Skip to main content

Methods

  • Chapter
  • First Online:
Soundscape Ecology

Abstract

Sound is a complex phenomenon that copies the environmental characteristics of the context in which is generated. For this reason, many descriptors are required to approach the behavior of sound and its effects on physical and biological objects. Frequency, pitch, period, wavelength, sound speed, wavenumber, amplitude, sound pressure, sound power, sound intensity, and loudness are some of the distinctive parameters used to describe a sound.

A sound pressure measurement and a spectral-frequency analysis are the two distinct approaches adopted today to collect information on the sonic environment.

Field recording now offers a great variety of recording devices that can sample at different rates and in different types of digital memories. Single microphones, sets of adjacent microphones, and regular arrays of microphones are some possibilities for collecting sound data from the environment.

Spectral analysis, which is central in bioacoustics research, offers some metrics to evaluate the complexity of the sonic environment: acoustic entropy index, median of amplitude envelope, acoustic richness, acoustic dissimilarity index, acoustic complexity index. These metrics capture the emerging patterns of a sonic environment and allow characterizing the soundscape in delimited areas of interest.

The popularity of automated digital field recording devices allows storing a great amount of data that urgently requires an easy browsing approach to consolidate sound computing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson SE, Dave AS, Margoliash D (1996) Template-based automatic recognition of birdsong syllables from continuous recordings. J Acoust Soc Am 100(2):1209–1219

    Article  PubMed  CAS  Google Scholar 

  • Bardeli R, Wolff D, Kurth F, Koch M, Tauchert K-H, Frommolt K-H (2010) Detecting bird sounds in a complex acoustic environment and application to bioacoustic monitoring. Pattern Recogn Lett 31:1524–1534

    Article  Google Scholar 

  • Blumstein DT, Mennill DJ, Clemins P, Girod L, Yao K, Patricelli G, Deppe JL, Krakauer AH, Clark C, Cortopassi KA, Hanser SF, McCowan B, Ali AM, Kirschel ANG (2011) Acoustic monitoring in terrestrial environments using microphone arrays: applications, technological considerations and prospectus. J Appl Ecol 48:758–767

    Article  Google Scholar 

  • Brandes TS, Naskrecki P, Figueroa HK (2006) Using image processing to detect and classify narrow-band cricket and frog calls. J Acoust Soc Am 120(5):2950–2957

    Article  PubMed  Google Scholar 

  • Brown AL, Kang J, Gjestland T (2011) Towards standardization in soundscape preference assessment. Appl Acoust 72:387–392

    Article  Google Scholar 

  • Cai J, Ee D, Pham B, Roe P, Zhng J (2007) Sensor network for the monitoring of ecosystems: bird species recognition. ISSNIP conference, Melbourne

    Google Scholar 

  • Cellis-Murillo A, Deppe JL, Allen MF (2009) Using soundscape recording to estimate bird species abundance, richness, and composition. J Field Ornithol 80(1):64–78

    Article  Google Scholar 

  • Chen Z, Maher RC (2006) Semi-automatic classification of bird vocalizations using spectral peak tracks. J Acoust Soc Am 120(5):2974–2984

    Article  PubMed  Google Scholar 

  • Collier TC, Kirschel NG, Taylor CE (2010) Acoustic localization of antbirds in a Mexican rainforest using a wireless sensor network. J Acoust Soc Am 128(1):182–189

    Article  PubMed  Google Scholar 

  • Connor EF, Li S, Li S (2012) Automating identification of avian vocalizations using time-frequency information extracted from the Gabor transform. J Acoust Soc Am 132(1):507–517

    Article  PubMed  Google Scholar 

  • Deecke VB, Janik VM (2006) Automated categorization of bioacoustics signals: avoiding perceptual pitfalls. J Acoust Soc Am 119(1):645–653

    Article  PubMed  Google Scholar 

  • Depraetere M, Pavoine S, Jiguet F, Gasc A, Duvail S, Sueur J (2012) Monitoring animal diversity using acoustic indices: implementation in a temperate woodland. Ecol Indic 13:46–54

    Article  Google Scholar 

  • Duelli P, Obrist M (2003) Biodiversity indicators: the choice of values and measures. Agric Ecosyst Environ 98:87–98

    Article  Google Scholar 

  • Farina A, Morri D (2008) Source-sink e eco-field: ipotesi ed evidenze sperimentali. Atti X congresso nazionale della SIE-IALE. Ecologia e Governance del paesaggio: esperienze e prospettive. Bari, pp 365–372

    Google Scholar 

  • Farina A, Pieretti N, Piccioli L (2011) The soundscape methodology for long-term bird monitoring: a Mediterranean Europe case-study. Ecol Inform 6:354–363

    Article  Google Scholar 

  • Farina A, Lattanzi E, Piccioli L, Pieretti N (2012) SoundscapeMeter. Bioacoustic Software. Version 1.0 Beta. DISBEF, Urbino University

    Google Scholar 

  • Gasc A, Sueur J, Jiguet F, Devictor V, Grandcolas P, Burrow C, Depraetere M, Pavoine S (2013) Assessing biodiversity with sound: do acoustic diversity indices reflect phylogenetic and functional diversities of bird communities? Ecol Indic 25:279–287

    Article  Google Scholar 

  • Gunasekaran S, Revathy K (2011) Automatic recognition and retrieval of wild animal vocalization. Int J Comput Theor Eng 3(1):136–140

    Article  Google Scholar 

  • Gustavino C (2006) The ideal urban soundscape: investigating the sound quality of French cities. Acta Acustica 92:945–951

    Google Scholar 

  • Jennings P, Cain R (2012) A framework for improving urban soundscapes. Appl Acoust 2013:293–299

    Google Scholar 

  • Joo W, Gage SH, Kasten EP (2011) Analysis and interpretation of variability in soundscapes along an urban–rural gradient. Landsc Urban Plan 103:259–276

    Article  Google Scholar 

  • Josse J, Pages J, Husson F (2008) Testing the significance of the RV coefficient. Comput Stat Data Anal 53:82–91

    Article  Google Scholar 

  • Kaennel M (1998) Biodiversity: a diversity in definition. In: Bachmann P, Köhl M, Päivinen R (eds) Assessment of biodiversity for improved forest planning. Kluwer, Dordrecht

    Google Scholar 

  • Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22:79–86

    Article  Google Scholar 

  • Kwan C, Mei G, Zhao X, Ren Z, Xu R, Stanford V, Rochet C, Aube J, Ho KC (2004) Bird classification algorithms: theory and experimental results. In: Proceedings of the IEEE international conference on acoustics, speech and signal processing, vol V, pp 289–292

    Google Scholar 

  • Maragos P, Potamianos A (1999) Fractal dimension of speech sounds: computation and application to automatic speech recognition. J Acoust Soc Am 105(3):1925–1932

    Article  PubMed  CAS  Google Scholar 

  • Mennill DJ, Fristrup KM (2012) Obtaining calibrated sound pressure levels for consumer digital audio recorded. Appl Acoust 73:1138–1145

    Article  Google Scholar 

  • Mennill DJ, Burt JM, Fristrup KM, Vahrencamp SL (2006) Accuracy of an acoustic location system for monitoring the position of duetting songbirds in tropical forest. J Acoust Soc Am 119(5):2832–2839

    Article  PubMed  Google Scholar 

  • Obrist MK, Boesch R, Flückiger PF (2004) Variability in echolocation call design of 26 Swiss bat species: consequences, limits and options for automated field identification with a synergetic pattern recognition approach. Mammalia 68(4):307–322

    Article  Google Scholar 

  • Obrist MK, Pavan G, Sueur J, Riede K, Llusia D, Márquez R (2010) Bioacoustic approaches in biodiversity inventories. In: Manual on field recording techniques and protocols for all taxa biodiversity inventories. Abc Taxa 8:68–99

    Google Scholar 

  • Pekin BK, Jung J, Villanueva-Rivera LJ, Pijanowski BC, Ahumada JA (2012) Modeling acoustic diversity using soundscape recordings and LIDAR-derived metrics of vertical forest structure in a neotropical rainforest. Landsc Ecol 27:1513–1522

    Article  Google Scholar 

  • Petchey OL, Gaston KJ (2002) Functional diversity (FD), species richness and community composition. Ecol Lett 5:402–411

    Article  Google Scholar 

  • Pieretti N, Farina A. Application of a recently introduced index for acoustic complexity to an avian soundscape with traffic noise. J Acoust Soc Am 1

    Google Scholar 

  • Pieretti N, Farina A, Morri D (2011) A new methodology to infer the singing activity of an avian community: the Acoustic Complexity Index (ACI). Ecol Indic 11(3):868–873

    Article  Google Scholar 

  • Polli A (2012) Soundscape, sonification, and sound activism. AI Soc 27:257–268

    Article  Google Scholar 

  • Rachev ST (1991) Probability metrics and stability of stochastic models. Wiley, New York

    Google Scholar 

  • Ranjard L, Ross HA (2008) Unsupervised birds song syllable classification using evolving neural networks. J Acoust Soc Am 123(6):4358–4368

    Article  PubMed  Google Scholar 

  • Rumsey F, McCormick T (2009) Sound and recording, 6th edn. Focal Press, Burlington

    Google Scholar 

  • Schleuter D, Daufrensne M, Massol F, Argillier C (2010) A user’s guide to functional diversity indices. Ecol Monogr 80(3):469–484

    Article  Google Scholar 

  • Sjölander K, Beskow J (2000) WaveSurfer – an open source speech tool. In: Proceedings of the ICSLP 2000, IV, pp 464–467

    Google Scholar 

  • Skowronski MD, Harris JG (2006) Acoustic detection and classification of microchiroptera using machine learning: lessons learned from automatic speech recognition. J Acoust Soc Am 119(3):1817–1833

    Article  PubMed  Google Scholar 

  • Somervuo P, Harma A, Fagerlund S (2006) Parametric representations of bird sounds for automatic species recognition. IEEE Trans Audio Speech Lang Process 14(6):2252–2263

    Article  Google Scholar 

  • Szeremeta B, Zannin PHT (2009) Analysis and evaluation of soundscapes in public parks through interviews and measurement noise. Sci Total Environ 407:6143–6149

    Article  PubMed  CAS  Google Scholar 

  • Sueur J, Pavoine S, Amerlynck O, Duvail S (2008) Rapid acoustic survey for biodiversity appraisal. PLoS One 3(12):e4065

    Article  PubMed  Google Scholar 

  • Sueur J, Gasc A, Grandcolas P, Pavoine S (2012) Global estimation of animal diversity using automatic acoustic sensors. In: Le Galliard JF, Guarini JM, Gaill F (eds) Sensors for ecology: towards integrated knowledge of ecosystems. CNRS Editions, Paris, pp 101–119

    Google Scholar 

  • Trifa VM, Kirshel ANG, Taylor CE (2008) Automated species recognition of antbirds in a Mexican rainforest using hidden Markov models. J Acoust Soc Am 123(4):2424–2431

    Article  PubMed  Google Scholar 

  • Villanueva-Rivera LJ, Pijanowski BC (2012) Pumilio: a web-based management system for ecological recordings. Bull Ecol Soc Am 91:71–81

    Article  Google Scholar 

  • Waddle JH, Thigpen TF, Glorioso BM (2009) Efficacy of automatic vocalization recognition software for anuran monitoring. Herpetol Conserv Biol 4(3):384–388

    Google Scholar 

  • Wagner RH, Danchin E (2010) A taxonomy of biological information. Oikos 119:203–209

    Article  Google Scholar 

  • Westerkamp H (2007) Soundwalking. In: Carlyle A, Entendre D (eds) Autumn leaves, sound and the environment in artistic practice. Association Double-Entendre in association with CRISAP, Paris, CRISAP - University of the Arts London, p 49

    Google Scholar 

  • Yang W, Kang J (2005) Soundscape and sound preferences in urban squares: a case study in Sheffield. J Urban Design 10:61–80

    Article  Google Scholar 

  • Yu L, Kang J (2008) Effects of social, demographical and behavioural factors on the sound level evaluation in urban open spaces. J Acoust Soc Am 123(2):772–783

    Article  PubMed  Google Scholar 

  • Zhang J, Roe P, Pham B, Mason R, Towsey M, Sumitomo J (2010) Archiving nature’s heartbeat using smart phones. In: Wachowicz M (ed) Movement-aware applications for sustainable mobility: technologies and approaches, IGI Global, Hershey. pp 19. doi: 10.4018/978-1-61520-769-5.ch008

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Farina, A. (2014). Methods. In: Soundscape Ecology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7374-5_9

Download citation

Publish with us

Policies and ethics