Skip to main content

Therapeutic Potential of Common Culinary Herbs and Spices of Mauritius

  • Conference paper
  • First Online:
  • 1624 Accesses

Abstract

Compounds with combined anti-glycation and antioxidant properties may offer therapeutic potential for diabetic and oxidative stress related pathologies. We previously demonstrated significant (p < 0.05) anti-glycation properties of culinary herbs and spices by an optimized in vitro glucose-bovine serum albumin assay. In the present investigation we describe the antioxidant potential of these plants and the therapeutic potential of dietary compounds as possible anti-glycation and antioxidant agents. This study was geared to appraise the total antioxidant and free radical scavenging activities of ten common culinary herbs and spices (Allium sativum, Zingiber officinale, Thymus vulgaris, Petroselinum crispum, Murraya koenigii Spreng, Mentha piperita L., Curcuma longa L., Allium cepa L., Allium fistulosum and Coriandrum sativum L.) commercially available on the Mauritian market. The total antioxidant capacity as measured by the phosphomolybdenum method ranged from 0.76 to 2.49 μg AAE/ml. It was observed that the ethanolic extracts exhibited significant (p < 0.05) free radical-scavenging potential as measured by the 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid) radical cation assay, ferrous ion chelating assay and the Griess assay. The observed anti-glycation and antioxidant activity of the extracts together with their previously reported total phenolic, flavonoid and tannin contents support the therapeutic value of the plants investigated. Dietary agents interfering in the glycation pathway might offer new lead compounds geared towards glucose-derived and oxidative stress related complications. Our findings showed that the herbs and spices studied possess significant antioxidant and anti-glycation properties and hence can be exploited as functional foods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Patwardhan B, Vaidya ADB, Chorghade M (2004) Ayurveda and natural products drug discovery. Curr Sci 86:789–794

    Google Scholar 

  2. Grover JK, Yadav S, Vats V (2002) Medicinal plants of India with antidiabetic potential. J Ethnopharmacol 81:81–100

    Article  CAS  Google Scholar 

  3. Jung M, Park M, Lee HC, Kang YH, Kang ES, Kim SK (2006) Anti-diabetic agents from medicinal plants. Curr Med Chem 3:1203–1218

    Article  Google Scholar 

  4. Dewanjee S, Das AK, Sahu R, Gangopadhyay M (2009) Anti-diabetic activity of Diospyros peregrina fruit: effect on hyperglycemia, hyperlipidemia and augmented oxidative stress in experimental type 2 diabetes. Food Chem Toxicol 47:2679–2685

    Article  CAS  Google Scholar 

  5. Patel DK, Kumar R, Laloo D, Hemalatha S (2012) Diabetes mellitus: an overview on its pharmacological aspects and reported medicinal plants having antidiabetic activity. Asian Pac J Trop Biomed 2:411–420

    Article  CAS  Google Scholar 

  6. Singh U, Singh S, Kochhar A (2012) Therapeutic potential of antidiabetic nutraceuticals. Phytopharmacol 2:144–169

    Google Scholar 

  7. Shokeen P, Anand P, Murali YK, Tandon V (2008) Antidiabetic activity of 50% ethanolic extract of Ricinus communis and its purified fractions. Food Chem Toxicol 46:3458–3466

    Article  CAS  Google Scholar 

  8. Wadkar KA, Magdum CS, Patil SS, Naikwade NS (2008) Anti-diabetic potential and Indian medicinal plants. J Herb Med Toxicol 2:45–50

    Google Scholar 

  9. Bnouham M, Ziyyat A, Mekhfi H, Tahri A, Legssyer A (2006) Medicinal plants with potential anti-diabetic activity-A review of ten years of herbal medicine research (1990–2000). Int J Diabetes Metab 14:1–25

    Google Scholar 

  10. Elosta A, Ghous T, Ahmed N (2012) Natural products as anti-glycation agents: possible therapeutic potential for diabetic complications. Curr Diabetes Rev 8:92–108

    Article  CAS  Google Scholar 

  11. Nishiyama T, Mae T, Kishida H, Tsukagawa M, Mimaki Y, Kuroda M, Sashida Y, Takahashi K, Kawada T, Nagagawa K, Kitahara M (2005) Curcuminoids and sesquiterpenoids in turmeric (Curcuma longa L.) suppress an increase in blood glucose level in type 2 diabetic KK-Ay mice. J Agric Food Chem 53:959–963

    Article  CAS  Google Scholar 

  12. Frei B, Higdon JV (2003) Antioxidant activity of tea polyphenols in vivo: evidence from animal studies. J Nutr 133:3275S–3284S

    CAS  Google Scholar 

  13. Morihara N, Nishihama T, Ushijima M, Ide N, Takeda H, Hayama M (2007) Garlic as an anti-fatigue agent. Mol Nutr Food Res 51:1329–1334

    Article  CAS  Google Scholar 

  14. Sheikh N, Safari M, Mani Kashani K, Araghchian M, Zeraati F (2004) Study on the effect of garlic on the in vitro albumin glycation reaction. Acta Med Iran 42:113–116

    Google Scholar 

  15. Patel DK, Kumar R, Laloo D, Hemalatha S (2012) Natural medicines from plant source used for therapy of diabetes mellitus: an overview of its pharmacological aspects. Asian Pac J Trop Med 42:239–250

    Google Scholar 

  16. Ramkissoon JS, Mahomoodally MF, Nessar A, Subratty AH (2012) Relationship between total phenolic content, antioxidant potential and antiglycation abilities of common culinary herbs and spices. J Med Food 15:1116–1123

    Article  CAS  Google Scholar 

  17. Matsuura N, Aradate T, Sasaki C, Kojima H, Ohara M, Hasegawa J (2002) Screening system for the Maillard reaction inhibitor from natural product extracts. J Health Sci 48:520–526

    Article  CAS  Google Scholar 

  18. Prietto P, Pineda M, Aquilar M (1999) Spectrophotometric quantification of antioxidant capacity through the formation of phosphomolybdenum complex: specification application to the determination of vitamin E. Anal Biochem 269:337–341

    Article  Google Scholar 

  19. Chen YF, Roan HY, Li CK, Huang YC, Wang TS (2011) Relationship between antioxidant and antiglycation ability of saponins, polyphenols, and polysaccharides in Chinese herbal medicines used to treat diabetes. J Med Plants Res 5:2322–2331

    Google Scholar 

  20. Viuda-Martos M, Navajas YR, Zapata ES, Fernández-López J, Pérez-Álvarez JA (2010) Antioxidant activity of essential oils of five spice plants widely used in a Mediterranean diet. Flavour Frag J 5:13–19

    Article  Google Scholar 

  21. Bandyopadhyay U, Das A, Bannerjee RK (1999) Reactive oxygen species: oxygen damage and pathogenesis. Curr Sci 77:658–666

    CAS  Google Scholar 

  22. Rahbar S, Figarola JL (2003) Novel inhibitors of advanced glycation endproducts. Arch Biochem Biophys 419:63–79

    Article  CAS  Google Scholar 

  23. Cuzzocrea S, Riley DP, Caputi AP, Salvemini D (2001) Antioxidant therapy: a new pharmacological approach in shock, inflammation and ischemia/reperfusion injury. Pharmacol Rev 53:135–159

    CAS  Google Scholar 

  24. Rice-Evans CA, Miller NJ, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–159

    Article  Google Scholar 

  25. Povichit N, Phrutivorapongkul A, Suttajit M, Chaiyasut C, Leelapornpisid P (2010) Phenolic content and in vitro inhibitory effects on oxidation and protein glycation of some Thai medicinal plants. Pak J Pharm Sci 23:403–408

    CAS  Google Scholar 

  26. Smirin P, Taler D, Abitbol G, Brutman-Barazani T, Kerem Z, Sampson SR, Rosenzweig T (2010) Sarcopoterium spinosum extract as an antidiabetic agent: in vitro and in vivo study. J Ethnopharmacol 129:10–17

    Article  Google Scholar 

  27. Halliwell B (1997) Antioxidants and human diseases: a general introduction. Nutr Rev 55:S44–S52

    Article  CAS  Google Scholar 

  28. Hou WC, Lin RD, Cheng KT, Hung YT, Cho CH, Chen CH, Hwang SY, Lee MH (2003) Free radical-scavenging activity of Taiwanese native plants. Phytomedicine 10:170–175

    Article  CAS  Google Scholar 

  29. Pietta PG (2000) Flavonoids as antioxidants. J Nat Prod 63:1035–1042

    Article  CAS  Google Scholar 

  30. Cameron NE, Cotter MA (1993) Potential therapeutic approaches to the treatment or prevention of diabetic neuropathy: evidence from experimental studies. Diabetes Med 10:593–605

    Article  CAS  Google Scholar 

  31. Kinalski M, Sledziewski A, Telejko B, Zarzycki W, Kinalska N (1999) Antioxidant therapy and streptozoticin-induced diabetes in pregnant rats. Acta Diabetol 36:113–117

    Article  CAS  Google Scholar 

  32. Frei B (1994) Natural antioxidants in human health and disease. Annu Rev Nutr 16:33–50

    Google Scholar 

  33. Yen GH, Chen HY (1995) Antioxidant activity of various tea extracts in relation to their antimutagenicity. J Agric Food Chem 43:27–32

    Article  CAS  Google Scholar 

  34. Huang D, Ou B, Proir RL (2005) The chemistry behind the antioxidant capacity assays. J Agric Food Chem 53:1841–1856

    Article  CAS  Google Scholar 

  35. Formica JV, Regelson W (1995) Review of the biology of quercetin and related bioflavonoids. Food Chem Toxicol 33:1061–1080

    Article  CAS  Google Scholar 

  36. Cao G, Sofic E, Prior RL (1997) Antioxidant and pro-oxidant behaviour of flavonoids: structure activity relationships. Free Radic Biol Med 22:749–760

    Article  CAS  Google Scholar 

  37. Chua MT, Tung YT, Chang ST (2008) Antioxidant activities of ethanolic extracts from the twigs of Cinnamomum osmophloeum. Bioresour Technol 99:1918–1925

    Article  CAS  Google Scholar 

  38. Xu A, Wang H, Hoo RL, Sweeney G, Vanhoutte PM, Wang Y, Wu D, Chu W, Qin G, Lam KS (2009) Selective elevation of adiponectin production by the natural compounds derived from a medicinal herb alleviates insulin resistance and glucose intolerance in obese mice. Endocrinology 150:625–633

    Article  CAS  Google Scholar 

  39. Exarchou V, Nenadis N, Tsimidou M, Gerothanassis IP, Troganis A, Boskou D (2002) Antioxidant activities and phenolic composition of extracts from Greek oregano, Greek sage, and summer savory. J Agric Food Chem 50:5294–5299

    Article  CAS  Google Scholar 

  40. Koschinsky T, He CJ, Mitsuhashi T, Bucala R, Liu C, Buenting C, Heitmann K, Vlassara H (1997) Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Med Sci 94:6474–6479

    CAS  Google Scholar 

  41. Ling X, Nagai R, Sakashita N, Takeya M, Horiuchi S, Takahashi K (2001) Immunohistochemical distribution and quantitative biochemical detection of advanced glycation endproducts in fetal to adult rats and in rats with streptozotocin-induced diabetes. Lab Invest 81:845–861

    Article  CAS  Google Scholar 

  42. Peppa M, Uribarri J, Vlassara H (2003) Glucose, advanced glycation end products, and diabetes complications: what is new and what works. Clin Diabetes 21:186–187

    Article  Google Scholar 

  43. Huxley RR, Neil H (2003) The relationship between dietary flavonol intake and coronary heart disease mortality: a metaanalysis of prospective cohort studies. Eur J Clin Nutr 57:904–908

    Article  CAS  Google Scholar 

  44. Kumar DS, Muthu AK, Smith AA, Manavalan R (2010) In vitro antioxidant activity of various extracts of whole plant of Mucuna pruriens (Linn). Int J PharmTech Res 2:2063–2070

    Google Scholar 

  45. Johnson IT, Fenwick GR (2000) Dietary anticarcinogens and antimutagens: chemical and biological aspects. Royal Society of Chemistry, London, pp 92–95

    Book  Google Scholar 

  46. Umamaheswari M, Chatterjee TK (2008) In vitro antioxidant activities of the fractions of Coccinia grandis L. leaf extract. Afr J Tradit Complement Altern Med 5:61–73

    CAS  Google Scholar 

  47. Batool F, Sabir SM, Rocha JBT, Shah AH, Saify ZF, Ahmed SD (2010) Evaluation of antioxidant and free radical scavenging activities of fruit extract from Zanthoxylum alatum: a commonly used spice from Pakistan. Pak J Bot 42:4299–4311

    CAS  Google Scholar 

  48. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolourisation assay. Free Radic Biol Med 26:1231–1237

    Article  CAS  Google Scholar 

  49. Tsao R (2010) Chemistry and biochemistry of dietary polyphenols. Nutr 2:1231–1246

    CAS  Google Scholar 

  50. Ahmad MS, Ahmed N (2006) Antiglycation properties of aged garlic extract: Possible role in prevention of diabetic complications. J Nutr 80:796–799

    Google Scholar 

  51. Moon JK, Shibamoto T (2009) Antioxidant assays for plant and food components. J Agric Food Chem 57:1655–1666

    Article  CAS  Google Scholar 

  52. Suhaj M (2006) Spice antioxidants isolation and their antiradical activity: a review. J Food Compos Anal 19:531–537

    Article  CAS  Google Scholar 

  53. Haidari F, Keshavarz A, Shahi MM, Mahboob SA, Rashidi MR (2011) Effects of parsley (Petroselinum crispum) and its flavonol constituents, kaempferol and quercetin, on serum uric acid levels, biomarkers of oxidative stress and liver xanthine oxidoreductase a activity in oxonate-induced hyperuricemic rat. Iran J Pharm Res 10:811–819

    CAS  Google Scholar 

  54. Das AK, Rajkumar V, Dwivedi DK (2001) Antioxidant effect of curry leaf (Murraya koenigii) powder on quality of ground and cooked goat meat. Int Food Res J 18:563–569

    Google Scholar 

  55. Wu CH, Huang SM, Lin JA, Yen GC (2011) Inhibition of advanced glycation end-product formation by foodstuffs. Food Funct 2:224–234

    Article  CAS  Google Scholar 

  56. Rice-Evans C, Miller N, Bolwell P, Bremley P, Pridham J (1995) The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Rad Res 22:375–383

    Article  CAS  Google Scholar 

  57. Naidu JR, Ismaill RB, Yeng C, Sasidha S, Kumar P (2012) Chemical composition and antioxidant activity of the crude methanolic extracts of Mentha spicata. J Phytol 4:13–18

    CAS  Google Scholar 

  58. Leelarungrayub N, Chanarat N, Rattanapanonel V (2004) Potential activity of Thai shallot (Allium ascalonicum L.) extract on the prevention of hemolysis and glutathione depletion in human erythrocyte from oxidative stress. CMU J 3:225–234

    Google Scholar 

  59. Matthaus B (2002) Antioxidant activity of extracts obtained from residues of different oil seeds. J Agric Food Chem 50:3444–3452

    Article  CAS  Google Scholar 

  60. Deepa N, Kaur C, Singh B, Kapoor HC (2006) Antioxidant capacity in some red sweet pepper cultivars. J Food Compos Anal 19:572–578

    Article  CAS  Google Scholar 

  61. Molan AL, Faraj AM, Mahdy AS (2012) Antioxidant activity and phenolic content of some medicinal plants traditionally used in northern Iraq. Phytopharmacol 2:224–233

    Google Scholar 

Download references

Acknowledgements

We are grateful to the University of Mauritius and the Tertiary Education Commission, Mauritius for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad F. Mahomoodally .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Ramkissoon, J.S., Mahomoodally, M.F., Ahmed, N., Subratty, A.H. (2014). Therapeutic Potential of Common Culinary Herbs and Spices of Mauritius. In: Gupta Bhowon, M., Jhaumeer-Laulloo, S., Li Kam Wah, H., Ramasami, P. (eds) Chemistry: The Key to our Sustainable Future. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7389-9_11

Download citation

Publish with us

Policies and ethics