAS  PubMed  Google Scholar 

  • Chinni SR, Li Y, Upadhyay S, Koppolu PK, Sarkar FH (2001) Indole-3-carbinol (I3C) induced cell growth inhibition, G1 cell cycle arrest and apoptosis in prostate cancer cells. Oncogene 20(23):2927–2936

    CAS  PubMed  Google Scholar 

  • Choi Y, Kim Y, Park S, Lee KW, Park T (2012a) Indole-3-carbinol prevents diet-induced obesity through modulation of multiple genes related to adipogenesis, thermogenesis or inflammation in the visceral adipose tissue of mice. J Nutr Biochem 23(12):1732–1739

    CAS  PubMed  Google Scholar 

  • Choi Y, Um SJ, Park T (2012b) Indole-3-carbinol directly targets SIRT1 to inhibit adipocyte differentiation. Int J Obes (Lond) 37:881–884. doi:10.1038/ijo.2012.158

    Google Scholar 

  • Cover CM, Hsieh SJ, Tran SH, Hallden G, Kim GS, Bjeldanes LF, Firestone GL (1998) Indole-3-carbinol inhibits the expression of cyclin-dependent kinase-6 and induces a G1 cell cycle arrest of human breast cancer cells independent of estrogen receptor signaling. J Biol Chem 273(7):3838–3847

    CAS  PubMed  Google Scholar 

  • Cover CM, Hsieh SJ, Cram EJ, Hong C, Riby JE, Bjeldanes LF, Firestone GL (1999) Indole-3-carbinol and tamoxifen cooperate to arrest the cell cycle of MCF-7 human breast cancer cells. Cancer Res 59(6):1244–1251

    CAS  PubMed  Google Scholar 

  • Cram EJ, Liu BD, Bjeldanes LF, Firestone GL (2001) Indole-3-carbinol inhibits CDK6 expression in human MCF-7 breast cancer cells by disrupting Sp1 transcription factor interactions with a composite element in the CDK6 gene promoter. J Biol Chem 276(25):22332–22340

    CAS  PubMed  Google Scholar 

  • Degner SC, Papoutsis AJ, Selmin O, Romagnolo DF (2009) Targeting of aryl hydrocarbon receptor-mediated activation of cyclooxygenase-2 expression by the indole-3-carbinol metabolite 3,3′-diindolylmethane in breast cancer cells. J Nutr 139(1):26–32

    CAS  PubMed Central  PubMed  Google Scholar 

  • El-Shinnawy NA, Abd-Elmageid SA, Alshailabi EM (2012) Evaluation of antiulcer activity of indole-3-carbinol and/or omeprazole on aspirin-induced gastric ulcer in rats. Toxicol Ind Health (in press)

    Google Scholar 

  • Engel E, Baty C, Le Corre D, Souchon I, Martin N (2002) Flavor-active compounds potentially implicated in cooked cauliflower acceptance. J Agric Food Chem 50(22):6459–6467

    CAS  PubMed  Google Scholar 

  • Fahey JW, Zhang Y, Talalay P (1997) Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc Natl Acad Sci USA 94:10367–10372

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fan S, Meng Q, Auborn K, Carter T, Rosen EM (2006) BRCA1 and BRCA2 as molecular targets for phytochemicals indole-3-carbinol and genistein in breast and prostate cancer cells. Br J Cancer 94(3):407–426

    CAS  PubMed Central  PubMed  Google Scholar 

  • FAO (2012) FAO STAT. Food and Agricultural Organization of United Nations, Economic and Social Department, The Statistical Division. http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor

  • Femenia A, Garosi P, Roberts K, Waldron KW, Selvendran RR, Robertson JA (1998) Tissue-related changes in methyl-esterification of pectic polysaccharides in cauliflower (Brassica oleracea L. var. botrytis) stems. Planta 205(3):438–444

    CAS  PubMed  Google Scholar 

  • Firestone GL, Bjeldanes LF (2003) Indole-3-carbinol and 3-3′-diindolylmethane antiproliferative signaling pathways control cell-cycle gene transcription in human breast cancer cells by regulating promoter-Sp1 transcription factor interactions. J Nutr 133(7 Suppl):2448S–2455S

    PubMed  Google Scholar 

  • Fowke JH, Morrow JD, Motley S, Bostick RM, Ness RM (2006) Brassica vegetable consumption reduces urinary F2-isoprostane levels independent of micronutrient intake. Carcinogenesis 27(10):2096–2102

    CAS  PubMed  Google Scholar 

  • Fukasawa H, Yamaguchi M, Chou MY, Matsumoto H, Matsukage A (1980) Characterization of two DNA polymerases from cauliflower inflorescence. J Biochem 87(4):1167–1175

    CAS  PubMed  Google Scholar 

  • Fukata H, Mochida A, Maruyama N, Fukasawa H (1991) Chloroplast DNA topoisomerase I from cauliflower. J Biochem 109(1):127–131

    CAS  PubMed  Google Scholar 

  • Gratacós-Cubarsí M, Ribas-Agustí A, García-Regueiro JA, Castellari M (2010) Simultaneous evaluation of intact glucosinolates and phenolic compounds by UPLC-DAD-MS/MS in Brassica oleracea L. var. botrytis. Food Chem 121(1):257–263

    Google Scholar 

  • Gray AR (1989) Taxonomy and evolution of broccolis and cauliflowers. Baileya 23:28–46

    Google Scholar 

  • Guo Y, Wu XQ, Zhang C, Liao ZX, Wu Y, Xia ZY, Wang H (2010) Effect of indole-3-carbinol on ethanol-induced liver injury and acetaldehyde-stimulated hepatic stellate cells activation using precision-cut rat liver slices. Clin Exp Pharmacol Physiol 37(12):1107–1113

    CAS  PubMed  Google Scholar 

  • Hamed MA, Aly HF, Ali SA, Metwalley NS, Hassan SA, Ahmed SA (2012) In vitro and in vivo assessment of some functional foods against initiation of hepatocellular carcinoma. J Basic Appl Sci Res 2(1):471–483

    Google Scholar 

  • Hecht SS, Carmella SG, Kenney PM, Low SH, Arakawa K, Yu MC (2004) Effects of cruciferous vegetable consumption on urinary metabolites of the tobacco-specific lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in Singapore Chinese. Cancer Epidemiol Biomark Prev 13(6):997–1004

    CAS  Google Scholar 

  • Hermanides HK, Laheÿ-de Boer AM, Zuidmeer L, Guikers C, van Ree R, Knulst AC (2006) Brassica oleracea pollen, a new source of occupational allergens. Allergy 61(4):498–502

    CAS  PubMed  Google Scholar 

  • Hodges DM, Munro KD, Forney CF, McRae KB (2006) Glucosinolate and free sugar content in cauliflower (Brassica oleracea var. botrytis cv. Freemont) during controlled-atmosphere storage. Postharvest Biol Technol 40(2):123–132

    CAS  Google Scholar 

  • Hong C, Firestone GL, Bjeldanes LF (2002) Bcl-2 family-mediated apoptotic effects of 3,3′-diindolylmethane (DIM) in human breast cancer cells. Biochem Pharmacol 63(6):1085–1097

    CAS  PubMed  Google Scholar 

  • Hsu JC, Zhang J, Dev A, Wing A, Bjeldanes LF, Firestone GL (2005) Indole-3-carbinol inhibition of androgen receptor expression and downregulation of androgen responsiveness in human prostate cancer cells. Carcinogenesis 26(11):1896–1904

    CAS  PubMed  Google Scholar 

  • Hsu JC, Dev A, Wing A, Brew CT, Bjeldanes LF, Firestone GL (2006) Indole-3-carbinol mediated cell cycle arrest of LNCaP human prostate cancer cells requires the induced production of activated p53 tumor suppressor protein. Biochem Pharmacol 72(12):1714–1723

    CAS  PubMed  Google Scholar 

  • Ishibashi H, Kuwahara T, Nakayama-Imaohji H, Ohnishi Y, Mori H, Shimada M (2012) Effects of indole-3-carbinol and phenethyl isothiocyanate on bile and pancreatic juice excretion in rats. J Med Invest 59(3–4):246–252

    PubMed  Google Scholar 

  • Jiang J, Kang TB, Shim DW, Oh NH, Kim TJ, Lee KH (2013) Indole-3-carbinol inhibits LPS-induced inflammatory response by blocking TRIF-dependent signaling pathway in macrophages. Food Chem Toxicol 57:256–261

    CAS  PubMed  Google Scholar 

  • Jump SM, Kung J, Staub R, Kinseth MA, Cram EJ, Yudina LN, Preobrazhenskaya MN, Bjeldanes LF, Firestone GL (2008) N-Alkoxy derivatization of indole-3-carbinol increases the efficacy of the G1 cell cycle arrest and of I3C-specific regulation of cell cycle gene transcription and activity in human breast cancer cells. Biochem Pharmacol 75(3):713–724

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kassie F, Anderson LB, Scherber R, Yu N, Lahti D, Upadhyaya P, Hecht SS (2007) Indole-3-carbinol inhibits 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone plus benzo(a)pyrene-induced lung tumorigenesis in A/J mice and modulates carcinogen-induced alterations in protein levels. Cancer Res 67(13):6502–6511

    CAS  PubMed  Google Scholar 

  • Kawamori T, Tanaka T, Ohnishi M, Hirose Y, Nakamura Y, Satoh K, Hara A, Mori H (1995) Chemoprevention of azoxymethane-induced colon carcinogenesis by dietary feeding of S-methyl methanethiosulfonate in male F344 rats. Cancer Res 55(18):4053–4058

    CAS  PubMed  Google Scholar 

  • Kimura S, Kai M, Kobayashi H, Suzuki A, Morioka H, Otsuka E, Sakaguchi K (1997) A structure-specific endonuclease from cauliflower (Brassica oleracea var. botrytis) inflorescence. Nucleic Acids Res 25(24):4970–4976

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kirsh VA, Peters U, Mayne ST, Subar AF, Chatterjee N, Johnson CC, Hayes RB (2007) Prostate, lung, colorectal and ovarian cancer screening trial. Prospective study of fruit and vegetable intake and risk of prostate cancer. J Natl Cancer Inst 99(15):1200–1209

    PubMed  Google Scholar 

  • Köksal E, Gülçin I (2008) Purification and characterization of peroxidase from cauliflower (Brassica oleracea L. var. botrytis) buds. Protein Pept Lett 15(4):320–326

    PubMed  Google Scholar 

  • Lee ISL, Boyce MC, Breadmore MC (2011) A rapid quantitative determination of phenolic acids in Brassica oleracea by capillary zone electrophoresis. Food Chem 127(2):797–801

    CAS  PubMed  Google Scholar 

  • Lelario F, Bianco G, Bufo SA, Cataldi TRI (2012) Establishing the occurrence of major and minor glucosinolates in Brassicaceae by LC–ESI-hybrid linear ion-trap and Fourier-transform ion cyclotron resonance mass spectrometry. Phytochemistry 73:74–83

    CAS  PubMed  Google Scholar 

  • Li L, Lu S, Cosman KM, Earle ED, Garvin DF, O’Neill J (2006) Beta-carotene accumulation induced by the cauliflower Or gene is not due to an increased capacity of biosynthesis. Phytochemistry 67(12):1177–1184

    CAS  PubMed  Google Scholar 

  • Liberty Hyde Bailey Hortorium (1976) Hortus Third. A concise dictionary of plants cultivated in the United States and Canada. Liberty Hyde Bailey Hortorium/Cornell University/Wiley, New York, 1312 pp

    Google Scholar 

  • Lima EA, Diré G, Mattos DM, Freitas RS, Gomes ML, de Oliveira MB, Faria MV, Jales RL, Bernardo-Filho M (2002) Effect of an extract of cauliflower (leaf) on the labeling of blood elements with technetium-99m and on the survival of Escherichia coli AB1157 submitted to the treatment with stannous chloride. Food Chem Toxicol 40(7):919–923

    CAS  PubMed  Google Scholar 

  • Llorach R, Espín JC, Tomás-Barberán FA, Ferreres F (2003a) Valorization of cauliflower (Brassica oleracea L. var. Botrytis) by-products as a source of antioxidant phenolics. J Agric Food Chem 51(8):2181–2187

    CAS  PubMed  Google Scholar 

  • Llorach R, Gil-Izquierdo A, Ferreres F, Tomás-Barberán FA (2003b) HPLC-DAD-MS/MS ESI characterization of unusual highly glycosylated acylated flavonoids from cauliflower (Brassica oleracea L. var. botrytis) agroindustrial byproducts. J Agric Food Chem 51(13):3895–3899

    CAS  PubMed  Google Scholar 

  • Loub WD, Wattenberg LW, Davis DW (1975) Aryl hydrocarbon hydroxylase induction in rat tissues by naturally occurring indoles of cruciferous plants. J Natl Cancer Inst 54(4):985–988

    CAS  PubMed  Google Scholar 

  • Lu HF, Tung WL, Yang JS, Huang FM, Lee CS, Huang YP, Liao WY, Chen YL, Chung JG (2012) In vitro suppression of growth of murine WEHI-3 leukemia cells and in vivo promotion of phagocytosis in a leukemia mice model by indole-3-carbinol. J Agric Food Chem 60(31):7634–7643

    CAS  PubMed  Google Scholar 

  • Machijima Y, Ishikawa C, Sawada S, Okudaira T, Uchihara JN, Tanaka Y, Taira N, Mori N (2009) Anti-adult T-cell leukemia/lymphoma effects of indole-3-carbinol. Retrovirology 6:7

    PubMed Central  PubMed  Google Scholar 

  • Maiyoh GK, Kuh JE, Casaschi A, Theriault AG (2007) Cruciferous indole-3-carbinol inhibits apolipoprotein B secretion in HepG2 cells. J Nutr 137(10):2185–2189

    CAS  PubMed  Google Scholar 

  • Marconett CN, Sundar SN, Poindexter KM, Stueve TR, Bjeldanes LF, Firestone GL (2010) Indole-3-carbinol triggers aryl hydrocarbon receptor-dependent estrogen receptor (ER)alpha protein degradation in breast cancer cells disrupting an ERalpha-GATA3 transcriptional cross-regulatory loop. Mol Biol Cell 21(7):1166–1177

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matich AJ, McKenzie MJ, Lill RE, Brummell DA, McGhie TK, Chen RKY, Rowan DD (2012) Selenoglucosinolates and their metabolites produced in Brassica spp. fertilised with sodium selenate. Phytochemistry 75:140–152

    CAS  PubMed  Google Scholar 

  • Matsuzaki Y, Koyama M, Hitomi T, Kawanaka M, Sakai T (2004) Indole-3-carbinol activates the cyclin-dependent kinase inhibitor p15(INK4b) gene. FEBS Lett 576(1–2):137–140

    CAS  PubMed  Google Scholar 

  • Mazelis M, Liu ES (1967) Serine transhydroxymethylase of cauliflower (Brassica oleracea var. botrytis L.): partial purification and properties. Plant Physiol 42(12):1763–1768

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mizuochi T, Fukasawa H (1976) Comparative studies on polyguanylate polymerase and polyadenylate polymerase activities in the DNA-dependent RNA polymerase I fraction from cauliflower. J Biochem 79(1):53–60

    CAS  PubMed  Google Scholar 

  • Moorhead GB, Meek SE, Douglas P, Bridges D, Smith CS, Morrice N, MacKintosh C (2003) Purification of a plant nucleotide pyrophosphatase as a protein that interferes with nitrate reductase and glutamine synthetase assays. Eur J Biochem 270(6):1356–1362

    CAS  PubMed  Google Scholar 

  • Nakamura Y, Matsuo T, Shimoi K, Nakamura Y, Tomita I (1993) S-methyl methane thiosulfonate, a new antimutagenic compound isolated from Brassica oleracea L. var. botrytis. Biol Pharm Bull 16(2):207–209

    CAS  PubMed  Google Scholar 

  • Nguyen HH, Aronchik I, Brar GA, Nguyen DH, Bjeldanes LF, Firestone GL (2008) The dietary phytochemical indole-3-carbinol is a natural elastase enzymatic inhibitor that disrupts cyclin E protein processing. Proc Natl Acad Sci USA 105(50):19750–19755

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pappa G, Strathmann J, Löwinger M, Bartsch H, Gerhäuser C (2007) Quantitative combination effects between sulforaphane and 3,3′-diindolylmethane on proliferation of human colon cancer cells in vitro. Carcinogenesis 28(7):1471–1477

    CAS  PubMed  Google Scholar 

  • Park MK, Rhee YH, Lee HJ, Lee EO, Kim KH, Park MJ, Jeon BH, Shim BS, Jung CH, Choi SH, Ahn KS, Kim SH (2008) Antiplatelet and antithrombotic activity of indole-3-carbinol in vitro and in vivo. Phytother Res 22(1):58–64

    CAS  PubMed  Google Scholar 

  • Pedras MS, Sarwar MG, Suchy M, Adio AM (2006) The phytoalexins from cauliflower, caulilexins A, B and C: isolation, structure determination, syntheses and antifungal activity. Phytochemistry 67(14):1503–1509

    CAS  PubMed  Google Scholar 

  • Ping J, Gao AM, Qin HQ, Wei XN, Bai J, Liu L, Li XH, Li RW, Ao Y, Wang H (2011a) Indole-3-carbinol enhances the resolution of rat liver fibrosis and stimulates hepatic stellate cell apoptosis by blocking the inhibitor of κB kinase α/inhibitor of κB-α/nuclear factor-κB pathway. J Pharmacol Exp Ther 339(2):694–703

    CAS  PubMed  Google Scholar 

  • Ping J, Li JT, Liao ZX, Shang L, Wang H (2011b) Indole-3-carbinol inhibits hepatic stellate cells proliferation by blocking NADPH oxidase/reactive oxygen species/p38 MAPK pathway. Eur J Pharmacol 650(2–3):656–662

    CAS  PubMed  Google Scholar 

  • Rahman KW, Sarkar FH (2005) Inhibition of nuclear translocation of nuclear factor-{kappa}B contributes to 3,3′-diindolylmethane-induced apoptosis in breast cancer cells. Cancer Res 65(1):364–371

    CAS  PubMed  Google Scholar 

  • Rahman KM, Sarkar FH, Banerjee S, Wang Z, Liao DJ, Hong X, Sarkar NH (2006) Therapeutic intervention of experimental breast cancer bone metastasis by indole-3-carbinol in SCID-human mouse model. Mol Cancer Ther 5(11):2747–2756

    CAS  PubMed  Google Scholar 

  • Riby JE, Feng C, Chang YC, Schaldach CM, Firestone GL, Bjeldanes LF (2000) The major cyclic trimeric product of indole-3-carbinol is a strong agonist of the estrogen receptor signaling pathway. Biochemistry 39(5):910–918

    CAS  PubMed  Google Scholar 

  • Roh YS, Cho A, Islam MR, Cho SD, Kim J, Kim JH, Lee JW, Lim CW, Kim B (2011) 3,3′-Diindolylmethane induces immunotoxicity via splenocyte apoptosis in neonatal mice. Toxicol Lett 206(2):218–228

    CAS  PubMed  Google Scholar 

  • Roman-Ramos R, Flores-Saenz JL, Alarcon-Aguilar FJ (1995) Anti-hyperglycemic effect of some edible plants. J Ethnopharmacol 48(1):25–32

    CAS  PubMed  Google Scholar 

  • Rurek M (2010) Diverse accumulation of several dehydrin-like proteins in cauliflower (Brassica oleracea var. botrytis), Arabidopsis thaliana and yellow lupin (Lupinus luteus) mitochondria under cold and heat stress. BMC Plant Biol 10:181

    PubMed Central  PubMed  Google Scholar 

  • Saati GE, Archer MC (2011) Inhibition of fatty acid synthase and Sp1 expression by 3,3′-diindolylmethane in human breast cancer cells. Nutr Cancer 63(5):790–794

    CAS  PubMed  Google Scholar 

  • Sadik S, Ozbun JL (1968) The association of carbohydrate changes in the shoot tip of cauliflower with flowering. Plant Physiol 43(10):1696–1698

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sarkar FH, Rahman KM, Li Y (2003) Bax translocation to mitochondria is an important event in inducing apoptotic cell death by indole-3-carbinol (I3C) treatment of breast cancer cells. J Nutr 133(7 Suppl):2434S–2439S

    CAS  PubMed  Google Scholar 

  • Scalzo RL, Bianchi G, Genna A, Summa C (2007) Antioxidant properties and lipidic profile as quality indexes of cauliflower (Brassica oleracea L. var. botrytis) in relation to harvest time. Food Chem 100(3):1019–1025

    Google Scholar 

  • Scalzo RL, Genna A, Branca F, Chedin M, Chassaigne H (2008) Anthocyanin composition of cauliflower (Brassica oleracea L. var. botrytis) and cabbage (B. oleracea L. var. capitata) and its stability in relation to thermal treatments. Food Chem 107(1):136–144

    Google Scholar 

  • Schonhof I, Krumbein A, Brückner B (2004) Genotypic effects on glucosinolates and sensory properties of broccoli and cauliflower. Nahrung 48(1):25–33

    CAS  PubMed  Google Scholar 

  • Seto H, Hatanaka M, Kimura S, Oshige M, Tsuya Y, Mizushina Y, Sawado T, Aoyagi N, Matsumoto T, Hashimoto J, Sakaguchi K (1998) Purification and characterization of a 100 kDa DNA polymerase from cauliflower inflorescence. Biochem J 332(Pt 2):557–563

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sisti M, Amagliani G, Brandi G (2003) Antifungal activity of Brassica oleracea var. botrytis fresh aqueous juice. Fitoterapia 74(5):453–458

    CAS  PubMed  Google Scholar 

  • Sones K, Heaney RK, Fenwick GR (1984) Glucosinolates in Brassica vegetables. Analysis of twenty-seven cauliflower cultivars (Brassica oleracea L. var. botrytis subvar. cauliflora DC). J Sci Food Agric 35:762–766

    CAS  Google Scholar 

  • Sunarsih ES, Hakim L, Sugiyanto, Sumantri (2012) Protective effect of Brassica oleracea var. botrytis L. against theophylline-induced hepatocellular abnormalities in rats. Univera Medicina 31(1):12–19

    Google Scholar 

  • Takada Y, Andreeff M, Aggarwal BB (2005) Indole-3-carbinol suppresses NF-kappaB and IkappaBalpha kinase activation, causing inhibition of expression of NF-kappaB-regulated antiapoptotic and metastatic gene products and enhancement of apoptosis in myeloid and leukemia cells. Blood 106(2):641–649

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tjeertes P (2004) Brassica oleracea L. (cauliflower and broccoli) [Internet] Record from PROTA4U. In: Grubben GJH, Denton OA (eds) PROTA (Plant Resources of Tropical Africa/Ressources végétales de l’Afrique tropicale), Wageningen. http://www.prota4u.org/search.asp. Accessed 23 Nov 2012

  • TotuÅ¡ek J, Tříska J, Lefnerová D, Strohalm J, Vrchotová N, Zendulka O, Průchova J, Chaloupková J, Novotná P, HouÅ¡ka M (2011) Contents of sulforaphane and total isothiocyanates, antimutagenic activity, and inhibition of clastogenicity in pulp juices from Cruciferous plants. Czech J Food Sci 29(5):548–556

    Google Scholar 

  • U.S. Department of Agriculture, Agricultural Research Service (USDA) (2012) USDA national nutrient database for standard reference, release 25. Nutrient Data Laboratory Home Page. http://www.ars.usda.gov/ba/bhnrc/ndl

  • Valette L, Fernandez X, Poulain S, Loiseau A-M, Lizzani-Cuvelier L, Levieil R, Restier L (2003) Volatile constituents from Romanesco cauliflower. Food Chem 80(3):353–358

    CAS  Google Scholar 

  • Valette L, Fernandez X, Poulain S, Lizzani-Cuvelier L, Loiseau A-M (2006) Chemical composition of the volatile extracts from Brassica oleracea L. var. botrytis ‘Romanesco’ cauliflower seeds. Flavour Fragr J 21:107–110

    CAS  Google Scholar 

  • Van der Vossen HAM (1994) Brassica oleracea L. cv. groups Cauliflower & Broccoli. In: Siemonsma JS, Piluek K (eds) Plant resources of South-East Asia, no 8 Vegetables. Prosea Foundation, Bogor, pp 111–115

    Google Scholar 

  • Van Langenhove HJ, Cornelis CP, Schamp NM (1991) Identification of volatiles emitted during the blanching process of Brussels sprouts and cauliflower. J Sci Food Agric 55:483–487

    Google Scholar 

  • Verhoeven DT, Goldbohm RA, van Poppel G, Verhagen H, Van den Brandt PA (1996) Epidemiological studies on Brassica vegetables and cancer risk. Cancer Epidemiol Biomarkers Prev 5(2):733–748

    CAS  PubMed  Google Scholar 

  • Volden J, Bengtsson GB, Wicklund T (2009) Glucosinolates, l-ascorbic acid, total phenols, anthocyanins, antioxidant capacities and colour in cauliflower (Brassica oleracea L. ssp. botrytis); effects of long-term freezer storage. Food Chem 112(4):967–976

    CAS  Google Scholar 

  • Wagner AE, Rimbach G (2009) Ascorbigen: chemistry, occurrence, and biologic properties. Clin Dermatol 27(2):217–224

    PubMed  Google Scholar 

  • Wagner AE, Ernst I, Iori R, Desel C, Rimbach G (2010) Sulforaphane but not ascorbigen, indole-3-carbinole and ascorbic acid activates the transcription factor Nrf2 and induces phase-2 and antioxidant enzymes in human keratinocytes in culture. Exp Dermatol 19(2):137–144

    CAS  PubMed  Google Scholar 

  • Wallbank BE, Wheatley GA (1976) Volatile constituents from cauliflower and other crucifers. Phytochemistry 15(5):763–766

    CAS  Google Scholar 

  • Wang TT, Schoene NW, Milner JA, Kim YS (2012) Broccoli-derived phytochemicals indole-3-carbinol and 3,3′-diindolylmethane exerts concentration-dependent pleiotropic effects on prostate cancer cells: comparison with other cancer preventive phytochemicals. Mol Carcinog 51(3):244–256

    PubMed  Google Scholar 

  • Wattenberg LW (1975) Effects of dietary constituents on the metabolism of chemical carcinogens. Cancer Res 35(11 Pt. 2):3326–3331

    CAS  PubMed  Google Scholar 

  • Wattenberg LW, Loub WD, Lam LK, Speier JL (1976) Dietary constituents altering the responses to chemical carcinogens. Fed Proc 35(6):1327–1331

    CAS  PubMed  Google Scholar 

  • Wu Y, Feng X, Jin Y, Wu Z, Hankey W, Paisie C, Li L, Liu F, Barsky SH, Zhang W, Ganju R, Zou X (2010) A novel mechanism of indole-3-carbinol effects on breast carcinogenesis involves induction of Cdc25A degradation. Cancer Prev Res (Phila) 3(7):818–828

    CAS  Google Scholar 

  • Xu M, Orner GA, Bailey GS, Stoner GD, Horio DT, Dashwood RH (2001) Post-initiation effects of chlorophyllin and indole-3-carbinol in rats given 1,2-dimethylhydrazine or 2-amino-3-methyl-imidazo. Carcinogenesis 22(2):309–314

    CAS  PubMed  Google Scholar 

  • Xue L, Schaldach CM, Janosik T, Bergman J, Bjeldanes LF (2005) Effects of analogs of indole-3-carbinol cyclic trimerization product in human breast cancer cells. Chem Biol Interact 152(2–3):119–129

    CAS  PubMed  Google Scholar 

  • Zhang Y, Talalay P (1994) Anticarcinogenic activities of organic isothiocyanates: chemistry and mechanisms. Cancer Res 54:1976s–1981s

    CAS  PubMed  Google Scholar 

  • Zhang J, Hsu BAJC, Kinseth BAMA, Bjeldanes LF, Firestone GL (2003) Indole-3-carbinol induces a G1 cell cycle arrest and inhibits prostate-specific antigen production in human LNCaP prostate carcinoma cells. Cancer 98(11):2511–2520

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lim, T.K. (2014). Brassica oleracea (Botrytis Group). In: Edible Medicinal And Non-Medicinal Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7395-0_38

Download citation

Publish with us

Policies and ethics