Skip to main content

Part of the book series: Subcellular Biochemistry ((SCBI,volume 75))

Abstract

Tumor microenvironment substantially influences the process of tumorigenesis. In many solid tumors, imbalance between the demand of rapidly proliferating cancer cells and the capabilities of the vascular system generates areas with insufficient oxygen supply. In response to tumor hypoxia, cancer cells modulate their gene expression pattern to match the requirements of the altered microenvironment. One of the most significant adaptations to this milieu is the shift towards anaerobic glycolysis to keep up the energy demands. This oncogenic metabolism is often maintained also in aerobic cells. Lactic acid, its metabolic end-product, accumulates hand-in-hand with carbon dioxide, leading to acidification of the extracellular environment. Carbonic anhydrase IX (CA IX) is the most widely expressed gene in response to hypoxia. Its crucial role in intracellular pH maintenance represents the means by which cancer cells adapt to the toxic conditions of the extracellular milieu. Furthermore, the activity of CA IX stimulates the migratory pathways of cancer cells and is connected with the increase of the aggressive/invasive phenotype of tumors. CA IX expression in many types of tumors indicates its relevance as a general marker of tumor hypoxia. Moreover, its expression is closely related to prognosis of the clinical outcome in several tumor types. All above mentioned facts support the strong position of CA IX as a potential drug therapy target. Here, we summarize the state-of-the-art knowledge on its regulation and role in cancer development.

Susan C. Frost and Robert McKenna (eds.) Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mucaj V, Shay J, Simon M (2012) Effects of hypoxia and HIFs on cancer metabolism. Int J Hematol 95(5):464–470. doi:10.1007/s12185-012-1070-5

    Article  PubMed  CAS  Google Scholar 

  2. Wilson WR, Hay MP (2011) Targeting hypoxia in cancer therapy. Nat Rev Cancer 11(6):393–410. doi:10.1038/nrc3064

    Article  PubMed  CAS  Google Scholar 

  3. McDonald PC, Winum JY, Supuran CT, Dedhar S (2012) Recent developments in targeting carbonic anhydrase IX for cancer therapeutics. Oncotarget 3(1):84–97

    PubMed  Google Scholar 

  4. Gatenby RA, Smallbone K, Maini PK, Rose F, Averill J, Nagle RB, Worrall L, Gillies RJ (2007) Cellular adaptations to hypoxia and acidosis during somatic evolution of breast cancer. Br J Cancer 97(5):646–653. doi:10.1038/sj.bjc.6603922

    Article  PubMed  CAS  Google Scholar 

  5. Gatenby RA, Gillies RJ (2008) A microenvironmental model of carcinogenesis. Nat Rev Cancer 8(1):56–61. doi:10.1038/nrc2255

    Article  PubMed  CAS  Google Scholar 

  6. Chiche J, Ilc K, Laferriere J, Trottier E, Dayan F, Mazure NM, Brahimi-Horn MC, Pouyssegur J (2009) Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH. Cancer Res 69(1):358–368. doi:10.1158/0008-5472.can-08-2470

    Article  PubMed  CAS  Google Scholar 

  7. Hilvo M, Baranauskiene L, Salzano AM, Scaloni A, Matulis D, Innocenti A, Scozzafava A, Monti SM, Di Fiore A, De Simone G, Lindfors M, Janis J, Valjakka J, Pastorekova S, Pastorek J, Kulomaa MS, Nordlund HR, Supuran CT, Parkkila S (2008) Biochemical characterization of CA IX, one of the most active carbonic anhydrase isozymes. J Biol Chem 283(41):27799–27809. doi:10.1074/jbc.M800938200

    Article  PubMed  CAS  Google Scholar 

  8. Tu C, Foster L, Alvarado A, McKenna R, Silverman DN, Frost SC (2012) Role of zinc in catalytic activity of carbonic anhydrase IX. Arch Biochem Biophys 521(1–2):90–94. doi:10.1016/j.abb.2012.03.017

    Article  PubMed  CAS  Google Scholar 

  9. Pastorekova S, Zavadova Z, Kostal M, Babusikova O, Zavada J (1992) A novel quasi-viral agent, MaTu, is a two-component system. Virology 187(2):620–626

    Article  PubMed  CAS  Google Scholar 

  10. Zavada J, Zavadova Z, Pastorekova S, Ciampor F, Pastorek J, Zelnik V (1993) Expression of MaTu-MN protein in human tumor cultures and in clinical specimens. Int J Cancer 54(2):268–274

    Article  PubMed  CAS  Google Scholar 

  11. Pastorek J, Pastorekova S, Callebaut I, Mornon JP, Zelnik V, Opavsky R, Zat'ovicova M, Liao S, Portetelle D, Stanbridge EJ, Zavada J, Burny A, Kettman R (1994) Cloning and characterization of MN, a human tumor-associated protein with a domain homologous to carbonic anhydrase and a putative helix-loop-helix DNA binding segment. Oncogene 9(10):2877–2888

    PubMed  CAS  Google Scholar 

  12. Opavsky R, Pastorekova S, Zelnik V, Gibadulinova A, Stanbridge EJ, Zavada J, Kettmann R, Pastorek J (1996) Human MN/CA9 gene, a novel member of the carbonic anhydrase family: structure and exon to protein domain relationships. Genomics 33(3):480–487. doi:10.1006/geno.1996.0223

    Article  PubMed  CAS  Google Scholar 

  13. Grabmaier K, Vissers JL, De Weijert MC, Oosterwijk-Wakka JC, Van Bokhoven A, Brakenhoff RH, Noessner E, Mulders PA, Merkx G, Figdor CG, Adema GJ, Oosterwijk E (2000) Molecular cloning and immunogenicity of renal cell carcinoma-associated antigen G250. Int J Cancer 85(6):865–870

    Article  PubMed  CAS  Google Scholar 

  14. Zavada J, Zavadova Z, Pastorek J, Biesova Z, Jezek J, Velek J (2000) Human tumour-associated cell adhesion protein MN/CA IX: identification of M75 epitope and of the region mediating cell adhesion. Br J Cancer 82(11):1808–1813. doi:10.1054/bjoc.2000.1111

    Article  PubMed  CAS  Google Scholar 

  15. Barathova M, Takacova M, Holotnakova T, Gibadulinova A, Ohradanova A, Zatovicova M, Hulikova A, Kopacek J, Parkkila S, Supuran CT, Pastorekova S, Pastorek J (2008) Alternative splicing variant of the hypoxia marker carbonic anhydrase IX expressed independently of hypoxia and tumour phenotype. Br J Cancer 98(1):129–136. doi:10.1038/sj.bjc.6604111

    Article  PubMed  CAS  Google Scholar 

  16. Malentacchi F, Simi L, Nannelli C, Andreani M, Janni A, Pastorekova S, Orlando C (2009) Alternative splicing variants of carbonic anhydrase IX in human non-small cell lung cancer. Lung Cancer 64(3):271–276. doi:10.1016/j.lungcan.2008.10.001

    Article  PubMed  Google Scholar 

  17. Alterio V, Hilvo M, Di Fiore A, Supuran CT, Pan PW, Parkkila S, Scaloni A, Pastorek J, Pastorekova S, Pedone C, Scozzafava A, Monti SM, De Simone G (2009) Crystal structure of the catalytic domain of the tumor-associated human carbonic anhydrase IX. Proc Natl Acad Sci U S A 106(38):16233–16238. doi:10.1073/pnas.0908301106

    Article  PubMed  CAS  Google Scholar 

  18. De Simone G, Supuran CT (2010) Carbonic anhydrase IX: biochemical and crystallographic characterization of a novel antitumor target. Biochim Biophys Acta 1804(2):404–409. doi:10.1016/j.bbapap.2009.07.027

    Article  PubMed  Google Scholar 

  19. Innocenti A, Pastorekova S, Pastorek J, Scozzafava A, De Simone G, Supuran CT (2009) The proteoglycan region of the tumor-associated carbonic anhydrase isoform IX acts as an intrinsic buffer optimizing CO2 hydration at acidic pH values characteristic of solid tumors. Bioorg Med Chem Lett 19(20):5825–5828. doi:10.1016/j.bmcl.2009.08.088

    Article  PubMed  CAS  Google Scholar 

  20. Svastova E, Hulikova A, Rafajova M, Zat'ovicova M, Gibadulinova A, Casini A, Cecchi A, Scozzafava A, Supuran CT, Pastorek J, Pastorekova S (2004) Hypoxia activates the capacity of tumor-associated carbonic anhydrase IX to acidify extracellular pH. FEBS Lett 577(3):439–445. doi:10.1016/j.febslet.2004.10.043

    Article  PubMed  CAS  Google Scholar 

  21. Lopez-Lazaro M (2008) The Warburg effect: why and how do cancer cells activate glycolysis in the presence of oxygen? Anti-Cancer Agents in Medicinal Chemistry 8(3):305–312

    Article  PubMed  CAS  Google Scholar 

  22. Vullo D, Franchi M, Gallori E, Pastorek J, Scozzafava A, Pastorekova S, Supuran CT (2003) Carbonic anhydrase inhibitors: inhibition of the tumor-associated isozyme IX with aromatic and heterocyclic sulfonamides. Bioorg Med Chem Lett 13(6):1005–1009

    Article  PubMed  CAS  Google Scholar 

  23. Huber V, De Milito A, Harguindey S, Reshkin SJ, Wahl ML, Rauch C, Chiesi A, Pouyssegur J, Gatenby RA, Rivoltini L, Fais S (2010) Proton dynamics in cancer. J Transl Med 8:57. doi:10.1186/1479-5876-8-57

    Article  PubMed  Google Scholar 

  24. Parks SK, Chiche J, Pouyssegur J (2011) pH control mechanisms of tumor survival and growth. J Cell Physiol 226(2):299–308. doi:10.1002/jcp.22400

    Article  PubMed  CAS  Google Scholar 

  25. Chiche J, Ilc K, Brahimi-Horn MC, Pouyssegur J (2010) Membrane-bound carbonic anhydrases are key pH regulators controlling tumor growth and cell migration. Adv Enzyme Regul 50(1):20–33. doi:10.1016/j.advenzreg.2009.10.005

    Article  PubMed  Google Scholar 

  26. Swietach P, Wigfield S, Supuran CT, Harris AL, Vaughan-Jones RD (2008) Cancer-associated, hypoxia-inducible carbonic anhydrase IX facilitates CO2 diffusion. BJU Int 4:22–24

    Article  Google Scholar 

  27. Buanne P, Renzone G, Monteleone F, Vitale M, Monti SM, Sandomenico A, Garbi C, Montanaro D, Accardo M, Troncone G, Zatovicova M, Csaderova L, Supuran CT, Pastorekova S, Scaloni A, De Simone G, Zambrano N (2013) Characterization of carbonic anhydrase IX interactome reveals proteins assisting its nuclear localization in hypoxic cells. J Proteome Res 12(1):282–292. doi:10.1021/pr300565w

    Article  PubMed  CAS  Google Scholar 

  28. Wykoff CC, Beasley NJ, Watson PH, Turner KJ, Pastorek J, Sibtain A, Wilson GD, Turley H, Talks KL, Maxwell PH, Pugh CW, Ratcliffe PJ, Harris AL (2000) Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Res 60(24):7075–7083

    PubMed  CAS  Google Scholar 

  29. Wang GL, Semenza GL (1993) General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci U S A 90(9):4304–4308

    Article  PubMed  CAS  Google Scholar 

  30. Wang GL, Semenza GL (1993) Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J Biol Chem 268(29):21513–21518

    PubMed  CAS  Google Scholar 

  31. Kaluz S, Kaluzova M, Liao SY, Lerman M, Stanbridge EJ (2009) Transcriptional control of the tumor- and hypoxia-marker carbonic anhydrase 9: a one transcription factor (HIF-1) show? Biochim Biophys Acta 1795(2):162–172. doi:10.1016/j.bbcan.2009.01.001

    PubMed  CAS  Google Scholar 

  32. Aprelikova O, Chandramouli GV, Wood M, Vasselli JR, Riss J, Maranchie JK, Linehan WM, Barrett JC (2004) Regulation of HIF prolyl hydroxylases by hypoxia-inducible factors. J Cell Biochem 92(3):491–501. doi:10.1002/jcb.20067

    Article  PubMed  CAS  Google Scholar 

  33. Zhang N, Fu Z, Linke S, Chicher J, Gorman JJ, Visk D, Haddad GG, Poellinger L, Peet DJ, Powell F, Johnson RS (2010) The asparaginyl hydroxylase factor inhibiting HIF-1alpha is an essential regulator of metabolism. Cell Metab 11(5):364–378. doi:10.1016/j.cmet.2010.03.001

    Article  PubMed  CAS  Google Scholar 

  34. Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML (2002) Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 295(5556):858–861. doi:10.1126/science.1068592

    Article  PubMed  CAS  Google Scholar 

  35. Kaluz S, Kaluzova M, Opavsky R, Pastorekova S, Gibadulinova A, Dequiedt F, Kettmann R, Pastorek J (1999) Transcriptional regulation of the MN/CA 9 gene coding for the tumor-associated carbonic anhydrase IX. Identification and characterization of a proximal silencer element. J Biol Chem 274(46):32588–32595

    Article  PubMed  CAS  Google Scholar 

  36. Kaluz S, Kaluzova M, Stanbridge EJ (2003) Expression of the hypoxia marker carbonic anhydrase IX is critically dependent on SP1 activity. Identification of a novel type of hypoxia-responsive enhancer. Cancer Res 63(5):917–922

    PubMed  CAS  Google Scholar 

  37. Kaluzova M, Pastorekova S, Svastova E, Pastorek J, Stanbridge EJ, Kaluz S (2001) Characterization of the MN/CA 9 promoter proximal region: a role for specificity protein (SP) and activator protein 1 (AP1) factors. Biochem J 359(Pt 3):669–677

    Article  PubMed  CAS  Google Scholar 

  38. Hao Y, Li Y, Zhang J, Liu D, Liu F, Zhao Y, Shen T, Li F (2010) Involvement of histone deacetylation in MORC2-mediated down-regulation of carbonic anhydrase IX. Nucleic Acids Res 38(9):2813–2824. doi:10.1093/nar/gkq006

    Article  Google Scholar 

  39. Kaluz S, Kaluzova M, Chrastina A, Olive PL, Pastorekova S, Pastorek J, Lerman MI, Stanbridge EJ (2002) Lowered oxygen tension induces expression of the hypoxia marker MN/carbonic anhydrase IX in the absence of hypoxia-inducible factor 1 alpha stabilization: a role for phosphatidylinositol 3'-kinase. Cancer Res 62(15):4469–4477

    PubMed  CAS  Google Scholar 

  40. Kopacek J, Barathova M, Dequiedt F, Sepelakova J, Kettmann R, Pastorek J, Pastorekova S (2005) MAPK pathway contributes to density- and hypoxia-induced expression of the tumor-associated carbonic anhydrase IX. Biochim Biophys Acta 1729(1):41–49. doi:10.1016/j.bbaexp.2005.03.003

    Article  PubMed  CAS  Google Scholar 

  41. Hulikova A, Zatovicova M, Svastova E, Ditte P, Brasseur R, Kettmann R, Supuran CT, Kopacek J, Pastorek J, Pastorekova S (2009) Intact intracellular tail is critical for proper functioning of the tumor-associated, hypoxia-regulated carbonic anhydrase IX. FEBS Lett 583(22):3563–3568. doi:10.1016/j.febslet.2009.10.060

    Article  PubMed  CAS  Google Scholar 

  42. Dorai T, Sawczuk IS, Pastorek J, Wiernik PH, Dutcher JP (2005) The role of carbonic anhydrase IX overexpression in kidney cancer. Eur J Cancer 41(18):2935–2947. doi:10.1016/j.ejca.2005.09.011

    Article  PubMed  CAS  Google Scholar 

  43. Ditte P, Dequiedt F, Svastova E, Hulikova A, Ohradanova-Repic A, Zatovicova M, Csaderova L, Kopacek J, Supuran CT, Pastorekova S, Pastorek J (2011) Phosphorylation of carbonic anhydrase IX controls its ability to mediate extracellular acidification in hypoxic tumors. Cancer Res 71(24):7558–7567. doi:10.1158/0008-5472.can-11-2520

    Article  PubMed  CAS  Google Scholar 

  44. Zavada J, Zavadova Z, Zat'ovicova M, Hyrsl L, Kawaciuk I (2003) Soluble form of carbonic anhydrase IX (CA IX) in the serum and urine of renal carcinoma patients. Br J Cancer 89(6):1067–1071. doi:10.1038/sj.bjc.6601264

    Article  PubMed  CAS  Google Scholar 

  45. Zatovicova M, Sedlakova O, Svastova E, Ohradanova A, Ciampor F, Arribas J, Pastorek J, Pastorekova S (2005) Ectodomain shedding of the hypoxia-induced carbonic anhydrase IX is a metalloprotease-dependent process regulated by TACE/ADAM17. Br J Cancer 93(11):1267–1276. doi:10.1038/sj.bjc.6602861

    Article  PubMed  CAS  Google Scholar 

  46. Liao SY, Brewer C, Zavada J, Pastorek J, Pastorekova S, Manetta A, Berman ML, DiSaia PJ, Stanbridge EJ (1994) Identification of the MN antigen as a diagnostic biomarker of cervical intraepithelial squamous and glandular neoplasia and cervical carcinomas. Am J Pathol 145(3):598–609

    PubMed  CAS  Google Scholar 

  47. Pastorekova S, Parkkila S, Parkkila AK, Opavsky R, Zelnik V, Saarnio J, Pastorek J (1997) Carbonic anhydrase IX, MN/CA IX: analysis of stomach complementary DNA sequence and expression in human and rat alimentary tracts. Gastroenterology 112(2):398–408

    Article  PubMed  CAS  Google Scholar 

  48. Leibovich BC, Sheinin Y, Lohse CM, Thompson RH, Cheville JC, Zavada J, Kwon ED (2007) Carbonic anhydrase IX is not an independent predictor of outcome for patients with clear cell renal cell carcinoma. J Clin Oncol 25(30):4757–4764. doi:10.1200/jco.2007.12.1087

    Article  PubMed  Google Scholar 

  49. Ivanov S, Liao SY, Ivanova A, Danilkovitch-Miagkova A, Tarasova N, Weirich G, Merrill MJ, Proescholdt MA, Oldfield EH, Lee J, Zavada J, Waheed A, Sly W, Lerman MI, Stanbridge EJ (2001) Expression of hypoxia-inducible cell-surface transmembrane carbonic anhydrases in human cancer. Am J Pathol 158(3):905–919. doi:10.1016/s0002-9440(10)64038-2

    Article  PubMed  CAS  Google Scholar 

  50. Tostain J, Li G, Gentil-Perret A, Gigante M (2010) Carbonic anhydrase 9 in clear cell renal cell carcinoma: a marker for diagnosis, prognosis and treatment. Eur J Cancer 46(18):3141–3148. doi:10.1016/j.ejca.2010.07.020

    Article  PubMed  CAS  Google Scholar 

  51. Oosterwijk E, Ruiter DJ, Hoedemaeker PJ, Pauwels EK, Jonas U, Zwartendijk J, Warnaar SO (1986) Monoclonal antibody G250 recognizes a determinant present in renal-cell carcinoma and absent from normal kidney. Int J Cancer 38(4):489–494

    Article  PubMed  CAS  Google Scholar 

  52. Oosterwijk E (2008) Carbonic anhydrase IX: historical and future perspectives. BJU Int 101(Suppl 4):2–7. doi:10.1111/j.1464-410X.2008.07641.x

    Article  PubMed  CAS  Google Scholar 

  53. Genega EM, Ghebremichael M, Najarian R, Fu Y, Wang Y, Argani P, Grisanzio C, Signoretti S (2010) Carbonic anhydrase IX expression in renal neoplasms: correlation with tumor type and grade. Am J Clin Pathol 134(6):873–879. doi:10.1309/ajcpppr57hnjmslz

    Article  PubMed  CAS  Google Scholar 

  54. Liao SY, Darcy KM, Randall LM, Tian C, Monk BJ, Burger RA, Fruehauf JP, Peters WA, Stock RJ, Stanbridge EJ (2010) Prognostic relevance of carbonic anhydrase-IX in high-risk, early-stage cervical cancer: a gynecologic oncology group study. Gynecol Oncol 116(3):452–458. doi:10.1016/j.ygyno.2009.10.062

    Article  PubMed  CAS  Google Scholar 

  55. Korkeila E, Talvinen K, Jaakkola PM, Minn H, Syrjanen K, Sundstrom J, Pyrhonen S (2009) Expression of carbonic anhydrase IX suggests poor outcome in rectal cancer. Br J Cancer 100(6):874–880. doi:10.1038/sj.bjc.6604949

    Article  PubMed  CAS  Google Scholar 

  56. Hussain SA, Ganesan R, Reynolds G, Gross L, Stevens A, Pastorek J, Murray PG, Perunovic B, Anwar MS, Billingham L, James ND, Spooner D, Poole CJ, Rea DW, Palmer DH (2007) Hypoxia-regulated carbonic anhydrase IX expression is associated with poor survival in patients with invasive breast cancer. Br J Cancer 96(1):104–109. doi:10.1038/sj.bjc.6603530

    Article  PubMed  CAS  Google Scholar 

  57. Simi L, Venturini G, Malentacchi F, Gelmini S, Andreani M, Janni A, Pastorekova S, Supuran CT, Pazzagli M, Orlando C (2006) Quantitative analysis of carbonic anhydrase IX mRNA in human non-small cell lung cancer. Lung Cancer 52(1):59–66. doi:10.1016/j.lungcan.2005.11.017

    Article  PubMed  Google Scholar 

  58. Jarvela S, Parkkila S, Bragge H, Kahkonen M, Parkkila AK, Soini Y, Pastorekova S, Pastorek J, Haapasalo H (2008) Carbonic anhydrase IX in oligodendroglial brain tumors. BMC Cancer 8:1. doi:10.1186/1471-2407-8-1

    Article  PubMed  Google Scholar 

  59. Bui MH, Seligson D, Han KR, Pantuck AJ, Dorey FJ, Huang Y, Horvath S, Leibovich BC, Chopra S, Liao SY, Stanbridge E, Lerman MI, Palotie A, Figlin RA, Belldegrun AS (2003) Carbonic anhydrase IX is an independent predictor of survival in advanced renal clear cell carcinoma: implications for prognosis and therapy. Clin Cancer Res 9(2):802–811

    PubMed  CAS  Google Scholar 

  60. Park HJ, Lyons JC, Ohtsubo T, Song CW (1999) Acidic environment causes apoptosis by increasing caspase activity. Br J Cancer 80(12):1892–1897. doi:10.1038/sj.bjc.6690617

    Article  PubMed  CAS  Google Scholar 

  61. Gatenby RA, Gawlinski ET, Gmitro AF, Kaylor B, Gillies RJ (2006) Acid-mediated tumor invasion: a multidisciplinary study. Cancer Res 66(10):5216–5223. doi:10.1158/0008-5472.can-05-4193

    Article  PubMed  CAS  Google Scholar 

  62. Fukumura D, Xu L, Chen Y, Gohongi T, Seed B, Jain RK (2001) Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo. Cancer Res 61(16):6020–6024

    PubMed  CAS  Google Scholar 

  63. Pastorekova S, Ratcliffe PJ, Pastorek J (2008) Molecular mechanisms of carbonic anhydrase IX-mediated pH regulation under hypoxia. BJU Int 101(Suppl 4):8–15. doi:10.1111/j.1464-410X.2008.07642.x

    Article  PubMed  CAS  Google Scholar 

  64. Yamagata M, Hasuda K, Stamato T, Tannock IF (1998) The contribution of lactic acid to acidification of tumours: studies of variant cells lacking lactate dehydrogenase. Br J Cancer 77(11):1726–1731

    Article  PubMed  CAS  Google Scholar 

  65. Swietach P, Vaughan-Jones RD, Harris AL (2007) Regulation of tumor pH and the role of carbonic anhydrase 9. Cancer Metastasis Rev 26(2):299–310. doi:10.1007/s10555-007-9064-0

    Article  PubMed  CAS  Google Scholar 

  66. Morgan PE, Pastorekova S, Stuart-Tilley AK, Alper SL, Casey JR (2007) Interactions of transmembrane carbonic anhydrase, CAIX, with bicarbonate transporters. Am J Physiol 293(2):C738–C748. doi:10.1152/ajpcell.00157.2007

    Article  CAS  Google Scholar 

  67. Svastova E, Witarski W, Csaderova L, Kosik I, Skvarkova L, Hulikova A, Zatovicova M, Barathova M, Kopacek J, Pastorek J, Pastorekova S (2012) Carbonic anhydrase IX interacts with bicarbonate transporters in lamellipodia and increases cell migration via its catalytic domain. J Biol Chem 287(5):3392–3402. doi:10.1074/jbc.M111.286062

    Article  PubMed  CAS  Google Scholar 

  68. Harguindey S, Orive G, Luis Pedraz J, Paradiso A, Reshkin SJ (2005) The role of pH dynamics and the Na+/H + antiporter in the etiopathogenesis and treatment of cancer. Two faces of the same coin–one single nature. Biochim Biophys Acta 1756(1):1–24. doi:10.1016/j.bbcan.2005.06.004

    PubMed  CAS  Google Scholar 

  69. Sennoune SR, Luo D, Martinez-Zaguilan R (2004) Plasmalemmal vacuolar-type H +-ATPase in cancer biology. Cell Biochem Biophys 40(2):185–206. doi:10.1385/cbb:40:2:185

    Article  PubMed  CAS  Google Scholar 

  70. Halestrap AP, Meredith D (2004) The SLC16 gene family-from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Archiv European J Physiol 447(5):619–628. doi:10.1007/s00424-003-1067-2

    Article  CAS  Google Scholar 

  71. Bohle AS, Kalthoff H (1999) Molecular mechanisms of tumor metastasis and angiogenesis. Langenbecks Arch Surg 384(2):133–140

    Article  PubMed  CAS  Google Scholar 

  72. Misra A, Pandey C, Sze SK, Thanabalu T (2012) Hypoxia activated EGFR signaling induces epithelial to mesenchymal transition (EMT). PLoS One 7(11):e49766. doi:10.1371/journal.pone.0049766

    Article  PubMed  CAS  Google Scholar 

  73. Rozhin J, Sameni M, Ziegler G, Sloane BF (1994) Pericellular pH affects distribution and secretion of cathepsin B in malignant cells. Cancer Res 54(24):6517–6525

    PubMed  CAS  Google Scholar 

  74. Moellering RE, Black KC, Krishnamurty C, Baggett BK, Stafford P, Rain M, Gatenby RA, Gillies RJ (2008) Acid treatment of melanoma cells selects for invasive phenotypes. Clin Exp Metastasis 25(4):411–425. doi:10.1007/s10585-008-9145-7

    Article  PubMed  CAS  Google Scholar 

  75. Glunde K, Guggino SE, Solaiyappan M, Pathak AP, Ichikawa Y, Bhujwalla ZM (2003) Extracellular acidification alters lysosomal trafficking in human breast cancer cells. Neoplasia 5(6):533–545

    PubMed  CAS  Google Scholar 

  76. Beavon IR (1999) Regulation of E-cadherin: does hypoxia initiate the metastatic cascade? Mol Pathol 52(4):179–188

    Article  PubMed  CAS  Google Scholar 

  77. Berx G, Staes K, van Hengel J, Molemans F, Bussemakers MJ, van Bokhoven A, van Roy F (1995) Cloning and characterization of the human invasion suppressor gene E-cadherin (CDH1). Genomics 26(2):281–289

    Article  PubMed  CAS  Google Scholar 

  78. Drivalos A, Papatsoris AG, Chrisofos M, Efstathiou E, Dimopoulos MA (2011) The role of the cell adhesion molecules (integrins/cadherins) in prostate cancer. Int Braz J Urol 37(3):302–306

    Article  PubMed  Google Scholar 

  79. Czyzewska J, Guzinska-Ustymowicz K, Ustymowicz M, Pryczynicz A, Kemona A (2010) The expression of E-cadherin-catenin complex in patients with advanced gastric cancer: role in formation of metastasis. Folia Histochem Cytobiol 48(1):37–45. doi:10.2478/v10042-010-0017-z

    Article  PubMed  Google Scholar 

  80. Gupta GP, Massague J (2006) Cancer metastasis: building a framework. Cell 127(4):679–695. doi:10.1016/j.cell.2006.11.001

    Article  PubMed  CAS  Google Scholar 

  81. Stock C, Schwab A (2009) Protons make tumor cells move like clockwork. Pflugers Arch 458(5):981–992. doi:10.1007/s00424-009-0677-8

    Article  PubMed  CAS  Google Scholar 

  82. Martin C, Pedersen SF, Schwab A, Stock C (2011) Intracellular pH gradients in migrating cells. Am J Physiol 300(3):C490–C495. doi:10.1152/ajpcell.00280.2010

    Article  CAS  Google Scholar 

  83. Stuwe L, Muller M, Fabian A, Waning J, Mally S, Noel J, Schwab A, Stock C (2007) pH dependence of melanoma cell migration: protons extruded by NHE1 dominate protons of the bulk solution. J Physiol 585(Pt 2):351–360. doi:10.1113/jphysiol.2007.145185

    Article  PubMed  Google Scholar 

  84. Stock C, Gassner B, Hauck CR, Arnold H, Mally S, Eble JA, Dieterich P, Schwab A (2005) Migration of human melanoma cells depends on extracellular pH and Na+/H + exchange. J Physiol 567(Pt 1):225–238. doi:10.1113/jphysiol.2005.088344

    Article  PubMed  CAS  Google Scholar 

  85. Paulucci-Holthauzen AA, Vergara LA, Bellot LJ, Canton D, Scott JD, O'Connor KL (2009) Spatial distribution of protein kinase A activity during cell migration is mediated by A-kinase anchoring protein AKAP Lbc. J Biol Chem 284(9):5956–5967. doi:10.1074/jbc.M805606200

    Article  PubMed  CAS  Google Scholar 

  86. Svastova E, Zilka N, Zat'ovicova M, Gibadulinova A, Ciampor F, Pastorek J, Pastorekova S (2003) Carbonic anhydrase IX reduces E-cadherin-mediated adhesion of MDCK cells via interaction with beta-catenin. Exp Cell Res 290(2):332–345

    Article  PubMed  CAS  Google Scholar 

  87. Kim BR, Shin HJ, Kim JY, Byun HJ, Lee JH, Sung YK, Rho SB (2012) Dickkopf-1 (DKK-1) interrupts FAK/PI3K/mTOR pathway by interaction of carbonic anhydrase IX (CA9) in tumorigenesis. Cell Signal 24(7):1406–1413. doi:10.1016/j.cellsig.2012.03.002

    Article  PubMed  CAS  Google Scholar 

  88. Shin HJ, Rho SB, Jung DC, Han IO, Oh ES, Kim JY (2011) Carbonic anhydrase IX (CA9) modulates tumor-associated cell migration and invasion. J Cell Sci 124(Pt 7):1077–1087. doi:10.1242/jcs.072207

    Article  PubMed  CAS  Google Scholar 

  89. Parkkila S, Rajaniemi H, Parkkila AK, Kivela J, Waheed A, Pastorekova S, Pastorek J, Sly WS (2000) Carbonic anhydrase inhibitor suppresses invasion of renal cancer cells in vitro. Proc Natl Acad Sci U S A 97(5):2220–2224. doi:10.1073/pnas.040554897

    Article  PubMed  CAS  Google Scholar 

  90. Supuran CT (2012) Inhibition of carbonic anhydrase IX as a novel anticancer mechanism. World Journal of Clinical Oncology 3(7):98–103. doi:10.5306/wjco.v3.i7.98

    Article  PubMed  Google Scholar 

  91. Carta F, Maresca A, Scozzafava A, Supuran CT (2012) Novel coumarins and 2-thioxo-coumarins as inhibitors of the tumor-associated carbonic anhydrases IX and XII. Bioorg Med Chem 20(7):2266–2273. doi:10.1016/j.bmc.2012.02.014

    Article  PubMed  CAS  Google Scholar 

  92. Supuran CT, Manole G, Andruh M (1993) Carbonic anhydrase inhibitors. Part 11. Coordination compounds of heterocyclic sulfonamides with lanthanides are potent inhibitors of isozymes I and II. J Inorg Biochem 49(2):97–103

    Article  PubMed  CAS  Google Scholar 

  93. Pryma DA, O'Donoghue JA, Humm JL, Jungbluth AA, Old LJ, Larson SM, Divgi CR (2011) Correlation of in vivo and in vitro measures of carbonic anhydrase IX antigen expression in renal masses using antibody 124I-cG250. J Nucl Med 52(4):535–540. doi:10.2967/jnumed.110.083295

    Article  PubMed  CAS  Google Scholar 

  94. Ahlskog JK, Schliemann C, Marlind J, Qureshi U, Ammar A, Pedley RB, Neri D (2009) Human monoclonal antibodies targeting carbonic anhydrase IX for the molecular imaging of hypoxic regions in solid tumours. Br J Cancer 101(4):645–657. doi:10.1038/sj.bjc.6605200

    Article  PubMed  CAS  Google Scholar 

  95. Zatovicova M, Jelenska L, Hulikova A, Csaderova L, Ditte Z, Ditte P, Goliasova T, Pastorek J, Pastorekova S (2010) Carbonic anhydrase IX as an anticancer therapy target: preclinical evaluation of internalizing monoclonal antibody directed to catalytic domain. Curr Pharm Des 16(29):3255–3263

    Article  PubMed  CAS  Google Scholar 

  96. Xu C, Lo A, Yammanuru A, Tallarico AS, Brady K, Murakami A, Barteneva N, Zhu Q, Marasco WA (2010) Unique biological properties of catalytic domain directed human anti-CAIX antibodies discovered through phage-display technology. PLoS One 5(3):e9625. doi:10.1371/journal.pone.0009625

    Article  PubMed  Google Scholar 

  97. Murri-Plesko MT, Hulikova A, Oosterwijk E, Scott AM, Zortea A, Harris AL, Ritter G, Old L, Bauer S, Swietach P, Renner C (2011) Antibody inhibiting enzymatic activity of tumour-associated carbonic anhydrase isoform IX. Eur J Pharmacol 657(1–3):173–183. doi:10.1016/j.ejphar.2011.01.063

    Article  PubMed  CAS  Google Scholar 

  98. Siebels M, Rohrmann K, Oberneder R, Stahler M, Haseke N, Beck J, Hofmann R, Kindler M, Kloepfer P, Stief C (2011) A clinical phase I/II trial with the monoclonal antibody cG250 (RENCAREX®) and interferon-alpha-2a in metastatic renal cell carcinoma patients. World J Urol 29(1):121–126. doi:10.1007/s00345-010-0570-2

    Article  PubMed  CAS  Google Scholar 

  99. Steffens MG, Boerman OC, Oyen WJ, Kniest PH, Witjes JA, Oosterhof GO, van Leenders GJ, Debruyne FM, Corstens FH, Oosterwijk E (1999) Intratumoral distribution of two consecutive injections of chimeric antibody G250 in primary renal cell carcinoma: implications for fractionated dose radioimmunotherapy. Cancer Res 59:1615–1619

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors’ research is supported by grants from the 7th Framework program of EU (Collaborative project METOXIA), from the Research and Development Support Agency (DO7RP-0017-09, APVV-0893-11 and APVV-0658-11) and from the Research and Development Operational Program funded by the ERDF (project ITMS 26240120027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaromir Pastorek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Benej, M., Pastorekova, S., Pastorek, J. (2014). Carbonic Anhydrase IX: Regulation and Role in Cancer. In: Frost, S., McKenna, R. (eds) Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications. Subcellular Biochemistry, vol 75. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7359-2_11

Download citation

Publish with us

Policies and ethics