Skip to main content

Ecological Genomics of Host Behavior Manipulation by Parasites

  • Chapter
  • First Online:
Ecological Genomics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 781))

Abstract

Among the vast array of niche exploitation strategies exhibited by millions of different species on Earth, parasitic lifestyles are characterized by extremely successful evolutionary outcomes. Some parasites even seem to have the ability to ‘control’ their host’s behavior to fulfill their own vital needs. Research efforts in the past decades have focused on surveying the phylogenetic diversity and ecological nature of these host-parasite interactions, and trying to understand their evolutionary significance. However, to understand the proximal and ultimate causes of these behavioral alterations triggered by parasitic infections, the underlying molecular mechanisms governing them must be uncovered. Studies using ecological genomics approaches have identified key candidate molecules involved in host-parasite molecular cross-talk, but also molecules not expected to alter behavior. These studies have shown the importance of following up with functional analyses, using a comparative approach and including a time-series analysis. High-throughput methods surveying different levels of biological information, such as the transcriptome and the epigenome, suggest that specific biologically-relevant processes are affected by infection, that sex-specific effects at the level of behavior are recapitulated at the level of transcription, and that epigenetic control represents a key factor in managing life cycle stages of the parasite through temporal regulation of gene expression. Post-translational processes, such as protein-protein interactions (interactome) and post translational modifications (e.g. protein phosphorylation, phosphorylome), and processes modifying gene expression and translation, such as interactions with microRNAs (microRNAome), are examples of promising avenues to explore to obtain crucial insights into the proximal and ultimate causes of these fascinating and complex inter-specific interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamo SA (2002) Modulating the modulators: parasites, neuromodulators and host behavioral change. Brain Behav Evol 60:370–377

    PubMed  Google Scholar 

  • Adamo SA (2013) Parasites: evolution’s neurobiologists. J Exp Biol 216:3–10

    PubMed  CAS  Google Scholar 

  • Adamo SA, Linn CE, Beckage NE (1997) Correlation between changes in host behaviour and octopamine levels in the tobacco hornworm Manduca sexta parasitized by gregarious braconid parasitoid wasp Cotesia congregata. J Exp Biol 200:117–127

    PubMed  CAS  Google Scholar 

  • Albert FW, Carlborg O, Plyusnia I et al (2009) Genetic architecture of tameness in a rat model of animal domestication. Genetics 182:541–554

    PubMed  Google Scholar 

  • Allis C, Jenuwein T, Reinberg D (2007) Overview and concepts. In: Allis C, Jenuwein T, Reinberg D (eds) Epigenetics. Cold Spring Harbor Laboratory, New York, pp 23–61

    Google Scholar 

  • Andersen SB, Gerritsma S, Yusah KM et al (2009) The life of a dead ant: the expression of an adaptive extended phenotype. Am Nat 174:424–433

    PubMed  Google Scholar 

  • Aubin-Horth N, Renn SCP (2009) Genomic reaction norms: using integrative biology to understand molecular mechanisms of phenotypic plasticity. Mol Ecol 18:3763–3780

    PubMed  CAS  Google Scholar 

  • Aubin-Horth N, Landry CR, Letcher BH et al (2005) Alternative life histories shape brain gene expression profiles in males of the same population. Proc R Soc B 272:1655–1662

    PubMed  CAS  Google Scholar 

  • Aubin-Horth N, Desjardins JK, Martei YM et al (2007) Masculinized dominant females in a cooperatively breeding species. Mol Ecol 16:1349–1358

    PubMed  Google Scholar 

  • Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395

    PubMed  CAS  Google Scholar 

  • Barber I, Walker P, Svensson PA (2004) Behavioural responses to simulated avian predation in female three spined sticklebacks: the effect of experimental schistocephalus solidus infections. Behaviour 141:1425–1440

    Google Scholar 

  • Beckage NE, Templeton TJ (1986) Physiological effects of parasitism by Apanteles congregatus in terminalstage tobacco hornworm larvae. J Insect Physiol 32:299–314

    CAS  Google Scholar 

  • Bendesky A, Bargmann CI (2011) Genetic contributions to behavioural diversity at the gene-environment interface. Nat Rev Genet 12:809–820

    PubMed  CAS  Google Scholar 

  • Biron DG, Loxdale HD (2013) Host-parasite molecular cross-talk during the manipulative process of a host by its parasite. J Exp Biol 216:148–160

    PubMed  Google Scholar 

  • Biron DG, Joly C, Galéotti N et al (2005a) The proteomics: a new prospect for studying parasitic manipulation. Behav Process 68:249–263

    Google Scholar 

  • Biron DG, Marché L, Ponton F et al (2005b) Behavioral manipulation in a grasshopper harbouring hairworms: a proteomics approach. Proc R Soc B 272:2117–2126

    PubMed  CAS  Google Scholar 

  • Biron DG, Moura H, Marché L et al (2005c) Towards a new conceptual approach to “parasitoproteomics”. Trends Parasitol 21:162–168

    PubMed  CAS  Google Scholar 

  • Biron DG, Ponton F, Marché L et al (2006) ‘Suicide’ of crickets harbouring hairworms: a proteomics investigation. Insect Mol Biol 15:731–742

    PubMed  Google Scholar 

  • Bisson N, James DA, Ivosev G et al (2011) Selected reaction monitoring mass spectrometry reveals the dynamics of signaling through the GRB2 adaptor. Nat Biotechnol 29:653–658

    PubMed  CAS  Google Scholar 

  • Buchwalow I, Bocker W (2010) Immunohistochemistry: basics and methods. Springer, New York

    Google Scholar 

  • Burke MK, Dunham JP, Shaharestani P et al (2010) Genome-wide analysis of a long-term evolution experiment with Drosophila. Nature 467:587–592

    PubMed  CAS  Google Scholar 

  • Butler G, Rasmussen MD, Lin MF et al (2009) Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459:657–662

    PubMed  CAS  Google Scholar 

  • Candolin U, Voigt H-R (2001) No effect of a parasite on reproduction in stickleback males: a laboratory artefact? Parasitology 122:457–464

    PubMed  CAS  Google Scholar 

  • Cézilly F, Favrat A, Perrot-Minnot MJ (2013) Multidimensionality in parasite-induced phenotypic alterations: ultimate versus proximate aspects. J Exp Biol 216:27–35

    PubMed  Google Scholar 

  • Cohen P (1992) Signal integration at the level of protein kinases, protein phosphatases and their substrates. Trends Biochem Sci 17:408–413

    PubMed  CAS  Google Scholar 

  • Cohen P (2000) The regulation of protein function by multisite phosphorylation – a 25 years update. Trends Biochem Sci 25:596–601

    PubMed  CAS  Google Scholar 

  • Collura V, Boissy G (2007) From protein-protein complexes to interactomics. Springer, Dordrecht

    Google Scholar 

  • Consortium TGO (2008) The gene ontology project in 2008. Nucleic Acids Res 36:D440–D444

    Google Scholar 

  • Cosseau C, Azzi A, Rognon A et al (2010) Epigenetic and phenotypic variability in populations of Schistosoma mansoni – a possible kick-off for adaptive host/parasite evolution. Oikos 119:669–678

    CAS  Google Scholar 

  • Dawkins R (1982) The extended phenotype. Oxford University Press, New York

    Google Scholar 

  • De Jonk-Brink M, Bergamin-Sassen M, Solis Soto M (2001) Multiple strategies of schistosomes to meet their requirements in the intermediate snail host. Parasitology 123:S129–S141

    Google Scholar 

  • Dejong S, Fuller TV, Janson E et al (2010) Gene expression profiling in C57BL/6J and A/J mouse inbred strains reveals gene networks specific for brain regions independent of genetic background. BMC Genomics 2010:1–14

    Google Scholar 

  • Dingemanse NJ, Oosterhof C, Van Der Plas F et al (2009) Variation in stickleback head morphology associated with parasite infection. Biol J Linn Soc 96:759–768

    Google Scholar 

  • Diss G, Filteau M, Freschi L et al (2013) Integrative avenues for exploring the dynamics and evolution of protein interaction networks. Curr Opin Biotechnol 24(4):775–783

    PubMed  CAS  Google Scholar 

  • Diz AP, Martinez-Fernadez M, Rolan-Alvarez E (2012) Proteomics in evolutionary ecology: linking the genotype with the phenotype. Mol Ecol 21:1060–1080

    PubMed  CAS  Google Scholar 

  • Eberhard WG (2000) Spider manipulation by a wasp larva. Nature 406:255–256

    PubMed  CAS  Google Scholar 

  • Eberhard W (2010) Recovery of spiders from the effects of parasitic wasps: implications for fine-tuned mechanisms of manipulation. Anim Behav 79:375–383

    Google Scholar 

  • Ebert D (2008) Host–parasite coevolution: insights from the Daphnia–parasite model system. Curr Opin Microbiol 11:290–301

    PubMed  CAS  Google Scholar 

  • Ellis JMS, Riters LV (2013) Patterns of phosphorylated tyrosine hydroxylase vary with song production in female starlings. Brain Res 1498:41–49

    CAS  Google Scholar 

  • Filby A, Paull GC, Hickmore TFA et al (2010) Unravelling the neurophysiological basis of aggression in a fish model. BMC Genomics 11:1–17

    Google Scholar 

  • Flegr J et al (2002) Increased risk of traffic accidents in subjects with latent toxo plasmosis: a retrospective case-control study. BMC Infect Dis 2:11

    PubMed  Google Scholar 

  • Fox A, Hudson PJ (2001) Parasites reduce territorial behaviour in red grouse (Lagopus lagopus scoticus). Ecol Lett 4:139–143

    Google Scholar 

  • Gala A, Fang Y, Woltedji D et al (2013) Changes of proteome and phosphoproteome trigger embryo–larva transition of honeybee worker (Apis mellifera ligustica). J Proteomics 78:428–446

    PubMed  CAS  Google Scholar 

  • Gao F, Liu X, Wu X-P et al (2012) Differential DNA methylation in discrete developmental stages of the parasitic nematode Trichinella spiralis. Genome Biol 13:R100

    PubMed  Google Scholar 

  • Giraldez AJ, Cinalli RM, Glasner ME et al (2005) MicroRNAs regulate brain morphogenesis in zebrafish. Science 308:833–838

    PubMed  CAS  Google Scholar 

  • Godin J-GJ, Sproul CD (1988) Risk taking in parasitized sticklebacks under threat of predation: effects of energetic need and food availability. Can J Fish Aquat Sci 66:2360–2367

    Google Scholar 

  • Gomez-Diaz E, Jorda M, Peinado M et al (2012) Epigenetics of host-pathogen interactions: the road ahead and the road behind. PLoS Pathog 8:e1003007

    PubMed  CAS  Google Scholar 

  • Greenberg JK, Xia J, Zhou X et al (2012) Behavioral plasticity in honey bees is associated with differences in brain microRNA transcriptome. Genes Brain Behav 11:660–670

    PubMed  CAS  Google Scholar 

  • Gunaratne PH, Lin YC, Benham AL et al (2011) Song exposure regulates known and novel microRNAs in the zebra finch auditory forebrain. BMC Genomics 12:277

    PubMed  CAS  Google Scholar 

  • Hakimi MA, Cannella D (2011) Apicomplexan parasites and subversion of the host cell microRNA pathway. Trends Parasitol 27:481–486

    PubMed  CAS  Google Scholar 

  • Hawkins RD, Hon GC, Ren B (2010) Next-generation genomics: an integrative approach. Nat Rev Genet 11:476–486

    PubMed  CAS  Google Scholar 

  • Heins DC, Baker JA, Toups MA et al (2010) Evolutionary significance of fecundity reduction in threespine stickleback infected by the diphyllobothriidean cestode Schistocephalus solidus. Biol J Linn Soc 100:835–846

    Google Scholar 

  • Helluy S (2013) Parasite-induced alterations of sensorimotor pathways in gammarids: collateral damage of neuroinflammation? J Exp Biol 216:67–77

    PubMed  Google Scholar 

  • Helluy S, Holmes J (1990) Serotonin, octopamine, and the clinging behavior induced by the parasite Polymorphus paradoxus (Acanthocephala) in Gammarus lacustris (Crustacea). Can J Fish Aquat Sci 68:1214–1220

    CAS  Google Scholar 

  • Helluy S, Thomas F (2003) Effects of Microphallus papillorobustus (Platyhelminthes: Trematoda) on serotonergic immunoreactivity and neuronal architecture in the brain of Gammarus insensibilis (Crustacea: Amphipoda). Proc R Soc B 270:563–568

    PubMed  CAS  Google Scholar 

  • Hindsbo O (1972) Effects of Polymorphus (Acanthocephala) on colour and behaviour of Gammarus lacustris. Nature 238:333

    Google Scholar 

  • Holmes J, Bethel W (1972) Modification of intermediate host behaviour by parasites. In: Canning E, Wright C (eds) Behavioural aspects of parasite transmission. Academic, London, pp 123–149

    Google Scholar 

  • Hood LE, Omenn GS, Moritz RL et al (2012) New and improved proteomics technologies for understanding complex biological systems: addressing a grand challenge in the life sciences. Proteomics 12:2773–2783

    PubMed  CAS  Google Scholar 

  • House PK, Vyas A, Sapolsky R (2011) Predator cat odors activate sexual arousal pathways in brains of Toxoplasma gondii infected rats. PLoS ONE 6:e23277

    PubMed  CAS  Google Scholar 

  • Hu G, Drescher K, Chen X (2012) Exosomal miRNAs: biological properties and therapeutic potential. Front Genet 3:1–9

    Google Scholar 

  • Huang C, Xu M, Zhu B (2012) Epigenetic inheritance mediated by histone lysine methylation: maintaining transcriptional states without the precise restoration of marks? Philos Trans R Soc B 368:1–6

    Google Scholar 

  • Hughes D, Brodeur J, Thomas F (2012) Host manipulation by parasites. Oxford University Press, Oxford

    Google Scholar 

  • Ingwell LL et al (2012) Sc Rep 2(518):1–6

    Google Scholar 

  • Jensen ON (2006) Interpreting the protein language using proteomics. Nat Rev Mol Cell Biol 7:391–403

    PubMed  CAS  Google Scholar 

  • Kan AA, Van Erp S, Derijck AA et al (2012) Genome-wide microRNA profiling of human temporal lobe epilepsy identifies modulators of the immune response. Cell Mol Life Sci 69:3127–3145

    PubMed  CAS  Google Scholar 

  • Kavaliers M, Cowell DD (1995) Parasitology 111:257–263

    PubMed  Google Scholar 

  • Ketterson E, Nolan V (1999) Adaptation, exaptation, and constraint: a hormonal perspective. Am Nat 154:S1–S22

    Google Scholar 

  • Ketterson E, Atwell J, Mcglothlin J (2009) Phenotypic integration and independence: hormones, performance, and response to environmental change. Integr Comp Biol 49:365–379

    PubMed  CAS  Google Scholar 

  • Kuris AM, Hechinger RF, Shaw JC et al (2008) Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature 454:515–518

    PubMed  CAS  Google Scholar 

  • Lafferty KD, Morris AK (1996) Altered behavior of parasitized killifish increases susceptibility to predation by bird final hosts. Ecology 77:1390–1397

    Google Scholar 

  • Lamb J, Crawford ED, Peck D et al (2006) The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313:1929–1935

    PubMed  CAS  Google Scholar 

  • Lasonder E, Green JL, Camarda G et al (2012) The Plasmodium falciparum schizont phosphoproteome reveals extensive phosphatidylinositol and cAMP-protein kinase A signaling. J Proteome Res 11:5323–5337

    PubMed  CAS  Google Scholar 

  • Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294:862–863

    PubMed  CAS  Google Scholar 

  • Lefèvre T, Roche B, Poulin R et al (2008) Exploiting host compensatory responses: the ‘must’ of manipulation? Trends Parasitol 24:435–439

    PubMed  Google Scholar 

  • Li L, Liu F, Li W et al (2012) Differences in microRNAs and their expressions between foraging and dancing honey bees, Apis mellifera L. J Insect Phys 58:1438–1443

    CAS  Google Scholar 

  • Liang H, Zen K, Zhang J et al (2013) New roles for microRNAs in cross-species communication. RNA Biol 10:1–4

    Google Scholar 

  • Lockett GA, Kicharski R, Malszka R (2012) DNA methylation changes elicited by social stimuli in the brains of worker honey bees. Genes Brain Behav 11:235–242

    PubMed  CAS  Google Scholar 

  • Losos J (2011) Convergence, adaptation, and constraint. Evolution 65:1827–1840

    PubMed  Google Scholar 

  • Maarten Altelaar AF, Munoz J, Heck AJR (2012) Next-generation proteomics: towards an integrative view of proteome dynamics. Nat Rev Genet 14:35–48

    Google Scholar 

  • Macnab V, Barber I (2012) Some (worms) like it hot: fish parasites grow faster in warmer water, and alter host thermal preferences. Global Change Biol 18:1540–1548

    Google Scholar 

  • Mant CT, Chen Y, Yan Z et al (2007) HPLC analysis and purification of peptides. Meth Mol Ecol 386:3–55

    CAS  Google Scholar 

  • Marcogliese DJ, Cone DK (1997) Food webs: a plea for parasites. Trends Ecol Evol 12:320–325

    PubMed  CAS  Google Scholar 

  • Mathivanan S, Periaswamy B, Gandhi TK et al (2006) An evaluation of human protein-protein interaction data in the public domain. BMC Bioinform 7(Suppl 5):S19

    Google Scholar 

  • Milinski M (1985) Risk of predation of parasitized sticklebacks (Gasterosteus aculeatus L.) under competition for food. Behaviour 93:203–215

    Google Scholar 

  • Moore J (2002) Parasites and the behavior of animals. Oxford University Press, Oxford

    Google Scholar 

  • Mukai M, Replogle K, Drnevich J et al (2009) Seasonal differences of gene expression profiles in song sparrow (Melospiza melodia) hypothalamus in relation to territorial aggression. PLoS ONE 4:e8182

    PubMed  Google Scholar 

  • Overli O, Pall M, Borg B et al (2001) Effects of Schistocephalus solidus infection on brain monoaminergic activity in female three-spined sticklebacks Gasterosteus aculeatus. Proc R Soc B 268:1411–1415

    PubMed  CAS  Google Scholar 

  • Pavey SA, Bernatchez L, Aubin-Horth N et al (2012) What is needed for next-generation ecological and evolutionary genomics? Trends Ecol Evol 27:673–678

    PubMed  Google Scholar 

  • Perrot-Minnot MJ, Maddaleno M, Balourdet A et al (2012) Host manipulation revisited: no evidence for a causal link between altered photophobia and increased trophic transmission of amphipods infected with acanthocephalans. Funct Ecol 26:1007–1014

    Google Scholar 

  • Pigliucci M, Preston K (2004) Phenotypic integration: studying the ecology and evolution of complex phenotypes. Oxford University Press, New York

    Google Scholar 

  • Ponton F, Lefèvre T, Lebarbenchon C et al (2006) Do distantly related parasites rely on the same proximate factors to alter the behaviour of their hosts? Proc R Soc B 273:2869–2877

    PubMed  CAS  Google Scholar 

  • Poulin R (2007) Evolutionary ecology of parasites. Princeton University Press, Princeton

    Google Scholar 

  • Poulin R (2010) Parasite manipulation of host behavior: an update and frequently asked questions. In: Brockmann J (ed) Advances in the study of behavior. Elsevier, Burlington, pp 151–186

    Google Scholar 

  • Poulin R (2011) The many roads to parasitism: a tale of convergence. In: Rollinson D, Hay SI (eds) Advances in parasitology. Academic, Burlington, pp 1–49

    Google Scholar 

  • Poulin R (2013) Parasite manipulation of host personality and behavioural syndromes. J Exp Biol 216:18–26

    PubMed  Google Scholar 

  • Poulin R, Thomas F (2008) Epigenetic effects of infection on the phenotype of host offspring: parasites reaching across host generations. Oikos 117:331–335

    Google Scholar 

  • Prandovsky E, Gaskell E, Martin H et al (2011) The neurotropic parasite Toxoplasma gondii increases dopamine metabolism. PLoS ONE 6:e23866

    Google Scholar 

  • Pritchard JR, Bruno PM, Gilbert LA et al (2013) Defining principles of combination drug mechanisms of action. Proc Natl Acad Sci USA 110:E170–E179

    PubMed  CAS  Google Scholar 

  • Quinn TP, Kendall NW, Rich HB Jr et al (2012) Diel vertical movements, and effects of infection by the cestode Schistocephalus solidus on daytime proximity of three-spined sticklebacks Gasterosteus aculeatus to the surface of a large Alaskan lake. Oecologia 168:43–51

    PubMed  CAS  Google Scholar 

  • Qureshi IA, Mehler MF (2011) Non-coding RNA networks underlying cognitive disorders across the lifespan. Trends Mol Med 17:337–346

    PubMed  CAS  Google Scholar 

  • Ramirez F, Schlicker A, Assenov Y et al (2007) Computational analysis of human protein interaction networks. Proteomics 7:2541–2552

    PubMed  CAS  Google Scholar 

  • Rau ME (1985) The effects of Trichinella spiralis infection of pregnant mice on the future behavior of their offspring. J Parasitol 71:774–778

    PubMed  CAS  Google Scholar 

  • Rau ME, Caron FR (1979) Can J Zool 57:2466–2468

    Google Scholar 

  • Réale D, Reader SM, Sol D et al (2007) Integrating animal temperament within ecology and evolution. Biol Res 82:291–318

    Google Scholar 

  • Renn SCP, Aubin-Horth N, Hofmann HA (2008) Fish and chips: functional genomics of social plasticity in an African cichlid fish. J Exp Biol 211: 3041–3056

    PubMed  CAS  Google Scholar 

  • Richards TA, Soanes DM, Jones MDM et al (2011) Horizontal gene transfer facilitated the evolution of plant parasitic mechanisms in the oomycetes. Proc Natl Acad Sci USA 108:15258–15263

    PubMed  CAS  Google Scholar 

  • Russo V, Martienssen R, Rigg A (1996) Introduction. In: Russo V, Martienssen R, Rigg A (eds) Epigenetic mechanisms of gene regulation. Cold Spring Harbor Laboratory, New York, pp 1–4

    Google Scholar 

  • Schmidt-Hempel P (2011) Evolutionary parasitology: the integrated study of infections, immunology, ecology, and genetics. Oxford University Press, New York

    Google Scholar 

  • Schmitt J, Dudley S, Pigliucci M (1999) Manipulative approaches to testing adaptive plasticity: phytochrome-mediated shade-avoidance responses in plants. Am Nat 154:S43–S54

    Google Scholar 

  • Schratt G (2009) microRNAs at the synapse. Nature 10:842–849

    CAS  Google Scholar 

  • Shabalina SA, Koonin E (2008) Origins and evolution of eukaryotic RNA interference. Trends Ecol Evol 23:578–587

    PubMed  Google Scholar 

  • Shaw JC, Overli O (2012) Brain-encysting trematodes and altered monoamine activity in naturally infected killifish Fundulus parvipinnis. J Fish Bio:81: 2213--2222

    Google Scholar 

  • Shaw JC, Korzan WJ, Carpenter RE et al (2009) Parasite manipulation of brain monoamines in California killifish (Fundulus parvipinnis) by the trematode Euhaplorchis californiensis. Proc R Soc B 276:1137–1146

    PubMed  CAS  Google Scholar 

  • Shirasaki DI, Greiner ER, Al-Ramahi I et al (2012) Network organization of the huntingtin proteomic interactome in mammalian brain. Neuron 75:41–57

    PubMed  CAS  Google Scholar 

  • Sih A, Bell AM, Johnson JC et al (2004) Behavioral syndromes: an integrative overview. Q Rev Biol 79:241–277

    PubMed  Google Scholar 

  • Sinervo B, Doughty P, Huey RB et al (1992) Allometric engineering: a causal analysis of natural selection on offspring size. Science 258:1927–1931

    PubMed  CAS  Google Scholar 

  • Skallova A, Kodym P, Frynta D et al (2006) The role of dopamine in Toxoplasma-induced behavioural alterations in mice: an ethological and ethopharmacological study. Parasitology 133:525–535

    PubMed  CAS  Google Scholar 

  • Skinner WS, Dennis PA, Li JP et al (1991) Isolation and identification of paralytic peptides from hemolymph of the lepidopteran insects Manduca sexta, Spodoptera exigua, and Heliothis virescens. J Biol Chem 266:12873–12877

    PubMed  CAS  Google Scholar 

  • Smalheiser NR, Lugli G, Rizavi HS et al (2011) MicroRNA expression in rat brain exposed to repeated inescapable shock: differential alterations in learned helplessness vs. non-learned helplessness. Int J Neuropsychop 14:1315–1325

    CAS  Google Scholar 

  • Sopko R, Andrews BJ (2008) Linking the kinome and phosphorylome – a comprehensive review of approaches to find kinase targets. Mol BioSyst 4:920–933

    PubMed  CAS  Google Scholar 

  • Stolzenberg DS, Grant PA, Bekiranov S (2011) Epigenetic methodologies for behavioral scientists. Horm Behav 59:407–416

    PubMed  CAS  Google Scholar 

  • Tain L, Perrot-Minnot MJ, Cezilly F (2006) Altered host behaviour and brain serotonergic activity caused by acanthocephalans: evidence for specificity. Proc R Soc B 273:3039–3045

    PubMed  CAS  Google Scholar 

  • Tan M, Luo H, Lee S et al (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146:1016–1028

    PubMed  CAS  Google Scholar 

  • Thomas F, Ulitsky P, Augier R et al (2003) Biochemical and histological changes in the brain of the cricket Nemobius sylvestris infected by the manipulative parasite Paragordius tricuspidatus (Nematomorpha). Int J Parasitol 33:435–443

    PubMed  CAS  Google Scholar 

  • Thomas F, Poulin R, Brodeur J (2010) Host manipulation by parasites: a multidimensional phenomenon. Oikos 119:1217–1223

    Google Scholar 

  • Vijay N, Poelstra JW, Kunstner A et al (2013) Challenges and strategies in transcriptome assembly and differential gene expression quantification. A comprehensive in silico assessment of RNA-seq experiments. Mol Ecol 22:620–634

    PubMed  CAS  Google Scholar 

  • Vyas A, Kim SK, Giacomini N et al (2007) Behavioral changes induced by Toxoplasma infection of rodents are highly specific to aversion of cat odors. Proc Natl Acad Sci USA 104:6442–6447

    PubMed  CAS  Google Scholar 

  • Weaver ICG, Cervoni N, Champagne FA et al (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7:847–854

    PubMed  CAS  Google Scholar 

  • Weber JN, Peterson PK, Hoekstra HE (2013) Discrete genetic modules are responsible for complex burrow evolution in Peromyscus mice. Nature 493:402–406

    PubMed  CAS  Google Scholar 

  • Webster JP, Lamberton PHL, Donnelly CA et al (2006) Parasites as causative agents of human affective disorders? The impact of anti-psychotic, mood-stabilizer and anti-parasite medication on Toxoplasma gondii’s ability to alter host behaviour. Proc R Soc B 273:1023–1030

    PubMed  CAS  Google Scholar 

  • Whitfield CW, Cziko A-M, Robinson GE (2003) Gene expression profiles in the brain predict behavior in individual honey bees. Science 302:296–299

    PubMed  CAS  Google Scholar 

  • Williams TD (2008) Individual variation in endocrine systems: moving beyond the ‘tyranny of the Golden Mean’. Phil Trans R Soc B 363:1687–1698

    PubMed  CAS  Google Scholar 

  • Wright HA, Wootton RJ, Barber I (2007) Compensatory growth in threespine sticklebacks (Gasterosteus aculeatus) inhibited by experimental Schistocephalus infections. Can J Fish Aquat Sci 64:819–826

    Google Scholar 

  • Xiao J, Kannan G, Jones-Brando L et al (2012) Sex-specific changes in gene expression and behavior induced by chronic Toxoplasma infection in mice. Neuroscience 206:39–48

    PubMed  CAS  Google Scholar 

  • Yanoviak SP, Kaspari M, Dudley R et al (2008) Parasite-induced fruit mimicry in a tropical canopy ant. Am Nat 171:536–544

    PubMed  CAS  Google Scholar 

  • Zeiner GM, Norman KL, Thomson JM et al (2010) Toxoplasma gondii infection specifically increases the levels of key host microRNAs. PLoS ONE 5:e8742

    PubMed  Google Scholar 

  • Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Molec Biol 4: Article17 1--43

    Google Scholar 

  • Zwarts L, Magwire MM, Carbone MA et al (2011) Complex genetic architecture of Drosophila aggressive behavior. Proc Natl Acad Sci USA 11: 17070–17075

    Google Scholar 

Download references

Acknowledgments

We thank David Biron, Caitlin Friesen and Iain Barber for reviewing a previous version of the manuscript and Christian R. Landry for excellent editorial comments and for inviting us to write this chapter. FOH is supported by a FRQ-NT Doctoral research Scholarship and Discovery Grants of the Natural Sciences and Engineering Research Council of Canada to N. Aubin-Horth and C.R. Landry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Aubin-Horth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hébert, F.O., Aubin-Horth, N. (2014). Ecological Genomics of Host Behavior Manipulation by Parasites. In: Landry, C., Aubin-Horth, N. (eds) Ecological Genomics. Advances in Experimental Medicine and Biology, vol 781. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7347-9_9

Download citation

Publish with us

Policies and ethics