Skip to main content

Carbonic Anhydrase Inhibitors and High Altitude Illnesses

  • Chapter
  • First Online:

Part of the book series: Subcellular Biochemistry ((SCBI,volume 75))

Abstract

Carbonic anhydrase (CA) inhibitors, particularly acetazolamide, have been used at high altitude for decades to prevent or reduce acute mountain sickness (AMS), a syndrome of symptomatic intolerance to altitude characterized by headache, nausea, fatigue, anorexia and poor sleep. Principally CA inhibitors act to further augment ventilation over and above that stimulated by the hypoxia of high altitude by virtue of renal and endothelial cell CA inhibition which oppose the hypocapnic alkalosis resulting from the hypoxic ventilatory response (HVR), which acts to limit the full expression of the HVR. The result is even greater arterial oxygenation than that driven by hypoxia alone and greater altitude tolerance. The severity of several additional diseases of high attitude may also be reduced by acetazolamide, including high altitude cerebral edema (HACE), high altitude pulmonary edema (HAPE) and chronic mountain sickness (CMS), both by its CA-inhibiting action as described above, but also by more recently discovered non-CA inhibiting actions, that seem almost unique to this prototypical CA inhibitor and are of most relevance to HAPE. This chapter will relate the history of CA inhibitor use at high altitude, discuss what tissues and organs containing carbonic anhydrase play a role in adaptation and maladaptation to high altitude, explore the role of the enzyme and its inhibition at those sites for the prevention and/or treatment of the four major forms of illness at high altitude.

Susan C. Frost and Robert McKenna (eds.). Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bailey DM, Bärtsch P, Knauth M, Baumgartner RW (2009) Emerging concepts in acute mountain sickness and high-altitude cerebral edema: from the molecular to the morphological. Cell Mol Life Sci 66:3583–3594

    CAS  PubMed  Google Scholar 

  2. Swenson ER (1998) Carbonic anhydrase inhibitors and ventilation: a complex interplay of stimulation and suppression. Eur Respir J 12:1242–1247

    CAS  PubMed  Google Scholar 

  3. Swenson ER, Teppema L (2007) Prevention of acute mountain sickness: as yet an unfinished story. J Appl Physiol 102:1305–1307

    PubMed  Google Scholar 

  4. Bailey DM, Taudorf S, Berg RM, Lundby C, McEneny J, Young IS, Evans KA, James PE, Shore A, Hulllin DA, McCord JM, Pedersen BK, Möller K (2009) Increased cerebral output of free radicals during hypoxia: implications for acute mountain sickness? Am J Physiol 297:R1283–R1292

    CAS  Google Scholar 

  5. Kallenberg K, Dehnert C, Dörfler A, Schellinger PD, Bailey DM, Knauth M, Bärtsch PD (2008) Microhemorrhages in nonfatal high-altitude cerebral edema. J Cereb Blood Flow Metab 28:1635–1642

    PubMed  Google Scholar 

  6. Maren TH (1979) An historical account of CO2 chemistry and the development of carbonic anhydrase inhibitors. Pharmacologist 20:303–321

    Google Scholar 

  7. Coudon WL, Block AJ (1976) Acute respiratory failure precipitated by a carbonic anhydrase inhibitor. Chest 69:112–113

    CAS  PubMed  Google Scholar 

  8. Kronenberg RS, Cain SM (1967) Effects of acetazolamide on physiologic and subjective responses of men to 14,000 feet. SAM-TR-67–81. Sch Aviat Med Tech Rep 67:1–10

    Google Scholar 

  9. Forwand SA, Landowne M, Follansbee JN, Hansen JE (1968) Effect of acetazolamide on acute mountain sickness. N Engl J Med 279:839–845

    CAS  PubMed  Google Scholar 

  10. Ellsworth AJ, Larson EB, Strickland D (1987) A randomized trial of dexamethasone and acetazolamide for acute mountain sickness prophylaxis. Am J Med 83:1024–1030

    CAS  PubMed  Google Scholar 

  11. Kayser B, Dumont L, Lysakowski C, Combescure C, Haller G, Tramèr MR (2012) Reappraisal of acetazolamide for the prevention of acute mountain sickness. Med Sci Sports Exerc 22:178–1841

    Google Scholar 

  12. Stager JM, Tucker A, Cordain L, Engebretsen BJ, Brechue WF, Matulich CC (1990) Normoxic and acute hypoxic exercise tolerance in man following acetazolamide. Med Sci Sports Exerc 22:178–184

    CAS  PubMed  Google Scholar 

  13. Garske LA, Brown MG, Morrison SC (2003) Acetazolamide reduces exercise capacity and increases leg fatigue under hypoxic conditions. J Appl Physiol 94:991–996

    CAS  PubMed  Google Scholar 

  14. Faoro V, Huez S, Giltaire S (2007) Effects of acetazolamide on aerobic exercise capacity and pulmonary hemodynamics at high altitudes. J Appl Physiol 103:1161–1165

    CAS  PubMed  Google Scholar 

  15. McLellan T, Jacobs I, Lewis W (1998) Acute altitude exposure and altered acid–base states II. Effects on exercise performance and muscle and blood lactate. Eur J Appl Physiol Occup Physiol 57:445–451

    Google Scholar 

  16. Hackett PH, Schoene RB, Winslow RM, Paters RM Jr, West JB (1985) Acetazolamide and exercise in sojourners to 6,300 meters–a preliminary study. Med Sci Sports Exerc 17:593–597

    CAS  PubMed  Google Scholar 

  17. Jonk AM, van den Berg IP, Olfert IM, Wray DW, Arai T, Hopkins SR, Wagner PD (2007) Effect of acetazolamide on pulmonary and muscle gas exchange during normoxic and hypoxic exercise. J Physiol 579:909–921

    CAS  PubMed  Google Scholar 

  18. Scheuermann BW, Kowalchuk JM, Paterson DH, Cunningham DA (2000) Carbonic anhydrase inhibition delays plasma lactate appearance with no effect on ventilatory threshold. J Appl Physiol 88:713–721

    CAS  PubMed  Google Scholar 

  19. Bradwell, A. R., Coote, J. H., Milles, J. J., Dykes, P. W., Forster, P. J. E., Chesner, I., and Richardson, N. V.; Birmingham Medical Research Expeditionary Society (1986) Effect of acetazolamide on exercise performance and muscle mass at high altitude. Lancet 327:1001–1005

    Google Scholar 

  20. Slavi P, Revera M, Faini A, Giullian A, Gregorini F, Agostoni P, Becerra CG, Blio G, Lombardi C, O’Rourke MF, Mancia G, Parati G (2013) Changes in subendocardial viability ratio with acute high-altitude exposure and protective role of acetazolamide. Hypertension 61:79–799

    Google Scholar 

  21. Larsen RF, Rock PB, Fulco CS (1986) Effect of spironolactone on acute mountain sickness. Aviat Space Environ Med 57:543–547

    CAS  PubMed  Google Scholar 

  22. Basnyat, B., Holck, P. S., Pun, M., Halverson, S., Szawarski, P., Gertsch, J., Steif, M., Powell, S., Khanai, S., Shankar, R., Karambay, J., Alexander, H.D., Stone, A., Morrissey, C., Thompson, B. H., and Farrar, J.; SPACE Trial Group (2011) Spironolactone does not prevent acute mountain sickness: a prospective, double-blind, randomized, placebo-controlled trial by SPACE Trial Group (spironolactone and acetazolamide trial in the prevention of acute mountain sickness group). Wilderness Environ Med 22:15–22

    Google Scholar 

  23. Klocke RA (1996) Potential role of endothelial carbonic anhydrase in dehydration of plasma bicarbonate. Trans Am Clin Climatol Assoc 108:44–57

    Google Scholar 

  24. Swenson ER, Hughes JMB (1993) Effects of acute and chronic acetazolamide on resting ventilation and ventilatory responses in men. J Appl Physiol 74:230–237

    CAS  PubMed  Google Scholar 

  25. Swenson ER, Maren TH (1978) A quantitative analysis of CO2 transport at rest and during maximal exercise. Respir Physiol 35:129–159

    CAS  PubMed  Google Scholar 

  26. Vogh BP (1980) The relation of choroid plexus carbonic anhydrase activity to cerebro-spinal fluid formation: a study of three inhibitors in cat with extrapolation to man. J Pharmacol Exp Ther 213:321–331

    CAS  PubMed  Google Scholar 

  27. Tachtsidis I, Tisdall M, Delpy DT, Smith M, Elwell CE (2008) Measurement of cerebral tissue oxygenation in young healthy volunteers during acetazolamide provocation: a transcranial Doppler and near-infrared spectroscopy investigation. Adv Exp Med Biol 614:389–396

    CAS  PubMed  Google Scholar 

  28. Huang SY, Mccullough RE, Mccullough RG, Micco AJ, Manco-Johnson M, Well JV, Reeves JT (1998) Usual clinical dose of acetazolamide does not alter cerebral blood-flow velocity. Respir Physiol 72:315–326

    Google Scholar 

  29. Subudhi AW, Dimmen AC, Julian CG, Wilson MJ, Paneral RB, Roach RC (2011) Effects of acetazolamide and dexamethasone on cerebral hemodynamics in hypoxia. J Appl Physiol 110:1219–1225

    CAS  PubMed  Google Scholar 

  30. Vuyk J, Van Den Bos J, Terhell K, De Bos R, Vietter A, Valk P, Van Beuzekom M, Kleef JV, Dahan A (2006) Acetazolamide improves cerebral oxygenation during exercise at high altitude. High Alt Med Biol 7:290–301

    CAS  PubMed  Google Scholar 

  31. Coates LE, Li A, Nattie EE (1991) Acetazolamide on the ventral medulla of the cat increases phrenic output and delays the ventilatory response to CO2. J Physiol 441:433–451

    CAS  PubMed  Google Scholar 

  32. Iturriaga R, Lahiri S, Mokashi A (1991) Carbonic anhydrase and chemoreception in the cat carotid body. Am J Physiol 261:C565–C573

    CAS  PubMed  Google Scholar 

  33. Iturriaga R, Mokashi A, Lahiri S (1993) Dynamics of carotid body responses in vitro in the presence of CO2–HCO3-: role of carbonic anhydrase. J Appl Physiol 75:1587–1594

    CAS  PubMed  Google Scholar 

  34. Bashir Y, Kann M, Stradling JR (1990) The effect of acetazolamide on hypercapnic and eucapnic/poikilocapnic hypoxic ventilatory responses in normal subjects. Pulm Pharmacol 3:151–154

    CAS  PubMed  Google Scholar 

  35. Teppema LJ, Balanos GM, Steinback CD, Brown AD, Foster GE, Duff HJ, Leigh R, Poulin MJ (2007) Effects of acetazolamide on ventilatory, cerebrovascular, and pulmonary vascular responses to hypoxia. Am J Respir Crit Care Med 175:277–281

    CAS  PubMed  Google Scholar 

  36. Scheuermann BW, Kowalchuk JM, Paterson DH, Cunningham DA (1999) Peripheral chemoreceptor function after carbonic anhydrase inhibition during moderat-intensity exercise. J Appl Physiol 86:1544–1551

    CAS  PubMed  Google Scholar 

  37. Teppema LJ, Dahan A (1999) Acetazolamide and breathing. Does a clinical dose alter peripheral and central CO2 sensitivity? Am J Respir Crit Care Med 160:1592–1597

    CAS  PubMed  Google Scholar 

  38. Teppema LJ, Bijl H, Mousavi-Gourabi B, Dahan A (2006) The carbonic anhydrase inhibitors methazolamide and acetazolamide have different effects on the hypoxic ventilatory response in the anaesthetized cat. J Physiol 574:565–572

    CAS  PubMed  Google Scholar 

  39. Hackett PH, Roach RC, Harrison GL, Schoene RB, Mills WJ Jr (1987) Respiratory stimulants and sleep periodic breathing at high altitude Almitrine versus acetazolamide. Am Rev Respir Dis 135:896–898

    CAS  PubMed  Google Scholar 

  40. Latshang TD, Nussbauemer-Ochsner Y, Heen RM, Ulrich CM, Lo Cascio CM, Ledergerber B, Kohler M, Bloch KE (2012) Effect of acetazolamide and autoCPAP therapy on breathing disturbances among patients with obstructive sleep apnea syndrome who travel to altitude: a ramdomized controlled trial. J Am Med Assoc 308:2390–2398

    CAS  Google Scholar 

  41. Dempsey JA (2005) Crossing the apnoeic threshold: causes and consequences. Exp Physiol 90:13–24

    PubMed  Google Scholar 

  42. Ainslie PN, Burgess K, Subedi P, Burgess KR (2007) Alterations in cerebral dynamics at high altitude following partial acclimatization in humans: wakefulness and sleep. J Appl Physiol 102:658–664

    PubMed  Google Scholar 

  43. Herrera M, Garvin JL (2011) Aquaporins as gas channels. Pflugers Arch 462:623–630

    CAS  PubMed  Google Scholar 

  44. Itel F, Al-Samir S, Öberg F, Chami M, Kumar M, Supuran CT, Deen PM, Meier W, Hedfalk K, Gros G, Endeward V (2012) CO2 permeability of cell membranes is regulated by membrane cholesterol and protein gas channels. FASEB J 26:5182–5191

    CAS  PubMed  Google Scholar 

  45. Benga O, Huber VJ (2012) Brain water channel proteins in health and disease. Mol Aspects Med 33:562–578

    CAS  PubMed  Google Scholar 

  46. Ameli PA, Madan M, Chigurupati S, Yu A, Chan SL, Pattisapu JV (2012) Effect of acetazolamide on aquaporin-1 and fluid flow in cultured choroid plexus. Acta Neurochir Suppl 113:59–64

    PubMed  Google Scholar 

  47. Igarashi H, Tsujita M, Suzuki Y, Kwee IL, Nakada T (2013) Inhibition of aquaporin-4 significantly increases regional brain blood flow. Neuroreport 24:324–328

    CAS  PubMed  Google Scholar 

  48. Zanotto C, Abib RT, Batassini C, Tortorelli LS, Biasbetti R, Rodrigues L, Nardin P, Hansen F, Gottfried C, Leite MC, Goncalves CA (2013) Non-specific inhibitors of aquaporin-4 stimulate S100-B secretion in acute hippocampal slices of rats. Brain Res 1491:14–22

    CAS  PubMed  Google Scholar 

  49. Igarashi H, Huber VJ, Tsujita M, Nakuda T (2011) Pretreatment with a novel aquaporin-4 inhibitor significantly reduces ischemic cerebral edema. Neurol Sci 32:113–116

    PubMed  Google Scholar 

  50. Verkman AS, Binder DK, Bloch O, Auguste K, Papadopoulos MC (2006) Three distinct roles of aquaporin-4 in brain function revealed by knockout mice. Biochim Biophys Acta 1758:1085–1093

    CAS  PubMed  Google Scholar 

  51. Zhang J, An Y, Gao J, Han J, Xueyang P, Pan Y, Tie L, Li X (2012) Aquaporin-1 translocation and degradation mediates the water transportation mechanism of acetazolamide. PLoS One 7:e45976

    CAS  PubMed  Google Scholar 

  52. Huber VJ, Tsujita M, Kwee IL, Nakada T (2009) Inhibition of aquaporin-4 by antiepileptic drugs. Bioorg Med Chem 17:418–424

    CAS  PubMed  Google Scholar 

  53. Tanimura Y, Hiroaki Y, Fujiyoshi Y (2009) Acetazolamide reversibly inhibits water conduction by aquaporin-4. J Struct Biol 166:16–21

    CAS  PubMed  Google Scholar 

  54. Yamaguchi T, Iwata Y, Miura S, Kawada K (2012) Reinvestigation of drugs and chemicals as aquaporin-1 inhibitors using pressure-induced hemolysis in human erythrocytes. Biol Pharm Bull 35:2088–2091

    CAS  PubMed  Google Scholar 

  55. Yang B, Zhang H, Verkmann AS (2008) Lack of aquaporin-4 water transport inhibition by antiepileptics and arylsulfonamides. Bioorg Med Chem 16:7489–7493

    CAS  PubMed  Google Scholar 

  56. Sogaard R, Zeuthen T (2008) Test of blockers of AQP-1 water permeability by a high resolution method: no effects of tetraethylammonium ions or acetazolamide. Pflugers Arch 456:285–292

    PubMed  Google Scholar 

  57. Harbaugh RD, James HE, Marshall LF, Shapiro HM, Laurin R (1979) Acute therapeutic modalities for experimental vasogenic edema. Neurosurgery 5:656–665

    CAS  PubMed  Google Scholar 

  58. Czernicki Z, Kuroiwa T, Ohno K, Endo S, Ito U (1994) Effect of acetazolamide on early ischemic cerebral edema in gerbils. Acta Neurochir Suppl 60:329–331

    CAS  PubMed  Google Scholar 

  59. Millson C, James HE, Shapiro HM, Laurin R (1981) Intracranial hypertension and brain edema in albino rabbits. Effects of acute therapy with diuretics. Acta Neurochir 56:167–181

    CAS  PubMed  Google Scholar 

  60. Guo F, Hua Y, Wang J, Keep RF, Xi G (2012) Inhibition of carbonic anhydrase reduces brain injury after intracerebral hemorrhage. Transl Stroke Res 3:130–137

    PubMed  Google Scholar 

  61. Katada R, Nishitani Y, Honmou O, Mizuo K, Okazaki S, Tateda K, Watanabe S, Matsumoto H (2012) Expression of aquaporin-4 augments cytotoxic barin edema after traumatic brain injury during acute ethanol exposure. Am J Pathol 180:17–23

    CAS  PubMed  Google Scholar 

  62. Ran X, Wang H, Chen Y, Zeng Z, Zhou Q, Zheng R, Sun J, Wang B, Lv X, Liang Y, Zhang K, Liu W (2010) Aquaporin-1 expression and angiogenesis in rabbit chronic myocardial ischemia is reduced by acetazolamide. Heart Vessels 25:237–247

    PubMed  Google Scholar 

  63. Bailey DM, Dehnert C, Luks AM, Menold E, Castell C, Schendlev G, Faoro V, Gutoski M, Evans KA, Taudorf S, James PE, McEneny J, Young IS, Swenson ER, Mairbäurl H, Bärtsch P, Bergef MM (2010) High-altitude pulmonary hypertension is associated with a free radical-mediated reduction in pulmonary nitric oxide bioavailability. J Physiol 588:4837–4847

    CAS  PubMed  Google Scholar 

  64. Bailey DM, Roukens R, Knauth M, Kallenberg K, Christ S, Mohr A, Genius J, Storch-Hagenlocher B, Meisel F, McEneny J, Young IS, Steiner T, Hess K, Bärtsch P (2006) Free radical-mediated damage to barrier function is not associated with altered brain morphology in high-altitude headache. J Cereb Blood Flow Metab 26:99–111

    CAS  PubMed  Google Scholar 

  65. Bailey DM, Davies B (2001) Acute mountain sickness; prophylactic benefits of antioxidant vitamin supplementation at high altitude. High Alt Med Biol 2:21–29

    CAS  PubMed  Google Scholar 

  66. Prouillac C, Vicendo P, Garrigues JC, Poteau R, Rima G (2009) Evaluation of new thiadiazoles and benzothiazoles as potential radioprotectors: free radical scavenging activity in vitro and theoretical studies (QSAR, DFT). Free Radic Biol Med 46:1139–1148

    CAS  PubMed  Google Scholar 

  67. Teppema LJ, Bijl H, Romberg R, Dahan A (2006) Antioxidants reverse depression of the hypoxic ventilatory response by acetazolamide in man. J Physiol 572:849–856

    CAS  PubMed  Google Scholar 

  68. Lisk C, McCord J, Bose S et al (2013) Irwin1Nrf-2 activation: a potential strategy for the prevention of acute mountain sickness. Free Rad Biol Med 63:264–273

    Google Scholar 

  69. Julian GJ, Subudhi AW, Wilson MJ, Dimmen AC, Pecha T, Roach RC (2011) Acute mountain sickness, inflammation, and permeability: new insights from a blood biomarker study. J Appl Physiol 111:392–399

    CAS  PubMed  Google Scholar 

  70. Xu J, Peng Z, Li R, Dou T, Xu W, Gu G, Liu Y, Kang Z, Tao H, Zhang JH, Ostrowski RP, Lu J, Sun X (2009) Normoxic induction of cerebral HIF-1alpha by acetazolamide in rats. Neurosci Lett 451:274–278

    CAS  PubMed  Google Scholar 

  71. Willam C, Warnecke C, Schefold JC, Kügler J, Koehne P, Frei U, Wiesener M, Eckardt KU (2006) Inconsistent effects of acidosis on HIF-alpha protein and its target genes. Pfluegers Arch 451:534–543

    CAS  Google Scholar 

  72. Droma Y, Ota M, Hanaoka M, Katsuyama Y, Basnyat B, Neupane P, Arjyal A, Pandit A, Sharma D, Ito M, Kubo K (2008) Two hypoxia sensor genes and their association with symptoms of acute mountain sickness in Sherpas. Avait Space Environ Med 79:1056–1060

    Google Scholar 

  73. Hennis PJ, Bussell C, Darlison MG (2010) The lack of associations between alleles at the hypoxia-inducible factor 1A C1772T loci and response to acute hypoxia. Wilderness Environ Med 21:219–228

    PubMed  Google Scholar 

  74. Low EV, Avery AJ, Gupta V, Schedlbauer A, Grocott MP (2012) Identifying the lowest effective dose of acetazolamide for the prophylaxis of acute mountain sickness: systematic review and meta-analysis. Br Med J 345:e6779

    Google Scholar 

  75. Wright AD, Bradwell AR, Fletcher RF (1983) Methazolamide and acetazolamide in acute mountain sickness. Aviat Space Environ Med 54:619–621

    CAS  PubMed  Google Scholar 

  76. Forster P (1982) Methazolamide in acute mountain sickness. Lancet 8283:1254

    Google Scholar 

  77. Kronenberg RS, Cain SM (1968) Hastening respiratory acclimatisation to altitude with benzolamide (CL 11366). Aerospace Med 39:296–300

    CAS  PubMed  Google Scholar 

  78. Swenson ER, Leatham KL, Roach RC, Schoene RB, Mills WJ Jr, Hacket HP (1991) Renal carbonic anhydrase inhibition reduces high altitude sleep periodic breathing. Respir Physiol 86:333–343

    CAS  PubMed  Google Scholar 

  79. Collier D, Swenson ER, Hedges AM et al (2013) Benzolamide improves oxygenation and reduces acute mountain sickness during a high altitude trek and has less side effects than acetazolamide. Brit J Clin Pharmacol (in press)

    Google Scholar 

  80. Grissom CK, Roach RC, Sarnquist FH, Hackett PH (1992) Acetazolamide in the treatment of acute mountain sickness: clinical efficacy and effect on gas exchange. Ann Intern Med 116:461–465

    CAS  PubMed  Google Scholar 

  81. Wang J, Ke T, Zhang X, Chen Y, Liu M, Chen J, Luo W (2013) Effects of acetazolamide on cognitive performance during high-altitude exposure. Neurotoxicol Teratol 35:28–33

    CAS  PubMed  Google Scholar 

  82. Vij A, Kishore K, Dey J (2012) Effect of intermittent hypoxia on efficacy and clearance of drugs. Indian J Med Res 135:211–216

    CAS  PubMed  Google Scholar 

  83. Botao Y, Ma J, Xiao W, Xiang Q, Fan K, Hou J, Wu J, Jing W (2013) Protective effects of gingkolide B on high altitude cerebral edema of rats. High Alt Med Biol 14:61–64

    PubMed  Google Scholar 

  84. Smith CA, Rodman JR, Chenuel BJ, Henderson KS, Dempsey JA (2006) Response time and sensitivity of the ventilatory response to CO2 in unanesthetized dogs: central vs. peripheral chemoreceptors. J Appl Physiol 100:13–19

    CAS  PubMed  Google Scholar 

  85. Bartsch P, Mairbaurl H, Maggiorini M, Swenson ER (2005) Physiological aspects of high-altitude pulmonary edema. J Appl Physiol 93:1101–1110

    Google Scholar 

  86. Swenson ER (2013) Hypoxic pulmonary vasoconstriction. High Alt Med Biol 14:101–110

    Google Scholar 

  87. Maggiorini M, Melot C, Pierre S, Pfeiffer F, Greve I, Sartori C, Lepori M, Hauser M, Scherrer U, Naeije R (2001) High-altitude pulmonary edema is initially caused by an increase in capillary pressure. Circulation 103:2078–2083

    CAS  PubMed  Google Scholar 

  88. Swenson ER, Maggiorini M, Mongovin S, Gibbs JS, Greve I, Mairbäurl H, Bärtsch P (2002) Pathogenesis of high altitude pulmonary edema. Inflammation is not a pathogenic factor. J Am Med Assoc 287:2228–2235

    Google Scholar 

  89. Emery CJ, Sloan PJ, Mohammed FH, Barer GR (1977) Action of hypercapnia during hypoxia on pulmonary vessels. Bull Eur Physiopath Respir 13:763–776

    CAS  Google Scholar 

  90. Swenson ER, Robertson HT, Hlastala MP (1993) Effects of carbonic anhydrase inhibition on ventilation–perfusion matching in the dog lung. J Clin Invest 92:702–709

    CAS  PubMed  Google Scholar 

  91. Swenson ER, Graham MM, Hlastala MP (1995) Acetazolamide slows ventilation-perfusion matching after changes in regional blood flow. J Appl Physiol 78:1312–1318

    CAS  PubMed  Google Scholar 

  92. Deem S, Hedges RG, Kerr ME, Swenson ER (2000) Acetazolamide reduces hypoxic pulmonary vasoconstriction in isolated perfused rabbit lung. Respir Physiol 123:109–119

    CAS  PubMed  Google Scholar 

  93. Aamand R, Dalsgaard T, Jensen FB, Simonsen U, Roepstorff A, Fago A (2009) Generation of nitric oxide from nitrite by carbonic anhydrase: a possible link between metabolic activity and vasodilation. Am J Physiol 297:H2068–H2074

    CAS  Google Scholar 

  94. Pickerodt PA, Emery MJ, Zarndt R, Martin W, Francis RC, Boemke W, Swenson ER (2012) Sodium nitrite mitigates ventilator-induced lung injury in rats. Anesthesiol 117:592–601

    CAS  Google Scholar 

  95. Chobanyan-Jürgens K, Schwarz A, Böhmer A, Beckmann B, Gutzki FM, Michaelsen JT, Stichtenoth DO, Tsikas D (2012) Renal carbonic anhydrases are involved in the reabsorption of endogenous nitrite. Nitric Oxide 26:126–129

    PubMed  Google Scholar 

  96. Hohne C, Krebs MO, Seiferheld M, Boemke W, Kaczmarczyk G, Swenson ER (2004) Acetazolamide prevents hypoxic pulmonary vasoconstriction in conscious dogs. J Appl Physiol 97:515–521

    PubMed  Google Scholar 

  97. Höhne C, Pickerodt PA, Boemke W, Swenson ER (2007) Pulmonary vasodilation by acetazolamide during hypoxia is not related to carbonic anhydrase inhibition. Am J Physiol 292:L178–L184

    Google Scholar 

  98. Berg JT, Ramanathan S, Gabrielli MG, Swenson ER (2004) Carbonic anhydrase in mammalian vascular smooth muscle. J Histochem Cytochem 52:1101–1106

    CAS  PubMed  Google Scholar 

  99. Shimoda LA, Luke T, Sylvester JT, Shih HW, Jain A, Swenson ER (2007) Inhibition of hypoxia-induced calcium responses in pulmonary arterial smooth muscle by acetazolamide is independent of carbonic anhydrase inhibition. Am J Physiol 292:L1002–L1012

    CAS  Google Scholar 

  100. Maren TH (1967) Carbonic anhydrase: chemistry, physiology and inhibition. Physiol Rev 47:595–781

    CAS  PubMed  Google Scholar 

  101. McNaughton NC, Davies CH, Randall A (2004) Inhibition of alpha (1E) Ca (2+) channels by carbonic anhydrase inhibitors. J Pharmacol Sci 95:240–247

    CAS  PubMed  Google Scholar 

  102. Tricarico D, Barbieri M, Mele A, Carbonara G, Camerino DC (2004) Carbonic anhydrase inhibitors: specific openers of skeletal muscle BK channel of K + −deficient rats. FASEB J 18:760–761

    CAS  PubMed  Google Scholar 

  103. Farrukh IS, Hoidal JR, Barry WH (1996) Effect of intracellular pH on ferret pulmonary arterial smooth muscle cell calcium homeostasis and pressure. J Appl Physiol 80:496–505

    CAS  PubMed  Google Scholar 

  104. Wang J, Shimoda LA, Weigand L, Wang W, Sun D, Sylvester JT (2005) Acute hypoxia increases intracellular [Ca2+] in pulmonary arterial smooth muscle by enhancing capacitative Ca2+ entry. Am J Physiol 288:L1059–L1069

    CAS  Google Scholar 

  105. Maren TH (1977) Use of inhibitors in physiological studies of carbonic anhydrase. Am J Physiol 232:F291–F297

    CAS  PubMed  Google Scholar 

  106. Pickerodt PA, Francis RC, Neubert F et al (2013) Pulmonary vasodilation by acetazolamide during hypoxia: impact of methyl-group substitution and route of administration in the conscious, spontaneously breathing dog. J Pharmacol Exp Therap (in press)

    Google Scholar 

  107. Ke T, Wang, J, Swenson ER (2013) Effect of acetazolamide and gingko biloba on the human pulmonary vascular response to an acute altitude ascent. High Alt Med Biol 14:162–167

    Google Scholar 

  108. Basnyat B, Hargrove J, Holck PS, Srivastav S, Alekh K, Ghimire LV, Pandey K, Griffiths A, Shankar R, Kaul K, Paudyal A, Stasiuk D, Basnyat R, Davis C, Southard A, Robinson C, Shandley T, Johnson DW, Zafren K, Williams S, Weiss EA, Farrar JJ, Swenson ER (2008) Acetazolamide fails to decrease pulmonary artery pressure at high altitude in partially acclimatized humans. High Alt Med Biol 9:209–216

    CAS  PubMed  Google Scholar 

  109. Pickkers P, Garcha RS, Schachter M, Smits P, Hughes AD (1999) Inhibition of carbonic anhydrase accounts for the direct vascular effects of hydrochlorothiazide. Hypertension 33:1043–1048

    CAS  PubMed  Google Scholar 

  110. Pickkers P, Hughes AD, Russel FG, Thien T, Smits P (2001) In vivo evidence for K(Ca) channel opening properties of acetazolamide in the human vasculature. Br J Pharmacol 132:443–450

    CAS  PubMed  Google Scholar 

  111. Berg JT, Ramanathan S, Swenson ER (2004) Inhibition of hypoxic pulmonary vasoconstriction prevents high altitude pulmonary edema (HAPE) in rats. Wilderness Environ Med 15:32–37

    PubMed  Google Scholar 

  112. Leon-Velarde F, Richalet JP (2006) Respiratory control in residents at high altitude; physiology and pathophysiology. High Alt Med Biol 7:125–137

    PubMed  Google Scholar 

  113. Swenson ER (2012) Normal exercise capacity in chronic mountain sickness: how high can the hematocrit go without consequence? Chest 142:823–825

    PubMed  Google Scholar 

  114. Rivera-Ch M, Leon-Velarde F, Huicho L (2007) Treatment of chronic mountain sickness; critical reappraisal of an old problem. Respir Physiol Neurobiol 158:251–265

    PubMed  Google Scholar 

  115. Richalet JP, Rivera M, Bouchet P, Chirinos E, Onnen I, Petitjean O, Bienvenu A, Lasne F, Moutereau S, León-Velarde F (2005) Acetazolamide: a treatment of chronic mountain sickness. Am J Respir Crit Care Med 172:1427–1433

    PubMed  Google Scholar 

  116. Richalet JP, Rivera-Ch M, Maignan M, Privat C, Pham I, Macarlupu JL, Petitjean O, León-Velarde F (2008) Acetazolamide for Monge’s disease: efficacy and tolerance of 6-month treatment. Am J Respir Crit Care Med 177:1370–1376

    CAS  PubMed  Google Scholar 

  117. Rivera-Ch M, Huicho L, Bouchet P, Richalet JP, León-Velarde F (2008) Effect of acetazolamide on ventilatory response in subjects with chronic mountain sickness. Respir Physiol Neurobiol 162:184–189

    CAS  PubMed  Google Scholar 

  118. Pichon A, Connes P, Quidu P, Marchant D, Brunet J, Levy BI, Vilar J, Safeukui I, Cymbalista F, Maignan M, Richalet JP, Favret F (2012) Acetazolamide and chronic hypoxia: effects on haemorheology and pulmonary haemodynamics. Eur Respir J 40:1401–1409

    CAS  PubMed  Google Scholar 

  119. Leon-Velarde F, Villafuerte FC, Richalet JP (2010) Chronic mountain sickness and the heart. Prog Cardiovasc Dis 52:540–549

    PubMed  Google Scholar 

  120. Eckardt KU, Kurtz A, Bauer C (1989) Regulation of erythropoietin production is related to proximal tubular function. Am J Physiol 256:F942–F947

    CAS  PubMed  Google Scholar 

  121. Miller ME, Rorth M, Parving H, Howard D, Reddington I, Valeri CR, Stohlman F Jr (1973) pH effect on erythropoietin response to hypoxia. N Engl J Med 288:706–710

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik R. Swenson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Swenson, E.R. (2014). Carbonic Anhydrase Inhibitors and High Altitude Illnesses. In: Frost, S., McKenna, R. (eds) Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications. Subcellular Biochemistry, vol 75. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7359-2_18

Download citation

Publish with us

Policies and ethics