Skip to main content

Physiological Functions of the Alpha Class of Carbonic Anhydrases

  • Chapter
  • First Online:

Part of the book series: Subcellular Biochemistry ((SCBI,volume 75))

Abstract

Carbonic anhydrases are ubiquitous enzymes that catalyze the reversible hydration of carbon dioxide. These enzymes are of ancient origin as they are found in the deepest of branches of the evolutionary tree. Of the five different classes of carbonic anhydrases, the alpha class has perhaps received the most attention because of its role in human pathology. This review focuses on the physiological function of this class of carbonic anhydrases organized by their cellular location.

Susan C. Frost and Robert McKenna (eds.). Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gilmour KM (2010) Perspectives on carbonic anhydrase. Comp Biochem Physiol A Mol Integr Physiol 157:193–197

    PubMed  CAS  Google Scholar 

  2. Henry RP (1996) Multiple roles of carbonic anhydrase in cellular transport and metabolism. Annu Rev Physiol 58:523–538

    PubMed  CAS  Google Scholar 

  3. Henry RP, Swenson ER (2000) The distribution and physiological significance of carbonic anhydrase in vertebrate gas exchange organs. Respir Physiol 121:1–12

    PubMed  CAS  Google Scholar 

  4. Frasseto F, Parisotto TM, Peres RC, Marques MR, Line SR, Nobre Dos Santos M (2012) Relationship among salivary carbonic anhydrase VI activity and flow rate, biofilm pH and caries in primary dentition. Caries Res 46:194–200

    PubMed  CAS  Google Scholar 

  5. Chaput CD, Dangott LJ, Rahm MD, Hitt KD, Stewart DS, Wayne Sampson H (2012) A proteomic study of protein variation between osteopenic and age-matched control bone tissue. Exp Biol Med (Maywood) 237:491–498

    CAS  Google Scholar 

  6. Biswas UK, Kumar A (2012) Study on the changes of carbonic anhydrase activity in insulin resistance and the effect of methylglyoxal. J Pak Med Assoc 62:417–421

    PubMed  Google Scholar 

  7. Brown BF, Quon A, Dyck JR, Casey JR (2012) Carbonic anhydrase II promotes cardiomyocyte hypertrophy. Can J Physiol Pharmacol 90:1599–1610

    PubMed  CAS  Google Scholar 

  8. Sterling D, Reithmeier RA, Casey JR (2001) Carbonic anhydrase: in the driver’s seat for bicarbonate transport. JOP 2:165–170

    PubMed  CAS  Google Scholar 

  9. Purkerson JM, Schwartz GJ (2007) The role of carbonic anhydrases in renal physiology. Kidney Int 71:103–115

    PubMed  CAS  Google Scholar 

  10. Kuo WH, Yang SF, Hsieh YS, Tsai CS, Hwang WL, Chu SC (2005) Differential expression of carbonic anhydrase isoenzymes in various types of anemia. Clin Chim Acta 351:79–86

    PubMed  CAS  Google Scholar 

  11. Thiry A, Dogne JM, Masereel B, Supuran CT (2006) Targeting tumor-associated carbonic anhydrase IX in cancer therapy. Trends Pharmacol Sci 27:566–573

    PubMed  CAS  Google Scholar 

  12. Whittington DA, Waheed A, Ulmasov B, Shah GN, Grubb JH, Sly WS, Christianson DW (2001) Crystal structure of the dimeric extracellular domain of human carbonic anhydrase XII, a bitopic membrane protein overexpressed in certain cancer tumor cells. Proc Natl Acad Sci U S A 98:9545–9550

    PubMed  CAS  Google Scholar 

  13. Supuran CT (2008) Carbonic anhydrase: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov 7:168–181

    PubMed  CAS  Google Scholar 

  14. Pastorekova S, Pastorek J (2004) Cancer-related carbonic anhydrase isozymes and their inhibition. In: Supuran CT, Scozzafava A, Conway J (eds) Carbonic anhydrase: its inhibitors and activators. CRC Press, Bocal Raton, pp 255–281

    Google Scholar 

  15. Ditte P, Dequiedt F, Svastova E, Hulikova A, Ohradanova-Repic A, Zatovicova M, Csaderova L, Kopacek J, Supuran CT, Pastorekova S, Pastorek J (2011) Phosphorylation of carbonic anhydrase IX controls its ability to mediate extracellualr acidification in hypoxic tumors. Cancer Res 71:7558–7567

    PubMed  CAS  Google Scholar 

  16. Chegwidden WR, Dodgson SJ, Spencer IM (2000) The roles of carbonic anhydrase in metabolism, cell growth and cancer in animals. EXS 90:343–363

    PubMed  CAS  Google Scholar 

  17. Supuran CT (2008) Carbonic anhydrases–an overview. Curr Pharm Des 14:603–614

    PubMed  CAS  Google Scholar 

  18. Hilvo M, Innocenti A, Monti SM, De Simone G, Supuran CT, Parkkila S (2008) Recent advances in research on the most novel carbonic anhydrases, CA XIII and XV. Curr Pharm Des 14:672–678

    PubMed  CAS  Google Scholar 

  19. Aspatwar A, Tolvanen ME, Parkkila S (2010) Phylogeny and expression of carbonic anhydrase-related proteins. BMC Mol Biol 11:25

    PubMed  Google Scholar 

  20. Silverman DN, Lindskog S (1988) The catalytic mechanism of carbonic anhydrase – implication of a rate limiting protolysis of water. Acc Chem Res 21:30–36

    CAS  Google Scholar 

  21. Jewell DA, Tu C, Paranawithana SR, Tanhauser SM, LoGrasso PV, Laipis PJ, Silverman DN (1991) Enhancement of the catalytic properties of human carbonic anhydrase III by site-directed mutagenesis. Biochemistry 30:1484–1490

    PubMed  CAS  Google Scholar 

  22. Sly WS (2000) The membrane carbonic anhydrases: from CO2 transport to tumor markers. EXS 90:95–104

    PubMed  CAS  Google Scholar 

  23. Maren TH, Swenson ER (1980) A comparative study of the kinetics of the Bohr effect in vertebrates. J Physiol 303:535–547

    PubMed  CAS  Google Scholar 

  24. Esbaugh AJ, Tufts BL (2006) The structure and function of carbonic anhydrase isozymes in the respiratory system of vertebrates. Respir Physiol Neurobiol 154:185–198

    PubMed  CAS  Google Scholar 

  25. Swenson ER (2000) Respiratory and renal roles of carbonic anhydrase in gas exchange and acid–base regulation. EXS 90:281–341

    PubMed  CAS  Google Scholar 

  26. Chegwidden WR, Carter ND (2000) Introduction to the carbonic anhydrases. EXS 90:14–28

    PubMed  Google Scholar 

  27. Chiang WL, Lai JC, Yang SF, Chiou HL, Hsieh YS (2001) Alternations in quantity and activities of erythrocyte cytosolic carbonic anhydrase isoenzymes in glucose-6-phosphate dehydrogenase individuals. Clin Chim Acta 314:195–201

    PubMed  CAS  Google Scholar 

  28. Brown D, Kumpulainen T, Roth J, Orci L (1983) Immunohistochemical localization of carbonic anhydrase in postnatal and adult rat kidney. Am J Physiol 245:F110–F118

    PubMed  CAS  Google Scholar 

  29. Lonnerholm G, Wistrand PJ, Barany E (1986) Carbonic anhydrase isoenzymes in the rat kidney. Effects of chronic acetazolamide treatment. Acta Physiol 126:51–60

    CAS  Google Scholar 

  30. Sly WS, Hewett-Emmett D, Whyte MP, Yu YS, Tashian RE (1983) Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Proc Natl Acad Sci U S A 80:2752–2756

    PubMed  CAS  Google Scholar 

  31. Lewis SE, Erickson RP, Barnett LB, Venta PJ, Tashian RE (1988) N-ethyl-N-nitrosourea-induced null mutation at the mouse Car-2 locus: an animal model for human carbonic anhydrase II deficiency syndrome. Proc Natl Acad Sci U S A 85:1962–1966

    PubMed  CAS  Google Scholar 

  32. Breton S, Alper SL, Gluck SL, Sly WS, Barker JE, Brown D (1995) Depletion of intercalated cells from collecting ducts of carbonic anhydrase II-deficient (CAR2 null) mice. Am J Physiol 269:F761–F774

    PubMed  CAS  Google Scholar 

  33. Bagnis C, Marshansky V, Breton S, Brown D (2001) Remodeling the cellular profile of collecting ducts by chronic carbonic anhydrase inhibition. Am J Physiol Renal Physiol 280:F437–F448

    PubMed  CAS  Google Scholar 

  34. Vince JW, Reithmeier RAF (1998) Carbonic anhydrase II binds to the carboxyl-terminus of human band 3, the erythrocyte Cl/HCO3 Exchanger. J Biol Chem 273:28430–28437

    PubMed  CAS  Google Scholar 

  35. McMurtrie HL, Cleary HJ, Alvarez BV, Loiselle FB, Sterling D, Morgan PE, Johnson DE, Casey JR (2004) The bicarbonate transport metabolon. J Enzyme Inhib Med Chem 19:231–236

    PubMed  CAS  Google Scholar 

  36. Pushkin A, Abuladze N, Gross E, Newman D, Tatishchev S, Lee I, Fedotoff O, Bondar G, Azimov R, Ngyuen M, Kurtz I (2004) Molecular mechanism of kNBC1-carbonic anhydrase II interaction in proximal tubule cells. J Physiol 559:55–65

    PubMed  CAS  Google Scholar 

  37. Becker HM, Deitmer JW (2007) Carbonic anhydrase II increases the activity of the human electrogenic Na+/HCO3 cotransporter. J Biol Chem 282:13508–13521

    PubMed  CAS  Google Scholar 

  38. Li X, Alvarez B, Casey JR, Reithmeier RA, Fliegel L (2002) Carbonic anhydrase II binds to and enhances activity of the Na+/H+ exchanger. J Biol Chem 277:36085–36091

    PubMed  CAS  Google Scholar 

  39. Li X, Liu Y, Alvarez BV, Casey JR, Fliegel L (2006) A novel carbonic anhydrase II binding site regulates NHE1 activity. Biochemistry 45:2414–2424

    PubMed  CAS  Google Scholar 

  40. Vince JW, Carlsson U, Reithmeier RAF (2002) Localization of the Cl/HCO3 anion exchanger binding site to the amino-terminal region of carbonic anhydrase II. Biochemistry 39:13344–13349

    Google Scholar 

  41. Becker HM, Hirnet D, Fecher-Trost C, Sultemeyer D, Deitmer JW (2005) Transport activity of MCT1 expressed in Xenopus oocytes is increased by interaction with carbonic anhydrase. J Biol Chem 280:39882–39889

    PubMed  CAS  Google Scholar 

  42. Becker HM, Klier M, Deitmer JW (2010) Nonenzymatic augmentation of lactate transport via monocarboxylate transporter isoform 4 by carbonic anhydrase II. J Membr Biol 234:125–135

    PubMed  CAS  Google Scholar 

  43. Stridh MH, Alt MD, Wittmann S, Heidtmann H, Aggarwal M, Riederer B, Seidler U, Wennemuth G, McKenna R, Deitmer JW, Becker HM (2012) Lactate flux in astrocytes is enhanced by a non-catalytic action of carbonic anhydrase II. J Physiol 590:2333–2351

    PubMed  CAS  Google Scholar 

  44. Becker HM, Klier M, Schuler C, McKenna R, Deitmer JW (2011) Intramolecular proton shuttle supports not only catalytic but also noncatalytic function of carbonic anhydrase II. Proc Natl Acad Sci U S A 108:3071–3076

    PubMed  CAS  Google Scholar 

  45. Becker HM, Deitmer JW (2008) Nonenzymatic proton handling by carbonic anhydrase II during H + −lactate cotransport via monocarboxylate transporter 1. J Biol Chem 283:21655–21667

    PubMed  CAS  Google Scholar 

  46. Carter ND (1991) Hormonal and neuronal control of carbonic anhydrase III gene expression in skeletal muscle. In: Dodgson SJ, Tashian RE, Gross G, Carter ND (eds) The carbonic anhydrases: cellular physiology and moledular genetics. Plenum Publishing, New York, pp 247–256

    Google Scholar 

  47. Stanton LW, Ponte PA, Coleman RT, Snyder MA (1991) Expression of CA III in rodent models of obesity. Mol Endocrinol 5:860–866

    PubMed  CAS  Google Scholar 

  48. Lyons GE, Buckingham ME, Tweedie S, Edwards YH (1991) Carbonic anhydrase III, an early mesodermal marker, is expressed in embryonic mouse skeletal muscle and notochord. Development 111:233–244

    PubMed  CAS  Google Scholar 

  49. Chai YC, Jung CH, Lii CK, Ashraf SS, Hendrich S, Wolf B, Sies H, Thomas JA (1991) Identification of an abundant S-thiolated rat liver protein as carbonic anhydrase III; characterization of S-thiolation and dethiolation reactions. Arch Biochem Biophys 284:270–278

    PubMed  CAS  Google Scholar 

  50. Lii CK, Chai YC, Zhao W, Thomas JA, Hendrich S (1994) S-thiolation and irreversible oxidation of sulfhydryls on carbonic anhydrase III during oxidative stress: a method for studying protein modification in intact cells and tissues. Arch Biochem Biophys 308:231–239

    PubMed  CAS  Google Scholar 

  51. Thomas JA, Poland B, Honzatko R (1995) Protein sulfhydryls and their role in the antioxidant function of protein S-thiolation. Arch Biochem Biophys 319:1–9

    PubMed  CAS  Google Scholar 

  52. Raisanen SR, Lehenkari P, Tasanen M, Rahkila P, Harkonen PL, Vaananen HK (1999) Carbonic anhydrase III protects cells from hydrogen peroxide-induced apoptosis. FASEB J 13:513–522

    PubMed  CAS  Google Scholar 

  53. Mallis RJ, Hamann MJ, Zhao W, Zhang T, Hendrich S, Thomas JA (2002) Irreversible thiol oxidation in carbonic anhydrase III: protetion by S-glutathiolation and detection in aging rats. Biol Chem 383:649–662

    PubMed  CAS  Google Scholar 

  54. Thomas JA, Mallis RJ (2001) Aging and oxidation of reactive protein sulfhydryls. Exp Gerontol 36:1519–1526

    PubMed  CAS  Google Scholar 

  55. Kim G, Lee TH, Wetzel P, Geers C, Robinson MA, Myers TG, Owens JW, Wehr NB, Eckhaus MW, Gros G, Wynshaw-Boris A, Levine RL (2004) Carbonic anhydrase III is not required in the mouse for normal growth, development, and life span. Mol Cell Biol 24:9942–9947

    PubMed  CAS  Google Scholar 

  56. Rosen ED, Spiegelman BM (2006) Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444:847–853

    PubMed  CAS  Google Scholar 

  57. Barnard T (1969) The ultrastructural differentiation of brown adipose tissue in the rat. J Ultrastruct Res 29:311–322

    PubMed  CAS  Google Scholar 

  58. Cinti S, Cigolini M, Bosello O, Bjorntorp P (1984) A morphological study of the adipocyte precursor. J Submicrosc Cytol 16:243–251

    PubMed  CAS  Google Scholar 

  59. Hausman GJ, Campion DR, Martin RJ (1980) Search for the adipocyte precursor cell and factors that promote its differentiation. J Lipid Res 21:657–670

    PubMed  CAS  Google Scholar 

  60. Amos PJ, Shang H, Bailey AM, Taylor A, Katz AJ, Peirce SM (2008) IFATS collection: the role of human adipose-derived stromal cells in inflammatory microvascular remodeling and evidence of a perivascular phenotype. Stem Cells 26:2682–2690

    PubMed  CAS  Google Scholar 

  61. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Peault B (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313

    PubMed  CAS  Google Scholar 

  62. Traktuev DO, Merfeld-Clauss S, Li J, Kolonin M, Arap W, Pasqualini R, Johnstone BH, March KL (2008) A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res 102:77–85

    PubMed  CAS  Google Scholar 

  63. Zannettino AC, Paton S, Arthur A, Khor F, Itescu S, Gimble JM, Gronthos S (2008) Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. J Cell Physiol 214:413–421

    PubMed  CAS  Google Scholar 

  64. Zimmerlin L, Donnenberg VS, Pfeifer ME, Meyer EM, Peault B, Rubin JP, Donnenberg AD (2010) Stromal vascular progenitors in adult human adipose tissue. Cytometry A 77:22–30

    PubMed  Google Scholar 

  65. Gupta RK, Mepani RJ, Kleiner S, Lo JC, Khandekar MJ, Cohen P, Frontini A, Bhowmick DC, Ye L, Cinti S, Spiegelman BM (2012) Zfp423 expression identifies committed preadipocytes and localizes to adipose endothelial and perivascular cells. Cell Metab 15:230–239

    PubMed  CAS  Google Scholar 

  66. Tang W, Zeve D, Suh JM, Bosnakovski D, Kyba M, Hammer RE, Tallquist MD, Graff JM (2008) White fat progenitor cells reside in the adipose vasculature. Science 322:583–586

    PubMed  CAS  Google Scholar 

  67. Lynch CJ, Hazen SA, Horetsky RL, Carter ND, Dodgson SJ (1993) Differentiation-dependent expression of carbonic anhydrase II and III in 3T3 adipocytes. Am J Physiol 265:C234–C243

    PubMed  CAS  Google Scholar 

  68. Cao TP, Rous S (1978) Inhibitory effect of acetazolamide on the activity of acetyl CoA carboxylase of mouse liver. Life Sci 22:2067–2072

    PubMed  CAS  Google Scholar 

  69. Lynch CJ, Brennan WA Jr, Vary TC, Carter N, Dodgson SJ (1993) Carbonic anhydrase III in obese Zucker rats. Am J Physiol 264:E621–E630

    PubMed  CAS  Google Scholar 

  70. Bray GA, York DA (1979) Hypothalamic and genetic obesity in experimental animals: an autonomic and endocrine hypothesis. Physiol Rev 59:719–809

    PubMed  CAS  Google Scholar 

  71. Mitterberger MC, Kim G, Rostek U, Levine RL, Zwerschke W (2012) Carbonic anhydrase III regulates peroxisome proliferator-activated receptor-gamma2. Exp Cell Res 318:877–886

    PubMed  CAS  Google Scholar 

  72. Houstis N, Rosen ED, Lander ES (2006) Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440:944–948

    PubMed  CAS  Google Scholar 

  73. Montgomery JC, Venta PJ, Eddy RL, Fukushima YS, Shows TB, Tashian RE (1991) Characterization of the human gene for a newly discovered carbonic anhydrase, CA VII, and its localization to chromosome 16. Genomics 11:835–848

    PubMed  CAS  Google Scholar 

  74. Lakkis MM, Bergenhem NC, Tashian RE (1996) Expression of mouse carbonic anhydrase VII in E. coli and demonstration of its CO2 hydrase activity. Biochem Biophys Res Commun 226:268–272

    PubMed  CAS  Google Scholar 

  75. Truppo E, Supuran CT, Sandomenico A, Vullo D, Innocenti A, Di Fiore A, Alterio V, De Simone G, Monti SM (2012) Carbonic anhydrase VII is S-glutathionylated without loss of catalytic activity and affinity for sulfonamide inhibitors. Bioorg Med Chem Lett 22:1560–1564

    PubMed  CAS  Google Scholar 

  76. Bootorabi F, Janis J, Smith E, Waheed A, Kukkurainen S, Hytonen V, Valjakka J, Supuran CT, Vullo D, Sly WS, Parkkila S (2010) Analysis of a shortened form of human carbonic anhydrase VII expressed in vitro compared to the full-length enzyme. Biochimie 92:1072–1080

    PubMed  CAS  Google Scholar 

  77. Thiry A, Dogne JM, Supuran CT, Masereel B (2007) Carbonic anhydrase inhibitors as anticonvulsant agents. Curr Top Med Chem 7:855–864

    PubMed  CAS  Google Scholar 

  78. Ruusuvuori E, Li H, Huttu K, Palva JM, Smirnov S, Rivera C, Kaila K, Voipio J (2004) Carbonic anhydrase isoform VII acts as a molecular switch in the development of synchronous gamma-frequency firing of hippocampal CA1 pyramidal cells. J Neurosci 24:2699–2707

    PubMed  CAS  Google Scholar 

  79. Asiedu M, Ossipov MH, Kaila K, Price TJ (2010) Acetazolamide and midazolam act synergistically to inhibit neuropathic pain. Pain 148:302–308

    PubMed  CAS  Google Scholar 

  80. Lehtonen J, Shen B, Vihinen M, Casini A, Scozzafava A, Supuran CT, Parkkila A, Saarnio J, Kivela AJ, Waheed A, Sly WS, Parkkila S (2004) Characterization of CA XIII, a novel member of the carbonic anhydrase isozyme family. J Biol Chem 279:2719–2727

    PubMed  CAS  Google Scholar 

  81. Lehtonen JM, Parkkila S, Vullo D, Casini A, Scozzafava A, Supuran CT (2004) Carbonic anhydrase inhibitors. Inhibition of cytosolic isozyme XIII with aromatic and heterocyclic sulfonamides: a novel target for the drug design. Bioorg Med Chem Lett 14:3757–3762

    PubMed  CAS  Google Scholar 

  82. Kummola L, Hamalainen JM, Kivela J, Kivela AJ, Saarnio J, Karttunen T, Parkkila S (2005) Expression of a novel carbonic anhydrase, CA XIII, in normal and neoplastic colrectal mucosa. BMC Cancer 4:1–7

    Google Scholar 

  83. Wandernoth PM, Raubuch M, Mannowetz N, Becker HM, Deitmer JW, Sly WS, Wennemuth G (2010) Role of carbonic anhydrase IV in the bicarbonate-mediated activation of murine and human sperm. PLoS One 5:e15061

    PubMed  Google Scholar 

  84. Chappell JB, Crofts AR (1966) Ion transport and reversible volume changes of isolated mitochondria. In: Tager JM, Papa S, Qualiariello E, Slater EC (eds) Regulation of metabolic processes in mitochondria. Elsevier, Amsterdam, pp 293–316

    Google Scholar 

  85. Elder JA (1972) Energy-linked accumulation of bicarbonate by rat liver mitochondria. FASEB J 31:856

    Google Scholar 

  86. Elder JA, Lehninger AL (1973) Respiration-dependent transport of carbon dioxide into rat liver mitochondria. Biochemistry 12:976–982

    PubMed  CAS  Google Scholar 

  87. Dodgson SJ, Forster RE 2nd (1986) Inhibition of CA V decreases glucose synthesis from pyruvate. Arch Biochem Biophys 251:198–204

    PubMed  CAS  Google Scholar 

  88. Dodgson SJ, Forster RE 2nd (1986) Carbonic anhydrase: inhibition results in decreased urea production by hepatocytes. J Appl Physiol 60:646–652

    PubMed  CAS  Google Scholar 

  89. Dodgson SJ (1987) Inhibition of mitochondrial carbonic anhydrase and ureagenesis: a discrepancy examined. J Appl Physiol 63:2134–2141

    PubMed  CAS  Google Scholar 

  90. Amor-Gueret M, Levi-Strauss M (1990) Nucleotide and derived amino-acid sequence of a cDNA encoding a new mouse carbonic anhydrase. Nucleic Acids Res 18:1646

    PubMed  CAS  Google Scholar 

  91. Nagao Y, Srinivasan M, Platero JS, Svendrowski M, Waheed A, Sly WS (1994) Mitochondrial carbonic anhydrase (isozyme V) in mouse and rat: cDNA cloning, expression, subcellular localization, processing, and tissue distribution. Proc Natl Acad Sci U S A 91:10330–10334

    PubMed  CAS  Google Scholar 

  92. Nagao Y, Platero JS, Waheed A, Sly WS (1993) Human mitochondrial carbonic anhydrase: cDNA cloning, expression, subcellular localization, and mapping to chromosome 16. Proc Natl Acad Sci U S A 90:7623–7627

    PubMed  CAS  Google Scholar 

  93. Shah GN, Hewett-Emmett D, Grubb JH, Migas MC, Fleming RE, Waheed A, Sly WS (2000) Mitochondrial carbonic anhydrase CA VB: differences in tissue distribution and pattern of evolution from those of CA VA suggest distinct physiological roles. Proc Natl Acad Sci U S A 97:1677–1682

    PubMed  CAS  Google Scholar 

  94. Fujikawa-Adachi K, Nishimori I, Taguchi T, Onishi S (1999) Human mitochondrial carbonic anhydrase VB. cDNA cloning, mRNA expression, subcellular localization, and mapping to chromosome x. J Biol Chem 274:21228–21233

    PubMed  CAS  Google Scholar 

  95. Nagao Y, Batanian JR, Clemente MF, Sly WS (1995) Genomic organization of the human gene (CA5) and pseudogene for mitochondrial carbonic anhydrase V and their localization to chromosomes 16q and 16p. Genomics 28:477–484

    PubMed  CAS  Google Scholar 

  96. Lusty CJ (1978) Carbamyl phosphate synthetase. Bicarbonate-dependent hydrolysis of ATP and potassium activation. J Biol Chem 253:4270–4278

    PubMed  CAS  Google Scholar 

  97. Cohen PP (1981) The ornithine-urea cycle: biosynthesis and regulation of carbamyl phosphate synthetase I and ornithine transcarbamylase. Curr Top Cell Regul 18:1–19

    PubMed  CAS  Google Scholar 

  98. McGivan JD, Bradford NM, Mendes-Mourao J (1976) The regulation of carbamoyl phosphate synthase activity in rat liver mitochondria. Biochem J 154:415–421

    PubMed  CAS  Google Scholar 

  99. Lusty CJ (1978) Carbamoylphosphate synthetase I of rat-liver mitochondria. Purification, properties, and polypeptide molecular weight. Eur J Biochem/FEBS 85:373–383

    CAS  Google Scholar 

  100. Dodgson SJ, Forster RE 2nd, Schwed DA, Storey BT (1983) Contribution of matrix carbonic anhydrase to citrulline synthesis in isolated guinea pig liver mitochondria. J Biol Chem 258:7696–7701

    PubMed  CAS  Google Scholar 

  101. Cao TP, Rous S (1978) Action of acetazolamide on liver pyruvate carboxylase activity, glycogenolysis and gluconeogenesis of mice. Int J Biochem 9:603–605

    PubMed  CAS  Google Scholar 

  102. Hazen SA, Waheed A, Sly WS, LaNoue KF, Lynch CJ (1996) Differentiation-dependent expression of CA V and the role of carbonic anhydrase isozymes in pyruvate carboxylation in adipocytes. FASEB J 10:481–490

    PubMed  CAS  Google Scholar 

  103. Mohammadi A, Leibfritz D (2009) Inhibitory effect of carbonic anhydrase inhibitors on the de novo lipogenesis. A study with 13C-NMR spectroscopy. Proc Int Soc Magn Reson Med 17:2374

    Google Scholar 

  104. Lynch CJ, Fox H, Hazen SA, Stanley BA, Dodgson S, Lanoue KF (1995) Role of hepatic carbonic anhydrase in de novo lipogenesis. Biochem J 310(Pt 1):197–202

    PubMed  CAS  Google Scholar 

  105. Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283:1482–1488

    PubMed  CAS  Google Scholar 

  106. Oommen KJ, Mathews S (1999) Zonisamide: a new antiepileptic drug. Clin Neuropharmacol 22:192–200

    PubMed  CAS  Google Scholar 

  107. Gadde KM, Franciscy DM, Wagner HR II, Krishnan KR (2003) Zonisamide for weight loss in obese adults: a randomized controlled trial. JAMA 289:1820–1825

    PubMed  CAS  Google Scholar 

  108. De Simone G, Di Fiore A, Menchise V, Pedone C, Antel J, Casini A, Scozzafava A, Wurl M, Supuran CT (2005) Carbonic anhydrase inhibitors. Zonisamide is an effective inhibitor of the cytosolic isozyme II and mitochondrial isozyme V: solution and X-ray crystallographic studies. Bioorg Med Chem Lett 15:2315–2320

    PubMed  Google Scholar 

  109. Poulsen SA, Wilkinson BL, Innocenti A, Vullo D, Supuran CT (2008) Inhibition of human mitochondrial carbonic anhydrases VA and VB with para-(4-phenyltriazole-1-yl)-benzenesulfonamide derivatives. Bioorg Med Chem Lett 18:4624–4627

    PubMed  CAS  Google Scholar 

  110. Arechederra RL, Waheed A, Sly WS, Supuran CT, Minteer SD (2013) Effect of sulfonamides as carbonic anhydrase VA and VB inhibitors on mitochondrial metabolic energy conversion. Bioorg Med Chem 21:1544–1548

    PubMed  CAS  Google Scholar 

  111. Nishimori I, Vullo D, Innocenti A, Scozzafava A, Mastrolorenzo A, Supuran CT (2005) Carbonic anhydrase inhibitors. The mitochondrial isozyme VB as a new target for sulfonamide and sulfamate inhibitors. J Med Chem 48:7860–7866

    PubMed  CAS  Google Scholar 

  112. Kivela J, Parkkila S, Parkkila AK, Leinonen J, Rajaniemi H (1999) Salivary carbonic anhydrase isoenzyme VI. J Physiol 520(Pt 2):315–320

    PubMed  CAS  Google Scholar 

  113. Fernley RT, Wright RD, Coghlan JP (1979) A novel carbonic anhydrase from ovine parotid glands. FEBS Lett 105:299–302

    PubMed  CAS  Google Scholar 

  114. Feldstein JB, Silverman DN (1984) Purification and characterization of carbonic anhydrase from the saliva of the rat. J Biol Chem 259:5447–5453

    PubMed  CAS  Google Scholar 

  115. Murakami H, Sly WS (1987) Purification and characterization of human salivary carbonic anhydrase. J Biol Chem 262:1382–1388

    PubMed  CAS  Google Scholar 

  116. Parkkila S, Parkkila AK, Rajaniemi H (1995) Circadian periodicity in salivary carbonic anhydrase VI concentration. Acta Physiol Scand 154:205–211

    PubMed  CAS  Google Scholar 

  117. Karhumaa P, Lienonen J, Parkkila S, Kaunisto K, Tapanainen J, Rajanemi H (2001) The identification of secreted carbonic anydrase VI as a constitutive glycoprotein of human and rat milk. Proc Natl Acad Sci U S A 98:11604–11608

    PubMed  CAS  Google Scholar 

  118. Ogawa Y, Matsumoto K, Maeda T, Tamai R, Suzuki T, Sasano H, Fernley RT (2002) Characterization of lacrimal gland carbonic anhydrase VI. J Histochem Cytochem 50:821–827

    PubMed  CAS  Google Scholar 

  119. Leinonen JS, Saari KA, Seppanen JM, Myllyla HM, Rajaniemi HJ (2004) Immunohistochemical demonstration of carbonic anhydrase isoenzyme VI (CA VI) expression in rat lower airways and lung. J Histochem Cytochem 52:1107–1112

    PubMed  CAS  Google Scholar 

  120. Kaseda M, Ichihara N, Nishita T, Amasaki H, Asari M (2006) Immunohistochemistry of the bovine secretory carbonic anhydrase isozyme (CA-VI) in bovine alimentary canal and major salivary glands. J Vet Med Sci 68:131–135

    PubMed  CAS  Google Scholar 

  121. Smith CE, Nanci A, Moffatt P (2006) Evidence by signal peptide trap technology for the expression of carbonic anhydrase 6 in rat incisor enamel organs. Eur J Oral Sci 114(Suppl 1):147–153

    PubMed  CAS  Google Scholar 

  122. Kivela J, Parkkila S, Waheed A, Parkkila AK, Sly WS, Rajaniemi H (1997) Secretory carbonic anhydrase isoenzyme (CA VI) in human serum. Clin Chem 43:2318–2322

    PubMed  CAS  Google Scholar 

  123. Ship JA (2003) Diabetes and oral health: an overview. J Am Dent Assoc 134 Spec No:4S–10S

    Google Scholar 

  124. Dowd FJ (1999) Saliva and dental caries. Dent Clin North Am 43:579–597

    PubMed  CAS  Google Scholar 

  125. Kimoto M, Kishino M, Yura Y, Ogawa Y (2006) A role of salivary carbonic anhydrase VI in dental plaque. Arch Oral Biol 51:117–122

    PubMed  CAS  Google Scholar 

  126. Kivela J, Parkkila S, Parkkila AK, Rajaniemi H (1999) A low concentration of carbonic anhydrase isoenzyme VI in whole saliva is associated with caries prevalence. Caries Res 33:178–184

    PubMed  CAS  Google Scholar 

  127. Peres RC, Camargo G, Mofatto LS, Cortellazzi KL, Santos MC, Nobre-dos-Santos M, Bergamaschi CC, Line SR (2010) Association of polymorphisms in the carbonic anhydrase 6 gene with salivary buffer capacitiy, dental plaque pH, and caries index in children aged 7–9 years. Pharmacogenomics J 10:114–119

    PubMed  CAS  Google Scholar 

  128. Ozturk K, Ulucan K, Akyuz S, Furuncuoglu H, Bayer H, Yarat A (2012) The investigation of genetic polymorphisms in the carbonic anhydrase VI gene exon 2 and salivary parameters in type 2 diabetic patients and healthy adults. Mol Biol Rep 39:5677–5682

    Google Scholar 

  129. Henkin RI, Martin BM, Agarwal RP (1999) Decreased parotid saliva gustin/carbonic anhydrase VI secretion: an enzyme disorder manifested by gustatory and olfactory dysfunction. Am J Med Sci 318:380–391

    PubMed  CAS  Google Scholar 

  130. Henkin RI, Lippoldt RE, Bilstad J, Edelhoch H (1975) A zinc protein isolated from human parotid saliva. Proc Natl Acad Sci U S A 72:488–492

    PubMed  CAS  Google Scholar 

  131. Shatzman AR, Henkin RI (1980) Metal-binding characteristics of the parotid salivary protein gustin. Biochim Biophys Acta 623:107–118

    PubMed  CAS  Google Scholar 

  132. Shatzman AR, Henkin RI (1981) Gustin concentration changes relative to salivary zinc and taste in humans. Proc Natl Acad Sci U S A 78:3867–3871

    PubMed  CAS  Google Scholar 

  133. Henkin RI, Schechter PJ, Hoye R, Mattern CF (1971) Idiopathic hypogeusia with dysgeusia, hyposmia, and dysosmia. A new syndrome. JAMA 217:434–440

    PubMed  CAS  Google Scholar 

  134. Ortho-McNeil-Janssen Pharmaceuticals I (2013) Topomax: drug summary. Physicians’ desk reference http://www.pdr.net

  135. Pilka ES, Kochan G, Oppermann U, Yue WW (2012) Crystal structure of the secretory isozyme of mammalian carbonic anhydrases CA VI: implications for biological assembly and inhibitor development. Biochem Biophys Res Commun 419:485–489

    PubMed  CAS  Google Scholar 

  136. Hilvo M, Tolvanen M, Clark A, Shen B, Shah GN, Waheed A, Halmi P, Hanninen M, Hamalainen JM, Vihinen M, Sly WS, Parkkila S (2005) Characterization of CA XV, a new GPI-anchored from of carbonic anhydrase. Biochem J 392:83–92

    PubMed  CAS  Google Scholar 

  137. Whitney PL, Briggle TV (1982) Membrane-associated carbonic anhydrase purified from bovine lung. J Biol Chem 257:12056–12059

    PubMed  CAS  Google Scholar 

  138. Wistrand PJ (1984) Properties of membrane-bound carbonic anhydrase. Ann N Y Acad Sci 429:195–206

    PubMed  CAS  Google Scholar 

  139. Zhu XL, Sly WS (1990) Carbonic anhydrase IV from human lung. Purification, characterization, and comparison with membrane carbonic anhydrase from human kidney. J Biol Chem 265:8795–8801

    PubMed  CAS  Google Scholar 

  140. Okuyama T, Sato S, Zhu XL, Waheed A, Sly WS (1992) Human carbonic anhydrase IV: cDNA cloning, sequence comparison, and expression in COS cell membranes. Proc Natl Acad Sci U S A 89:1315–1319

    PubMed  CAS  Google Scholar 

  141. Baird TT Jr, Waheed A, Okuyama T, Sly WS, Fierke CA (1997) Catalysis and inhibition of human carbonic anhydrase IV. Biochemistry 36:2669–2678

    PubMed  CAS  Google Scholar 

  142. Sender S, Decker B, Fenske CD, Sly WS, Carter ND, Gros G (1998) Localization of carbonic anhydrase IV in rat and human heart muscle. J Histochem Cytochem 46:855–861

    PubMed  CAS  Google Scholar 

  143. Brion LP, Suarez C, Zhang H, Cammer W (1994) Up-regulation of carbonic anhydrase isozyme IV in CNS myelin of mice genetically deficient in carbonic anhydrase II. J Neurochem 63:360–366

    PubMed  CAS  Google Scholar 

  144. Hageman GS, Zhu XL, Waheed A, Sly WS (1991) Localization of carbonic anhydrase IV in a specific capillary bed of the human eye. Proc Natl Acad Sci U S A 88:2716–2720

    PubMed  CAS  Google Scholar 

  145. Wistrand PJ, Carter ND, Conroy CW, Mahieu I (1999) Carbonic anhydrase IV activity is localized on the exterior surface of human erythrocytes. Acta Physiol Scand 165:211–218

    PubMed  CAS  Google Scholar 

  146. Conroy CW, Wynns GC, Maren TH (1996) Synthesis and properties of two new membrane-impermeant high-molecular-weight carbonic anhydrase inhibitors. Bioorg Chem 24:262–272

    CAS  Google Scholar 

  147. Maren TH, Conroy CW, Wynns GC, Godman DR (1997) Renal and cerbrospinal fluid formation pharmacology of a high molecular weight carbonic anhydrase inhibitor. J Pharmacol Exp Ther 280:98–104

    PubMed  CAS  Google Scholar 

  148. Maren TH (1969) Renal carbonic anhydrase and the pharmacology of sulfonamide inhibitors. Springer-Verlag, Berlin

    Google Scholar 

  149. Sly WS, Whyte MP, Krupin T, Sundaram V (1985) Positive renal response to intravenous acetazolamide in patients with carbonic anhydrase II deficiency. Pediatr Res 19:1033–1036

    PubMed  CAS  Google Scholar 

  150. Tureci O, Sahin U, Vollmar E, Siemer S, Gottert E, Seitz G, Parkkila A, Shah GN, Grubb JH, Pfreundschuh M, Sly WS (1998) Human carbonic anhydrase XII: cDNA cloning, expression, and chromosomal location of a carbonic anhydrase gene that is overexpressed in some renal cancers. Proc Natl Acad Sci U S A 93:7608–7613

    Google Scholar 

  151. Schwartz GL, Kittelberger AM, Watkins RH, O’Reilly MA (2003) Carbonic anhydrase XII mRNA encodes a hydratase that is differentially expressed along the rabbit nephron. Am J Physiol 284:F399–F410

    CAS  Google Scholar 

  152. Sterling D, Alvarez BV, Casey JR (2002) The extracellular component of a transport metabolon: extracellular loop 4 of the human AE1 Cl/HCO3 exchanger binds carbonic anhydrase IV. J Biol Chem 277:25239–25246

    PubMed  CAS  Google Scholar 

  153. Yang Z, Alvarez B, Chakarova C, Jiang L, Karan G, Frederick JM, Zhao Y, Sauve Y, Zrenner E, Wissinger B, Den Hollander AI, Katz B, Baehr W, Cremers FP, Casey JR, Bhattacharya SS, Zhang K (2005) Mutant carbonic anhydrase 4 impairs pH regulation and causes retinal photoreceptor degeneration. Hum Mol Genet 14:255–265

    PubMed  CAS  Google Scholar 

  154. Rebello G, Ramesar R, Vorster A, Roberts L, Ehrenreich L, Oppon E, Gama D, Bardien S, Greenberg J, Bonapace G, Waheed A, Shah GN, Sly WS (2004) Apoptosis-inducing signal sequence mutation in carbonic anhydrase IV identified in patients with the RP17 form of retinitis pigmentosa. Proc Natl Acad Sci U S A 101:6617–6622

    PubMed  CAS  Google Scholar 

  155. Ivanov S, Liao SY, Ivanova A, Danilkovitch-Miagkova A, Tarasova N, Weirich G, Merrill MJ, Proescholdt MA, Oldfield EH, Lee J, Zavada J, Waheed A, Sly W, Lerman MI, Stanbridge EJ (2001) Expression of hypoxia-inducible cell-surface transmembrane carbonic anhydrases in human cancer. Am J Pathol 158:905–919

    PubMed  CAS  Google Scholar 

  156. Pastorekova S, Parkkila S, Parkkila A, Opavsky R, Zelnik V, Saarnio J, Pastorek J (1997) Carbonic anhydrase IX, MN/CAIX: analysis of stomach complementary DNA sequence and expression in human and rat alimentary tracts. Gastroenterology 112:398–408

    PubMed  CAS  Google Scholar 

  157. Saarnio J, Parkkila S, Parkkila AK, Waheed A, Casey MC, Zhou XY, Pastorekova S, Pastorek J, Karttunen T, Haukipuro K, Kairaluoma MI, Sly WS (1998) Immunohistochemistry of carbonic anhydrase isozyme IX (MN/CA IX) in human gut reveals polarized expression in epithelial cells with the highest proliferative capacity. J Histochem Cytochem 46:497–504

    PubMed  CAS  Google Scholar 

  158. Parkkila S, Rajaniemi H, Parkkila A, Kivela J, Waheed A, Pastorekova S, Pastorek J, Sly WS (2000) Carbonic anhydrase inhibitor suppresses invasion of renal cancer cells in vitro. Proc Natl Acad Sci U S A 97:2220–2224

    PubMed  CAS  Google Scholar 

  159. Robertson N, Potter C, Harris AL (2004) Role of carbonic anhydrase IX in human tumor cell growth, survival, and invasion. Cancer Res 64:6160–6165

    PubMed  CAS  Google Scholar 

  160. Svastova E, Zilka N, Zatovicova M, Gibadulinova A, Ciampor F, Pastorek J, Pastorekova S (2003) Carbonic anhydrase IX reduces E-cadherin-mediated adhesion of MDCK cells via interaction with á-catenin. Exp Cell Res 290:332–345

    PubMed  CAS  Google Scholar 

  161. Lou Y, McDonald PC, Oloumi A, Chia S, Ostlund C, Ahmadi A, Kyle A, auf dem Keller U, Leung S, Huntsman D, Clarke B, Sutherland BW, Waterhouse D, Bally M, Roskelley C, Overall CM, Minchinton A, Pacchiano F, Carta F, Scozzafava A, Touisni N, Winum J, Supuran CT, Dedhar S (2011) Targeting tumor hypoxia: suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX inhibitors. Cancer Res 71:3364–3376

    PubMed  CAS  Google Scholar 

  162. Swietach P, Hulikova A, Vaughan-Jones RD, Harris AL (2010) New insights into the physiological role of carbonic anhydrase IX in tumour pH regulation. Oncogene 29:6509–6521

    PubMed  CAS  Google Scholar 

  163. Chiche J, Ilc K, Brahimi-Horn MC, Pouyssegur J (2010) Membrane-bound carbonic anhydrases are key pH regulators controlling tumor growth and cell migration. Adv Enzyme Regul 50:20–33

    PubMed  Google Scholar 

  164. Svastova E, Hulikova A, Rafajova M, Zatovicova M, Gibadulinova A, Casini A, Cecchi A, Scozzafava A, Supuran CT, Pastorek J, Pastorekova S (2004) Hypoxia activates the capacity of tumor-associated carbonic anhydrase IX to acidify extracellular pH. FEBS Lett 577:439–445

    PubMed  CAS  Google Scholar 

  165. Li Y, Tu C, Wang H, Silverman DN, Frost SC (2011) Catalysis and pH control by membrane-associated carbonic anhydrase IX in MDA-MB-231 breast cancer cells. J Biol Chem 286:15789–15796

    PubMed  CAS  Google Scholar 

  166. Pastorek J, Pastorekova S, Callebaut I, Mornon JP, Zeln¡k V, Opavsky R, Zat’ovicov M, Liao S, Portetelle D, Stanbridge EJ, Zá-vada J, Burny A, Kettmann R (1994) Cloning and characterization of MN, a human tumor-associated protein with a domain homologous to carbonic anhydrase and a putative helix-loop-helix DNA binding segment. Oncogene 9:2877–2888

    PubMed  CAS  Google Scholar 

  167. Opavsky R, Pastorekova S, Zeln¡k V, Gibadulinov A, Stanbridge EJ, Zá-vada J, Kettmann R, Pastorek J (1996) Human MN/CA9 Gene, a novel member of the carbonic anhydrase family: structure and exon to protein domain relationships. Genomics 33:480–487

    PubMed  CAS  Google Scholar 

  168. Hilvo M, Baranauskiene L, Salzano AM, Scaloni A, Matulis D, Innocenti A, Scozzafava A, Monti SM, Di Fiore A, De Simone G, Lindfors M, Janis J, Valjakka J, Pastorekova S, Pastorek J, Kulomaa MS, Mordlund HR, Supuran CT, Parkkila S (2008) Biochemical characterization of CA IX, one of the most active carbonic anhydrase isozymes. J Biol Chem 283:27799–27809

    PubMed  CAS  Google Scholar 

  169. Li Y, Wang H, Tu C, Shiverick KT, Silverman DN, Frost SC (2011) Role of hypoxia and EGF on expression, activity, localization, and phosphorylation of carbonic anhydrase IX in MDA-MB-231 breast cancer cells. Biochim Biophys Acta 1813:159–167

    PubMed  CAS  Google Scholar 

  170. Alterio V, Hilvo M, Di Fiore A, Supuran CT, Pan P, Parkkila S, Scaloni A, Pastorek J, Pastorekova S, Pedone C, Scozzafava A, Monti SM, De Simone G (2009) Crystal structure of the catalytic domain of the tumor-associated human carbonic anhydrase IX. Proc Natl Acad Sci U S A 106:16233–16238

    PubMed  CAS  Google Scholar 

  171. Orlowski A, De Giusti VC, Morgan PE, Aiello EA, Alvarez BV (2012) Binding of carbonic anhydrase IX to extracellular loop 4 of the NBCe1 Na +/HCO3 cotransporter enhances NBCe1-medicated HCO3 influx in the heart. Am J Physiol Cell Physiol 303:C69–C80

    PubMed  CAS  Google Scholar 

  172. Wingo T, Tu C, Laipis PJ, Silverman DN (2001) The catalytic properties of human carbonic anhydrase IX. Biochem Biophys Res Commun 288:666–669

    PubMed  CAS  Google Scholar 

  173. Wykoff CC, Beasley NJP, Watson PH, Turner KJ, Pastorek J, Sibtain A, Wilson GD, Turley H, Talks KL, Maxwell PH, Pugh CW, Ratcliffe PJ, Harris AL (2000) Hypoxia-inducible expression of tumor-associated carbonic anhydrase. Cancer Res 60:7075–7083

    PubMed  CAS  Google Scholar 

  174. Chia SK, Wykoff CC, Watson PH, Han C, Leek RD, Pastorek J, Gatter KC, Ratcliffe P, Harris AL (2001) Prognostic significance of a novel hypoxia-regulated marker, carbonic anhydrase IX, in invasive breast cancer. J Clin Oncol 19:3660–3668

    PubMed  CAS  Google Scholar 

  175. Generali D, Fox SB, Berruti A, Brizzi MP, Campo L, Bonardi S, Wigfield SM, Bruzzi P, Bersiga A, Allevi G, Milani M, Aguggini S, Dogliotti L, Bottini A, Harris AL (2006) Role of carbonic anhydrase IX expression in prediction of the efficacy and outcome of primary epirubicin/tamoxifen therapy for breast cancer. Endocr Relat Cancer 13:921–930

    PubMed  CAS  Google Scholar 

  176. Span PM, Bussink J, Manders P, Beex LVAM, Sweep CGJ (2003) Carbonic anhydrase-9 expression levels and prognosis in human breast cancer: association with treatment outcome. Br J Cancer 89:271–276

    PubMed  CAS  Google Scholar 

  177. Nordfors K, Haapasalo J, Korja M, Niemela A, Laine J, Parkkila A, Pastorekova S, Pastorek J, Waheed A, Sly WS, Parkkila S, Haapasalo H (2010) The tumour-associated carbonic anhydrases CA II, CA IX and CA XII in a group of medulloblastomas and supratentorial primitive neuroectodermal tumours: an association of CA IX with poor prognosis. BMC Cancer 10:148

    PubMed  Google Scholar 

  178. Ulmasov B, Waheed A, Shah GN, Grubb JH, Sly WS, Tu C, Silverman DN (2000) Purification and kinetic analysis of recombinant CAXII, a membrane carbonic anhydrase overexpressed in certain cancers. Proc Natl Acad Sci U S A 97:14212–14217

    PubMed  CAS  Google Scholar 

  179. Vullo D, Innocenti A, Nishimori I, Pastorek J, Scozzafava A, Pastorekova S, Supuran CT (2005) Carbonic anhydrase inhibitors: inhibition of the transmembrane isozyme XII with sulfonamides – a new target for the design of antitumor and antiglaucoma drugs. Bioorg Med Chem Lett 15:963–969

    PubMed  CAS  Google Scholar 

  180. Parkkila S, Parkkila AK, Saarnio J, Kivela J, Karttunen TJ, Kaunisto K, Waheed A, Sly WS, Tureci O, Virtanen I, Rajaniemi H (2000) Expression of the membrane-associated carbonic anhydrase isozyme XII in the human kidney and renal tumors. J Histochem Cytochem 48:1601–1608

    PubMed  CAS  Google Scholar 

  181. Hynninen P, Parkkila S, Huhtala H, Pastorekova S, Pastorek J, Wahl RL, Sly WS, Tomas E (2011) Carbonic anhydrase isozymes II, IX and XII in uterine tumors. Acta Physiol Microbiol Immunol Scand 120:117–129

    Google Scholar 

  182. Kivela A, Parkkila S, Saarnio J, Karttunen TJ, Kivela J, Parkkila A, Waheed A, Sly WS, Grubb JH, Shah G, Tureci O, Rajaniemi H (2000) Expression of a novel transmembrane carbonic anhydrase XII in normal human gut and colorectal tumors. Am J Pathol 156:577–584

    PubMed  CAS  Google Scholar 

  183. Creighton CJ, Cordero KE, Larios JM, Miller RS, Johnson MD, Chinnaiyan AR, Lippman ME, Rae JM (2006) Genes regulated by estrogen in breast tumor cells in vitro are similarly regulated in vivo in tumor xernografts and human breast tumors. Genome Biol 7(R28):1–13

    Google Scholar 

  184. Barnett DH, Sheng S, Charn TH, Waheed A, Sly WS, Lin CY, Liu ET, Katzenellenbogen BS (2008) Estrogen receptor regulation of carbonic anhydrase XII through a distal enhancer in breast cancer. Cancer Res 68:3505–3515

    PubMed  CAS  Google Scholar 

  185. Wykoff CC, Beasley N, Watson PH, Campo L, Chia SK, English R, Pastorek J, Sly WS, Ratcliffe P, Harris AL (2001) Expression of hypoxia-inducible and tumor-associated carbonic anhydrases in ductal carcinoma in situ of the breast. Am J Pathol 158:1011–1019

    PubMed  CAS  Google Scholar 

  186. Watson PH, Chia SK, Wykoff CC, Han C, Leek RD, Sly WS, Gatter KC, Ratcliffe P, Harris AL (2003) Carbonic anhydrase XII is a marker of good prognosis in invasive breast carcinoma. Br J Cancer 88:1065–1070

    PubMed  CAS  Google Scholar 

  187. Ilie MI, Hofman V, Ortholan C, El Ammadi R, Bonnetaud C, Havet K, Venissac N, Mouroux J, Mazure NM, Pouyssegur J, Hofman P (2011) Overexpression of carbonic anhydrase XII in tissues from resectable non-small cell lung cancers is a biomarker of good prognosis. Int J Cancer 128:1614–1623

    PubMed  CAS  Google Scholar 

  188. Chien MH, Ying TH, Hsieh YH, Lin CH, Shih CH, Wei LH, Yang SF (2012) Tumor-associated carbonic anhydrase XII is linked to the growth of primary oral squamous cell carcinoma and its poor prognosis. Oral Oncol 48:417–423

    PubMed  CAS  Google Scholar 

  189. Mirza NS, Alfirevic A, Jorgensen A, Marson AG, Pirmohamed M (2011) Metabolic acidosis with topiramate and zonisamide: an assessment of its severity and predictors. Pharmacogenet Genomics 21:297–302

    PubMed  CAS  Google Scholar 

  190. Muhammad E, Leventhal N, Parvari G, Hanukoglu A, Hanukoglu I, Chalifa-Caspi V, Feinstein Y, Weinbrand J, Jacoby H, Manor E, Nagar T, Beck JC, Sheffield VC, Hershkovitz E, Parvari R (2011) Autosomal recessive hyponatremia due to isolated salt wasting in sweat associated with a mutation in the active site of carbonic anhydrase 12. Hum Genet 129:397–405

    PubMed  CAS  Google Scholar 

  191. Fujikawa-Adachi K, Nishimori I, Taguchi T, Onishi S (1999) Human carbonic anhydrase XIV (CA14): cDNA cloning, mRNA expression, and mapping to chromosome 1. Genomics 61:81

    Google Scholar 

  192. Kaunisto K, Parkkila S, Rajaniemi H, Waheed A, Grubb J, Sly WS (2002) Carbonic anhydrase XIV: luminal expression suggests key role in renal acidification. Kidney Int 61:2111–2118

    PubMed  CAS  Google Scholar 

  193. Juel C, Lundby C, Sander M, Calbet JA, Hall G (2003) Human skeletal muscle and erythrocyte proteins involved in acid–base homeostasis: adaptations to chronic hypoxia. J Physiol 548:639–648

    PubMed  CAS  Google Scholar 

  194. Vargas LA, Alvarez BV (2012) Carbonic anhydrase XIV in the normal and hypertrophic myocardium. J Mol Cell Cardiol 52:741–752

    PubMed  CAS  Google Scholar 

  195. Ochrietor JD, Clamp MF, Moroz TP, Grubb JH, Shah GN, Waheed A, Sly WS, Linser PJ (2005) Carbonic anhydrase XIV identified as the membrane CA in mouse retina: strong expression in Muller cells and the RPE. Exp Eye Res 81:492–500

    PubMed  CAS  Google Scholar 

  196. Linser PJ, Mosconna AA (1984) Variable CA II compartmentalization in the vertebrate retina. Ann N Y Acad Sci 429:430–446

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan C. Frost .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Frost, S.C. (2014). Physiological Functions of the Alpha Class of Carbonic Anhydrases. In: Frost, S., McKenna, R. (eds) Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications. Subcellular Biochemistry, vol 75. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7359-2_2

Download citation

Publish with us

Policies and ethics