Skip to main content

Trait Transitions in Explicit Ecological and Genomic Contexts: Plant Mating Systems as Case Studies

  • Chapter
  • First Online:
Ecological Genomics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 781))

Abstract

Plants are astonishingly diverse in how they reproduce sexually, and the study of plant mating systems provides some of the most compelling cases of parallel and independent evolutionary transitions. In this chapter, we review how the massive amount of genomic data being produced is allowing long-standing predictions from ecological and evolutionary theory to be put to test. After a review of theoretical predictions about the importance of considering the genomic architecture of the mating system, we focus on a set of recent discoveries on how the mating system is controlled in a variety of model and non-model species. In parallel, genomic approaches have revealed the complex interaction between the evolution of genes controlling mating systems and genome evolution, both genome-wide and in the mating system control region. In several cases, major transitions in the mating system can be clearly associated with important ecological changes, hence illuminating an important interplay between ecological and genomic approaches. We also list a number of major unsolved questions that remain for the field, and highlight foreseeable conceptual developments that are likely to play a major role in our understanding of how plant mating systems evolve in Nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta IF, Laparra H, Romero SP, Schmelz E, Hamberg M, Mottinger JP, Moreno MA, Dellaporta SL (2009) Tasselseed1 is a lipoxygenase affecting jasmonic acid signaling in sex determination of maize. Science 323:262–265

    PubMed  CAS  Google Scholar 

  • Al-Shehbaz IA, O’Kane SLJ (2002) Taxonomy and phylogeny of Arabidopsis (Brassicaceae). In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. American Society of Plant Biologists, Rockville

    Google Scholar 

  • Ashman TL (2003) Constraints on the evolution of males and sexual dimorphism: filed estimates of genetic architecture of reproductive traits in three populations of gynodioecious Fragaria virginiana. Evolution 57:2012–2025

    PubMed  Google Scholar 

  • Bachtrog D (2008) The temporal dynamics of processes underlying Y chromosome degeneration. Genetics 179:1513–1525

    PubMed  Google Scholar 

  • Baker HG (1955) Self-compatibility and establishment after “long-distance” dispersal. Evolution 9:347–348

    Google Scholar 

  • Banks JA (2008) MicroRNA, sex determination and floral meristem determinacy in maize. Genome Biol 9:204

    PubMed  Google Scholar 

  • Barrett SCH, Shore JS (2008) New insights on heterostyly: comparative biology, ecology and genetics. In: Franklin-Tong V (ed) Self-incompatibility in flowering plants: evolution, diversity and mechanisms. Springer-Verlag, Berlin, pp 3–32

    Google Scholar 

  • Bechsgaard JS, Castric V, Charlesworth D et al (2006) The transition to self-compatibility in Arabidopsis thaliana and evolution within S-haplotypes over 10 Myr. Mol Biol Evol 23:1741–1750

    PubMed  CAS  Google Scholar 

  • Beilstein MA, Nagalingum NS, Clements MD et al (2010) Dated molecular phylogenies indicate a miocene origin for Arabidopsis thaliana. Proc Natl Acad Sci 107(43):18724–18728

    PubMed  CAS  Google Scholar 

  • Bergero R, Forrest A, Kamau E, Charlesworth D (2007) Evolutionary strata on the X chromosomes of the dioecious plant Silene latifolia: evidence from new sex-linked genes. Genetics 175:1945–1954

    PubMed  CAS  Google Scholar 

  • Bergero R, Forrest A, Charlesworth D (2008) Active miniature transposons from a plant genome and its nonrecombining Y chromosome. Genetics 178:1085–1092

    PubMed  CAS  Google Scholar 

  • Billiard S, López-Villavicencio M et al (2011) Having sex, yes, but with whom? Inferences from fungi on the evolution of anisogamy and mating types. Biol Rev 86:421–442

    PubMed  Google Scholar 

  • Boggs NA, Nasrallah JB, Nasrallah ME (2009) Independent S-locus mutations caused self-fertility in Arabidopsis thaliana. PLoS Genet 5:e1000426

    PubMed  Google Scholar 

  • Boualem A, Fergany M, Fernandez R et al (2008) A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons. Science 321(5890):836–838

    PubMed  CAS  Google Scholar 

  • Busch JW, Schoen DJ (2008) The evolution of self-incompatibility when mates are limiting. Trends Plant Sci 13:128–136

    PubMed  CAS  Google Scholar 

  • Busch JW, Joly S, Schoen DJ (2011) Demographic signatures accompanying the evolution of selfing in Leavenworthia alabamica. Mol Biol Evol 28:1717–1729

    PubMed  CAS  Google Scholar 

  • Cao J, Schneeberger K, Ossowski S et al (2011) Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet 43:956–965

    PubMed  CAS  Google Scholar 

  • Case AL, Ashman TL (2009) Resources and pollinators contribute to population sex ratio bias and pollen limitation in gynodioecious wild strawberry (Fragaria virginiana). Oikos 118:1250–1260

    Google Scholar 

  • Castric V, Bechsgaard J, Grenier S et al (2010) Molecular evolution within and between self-incompatibility specificities. Mol Biol Evol 27:11–20

    PubMed  CAS  Google Scholar 

  • Cegan R, Vyskot B, Kejnovsky E et al (2012) Genomic diversity in two related plant species with and without sex chromosomes – Silene latifolia and S. vulgaris. PLoS ONE 7:e31898

    PubMed  CAS  Google Scholar 

  • Chantha SC, Herman AC, Platts A, Vekemans X, Schoen DJ (2013) Secondary evolution of self-incompatibility in the mustard genus Leavenworthia. PLoS Biol 11(5):e1001560

    PubMed  CAS  Google Scholar 

  • Charlesworth D (2002a) Plant sex determination and sex chromosomes. Heredity 88:94–101

    PubMed  Google Scholar 

  • Charlesworth D (2002b) What maintains male-sterility factors in plant populations. Heredity 89:408–409

    PubMed  CAS  Google Scholar 

  • Charlesworth D (2003) Effects of inbreeding on the genetic diversity of populations. Phil Trans R Soc Lond B 358:1051–1070

    CAS  Google Scholar 

  • Charlesworth D (2006) Balancing selection and its effects on sequences in nearby genome regions. PLoS Genet 2:e64

    PubMed  Google Scholar 

  • Charlesworth D (2010) Don’t forget the ancestral polymorphisms. Heredity 105:509–510

    PubMed  CAS  Google Scholar 

  • Charlesworth B, Charlesworth D (1978) A model for the evolution of dioecy and gynodioecy. Am Nat 112:975–997

    Google Scholar 

  • Charlesworth D, Charlesworth B (1979) Evolution and breakdown of S-allele systems. Heredity 43:41–55

    Google Scholar 

  • Charlesworth D, Charlesworth B (1987) Inbreeding depression and its evolutionary consequences. Annu Rev Ecol Syst 18:237–268

    Google Scholar 

  • Charlesworth D, Charlesworth B (1990) Inbreeding depression with heterozygote advantage and its effect on selection for modifiers changing the outcrossing rate. Evolution 44:870–888

    Google Scholar 

  • Charlesworth B, Charlesworth D (2000) The degeneration of Y chromosomes. Phil Trans R Soc Lond B 355:1563–1572

    CAS  Google Scholar 

  • Charlesworth B, Charlesworth D (2010a) Elements of evolutionary genetics. Roberts and Company Publishers, Greenwood Village

    Google Scholar 

  • Charlesworth D, Charlesworth B (2010b) Evolutionary biology: the origins of two sexes. Current Biol 20:R520

    Google Scholar 

  • Charlesworth D, Willis JH (2009) The genetics of inbreeding depression. Nat Rev Genet 10:783–796

    PubMed  CAS  Google Scholar 

  • Charlesworth D, Wright SI (2001) Breeding systems and genome evolution. Curr Opin Genet Dev 11:685–690

    PubMed  CAS  Google Scholar 

  • Charlesworth D, Morgan MT, Charlesworth B (1993) Mutation accumulation in finite outbreeding and inbreeding populations. Genet Res 61:39–56

    Google Scholar 

  • Charlesworth D, Charlesworth B, Morgan MT (1995) The pattern of neutral molecular variation under the background selection model. Genetics 141:1619–1632

    PubMed  CAS  Google Scholar 

  • Charlesworth D, Vekemans X, Castric V, Glémin S (2005) Plant self-incompatibility systems: a molecular evolutionary perspective. New Phytol 168:61–69

    PubMed  CAS  Google Scholar 

  • Charnov EL (1982) The theory of sex allocation. Princeton University Press, Princeton

    Google Scholar 

  • Chookajorn T, Kachroo A, Ripoll DR, Clark AG, Nasrallah JB (2003) Specificity determinants and diversification of the Brassica self-incompatibility pollen ligand. Proc Natl Acad Sci USA 101:911–917

    PubMed  Google Scholar 

  • Darracq A, Varré JS, Maréchal-Drouard L et al (2011) Structural and content diversity of mitochondrial genome in beet: a comparative genomic analysis. Genome Biol Evol 3:723–736

    PubMed  CAS  Google Scholar 

  • Darwin C (1876) The effects of cross and self fertilisation in the vegetable kingdom. John Murray, London

    Google Scholar 

  • Darwin C (1877) The different forms of flowers on plants of the same species. John Murray, London

    Google Scholar 

  • de Graaf BH, Vatovec S, Juárez-Díaz JA, Chai L, Kooblall K, Wilkins KA, Zou H, Forbes T, Franklin FC, Franklin-Tong VE (2012) The Papaver self-incompatibility pollen S-determinant, PrpS, functions in Arabidopsis thaliana. Curr Biol 22(2):154–159

    PubMed  Google Scholar 

  • de la Chaux N, Tsuchimatsu T, Shimizu KK, Wagner A (2012) The predominantly selfing plant Arabidopsis thaliana experienced a recent reduction in transposable element abundance compared to its outcrossing relative Arabidopsis lyrata. Mob DNA 3:2

    PubMed  Google Scholar 

  • Diggle PK, Di Stilio VS, Gschwend AR, Golenberg EM, Moore RC, Russell JRW, Sinclair JP (2011) Multiple developmental processes underlie sex differentiation in angiosperms. Trends Genet 27(9):368–376

    PubMed  CAS  Google Scholar 

  • Dufaÿ M, Billard E (2012) How much better are females? The occurrence of female advantage, its proximal causes and its variation within and among gynodioecious species. Ann Bot 109:505–519

    PubMed  Google Scholar 

  • Dufay M, Cuguen J, Arnaud JF, Touzet P (2009) Sex ratio variation among gynodioecious populations of sea beet: can it be explained by frequency-dependent selection? Evolution 63:1483–1497

    PubMed  Google Scholar 

  • Eckert CG, Ozimec B, Herlihy CR, Griffin CA, Routley MB (2009) Floral morphology mediates temporal variation in the mating system of a self-compatible plant. Ecology 90(6):1540–1548

    PubMed  Google Scholar 

  • Ehlers BK, Schierup MH (2008) When gametophytic self-incompatibility meets gynodioecy. Genet Res Camb 90:27–35

    PubMed  CAS  Google Scholar 

  • Entani T, Iwano M, Shiba H et al (2003) Comparative analysis of the self-incompatibility (S-) locus region of Prunus mume: identification of a pollen-expressed F-box gene with allelic diversity. Genes Cells 8:203–213

    PubMed  CAS  Google Scholar 

  • Escobar JS, Cenci A, Bolognini J et al (2010) An integrative test of the dead-end hypothesis of selfing evolution in Triticeae (Poaceae). Evolution 64:2855–2872

    PubMed  Google Scholar 

  • Ferrer MM, Good SV (2012) Self-sterility in flowering plants: preventing self-fertilization increases family diversification rates. Ann Bot 110(3):535–553

    PubMed  Google Scholar 

  • Ferris P, Olson B, Hoff PD et al (2010) Evolution of an expanded sex-determining locus in Volvox. Science 328:351–354

    PubMed  CAS  Google Scholar 

  • Fisher RA (1941) Average excess and average effect of a gene substitution. Ann Eugen 11:53–63

    Google Scholar 

  • Fishman L, Kelly AJ, Willis JH (2002) Minor quantitative trait loci underlie floral traits associated with mating system divergence in Mimulus. Evolution 56(11):2138–2155

    PubMed  Google Scholar 

  • FitzJohn RG (2010) Quantitative traits and diversification. Syst Biol 59:619–633

    PubMed  Google Scholar 

  • Foxe JP, Slotte T, Stahl EA, Neuffer B, Hurkad H, Wright SI (2009) Recent speciation associated with the evolution of selfing in Capsella. Proc Natl Acad Sci USA 106(13):5241–5245

    PubMed  CAS  Google Scholar 

  • Frank SA (1989) The evolutionary dynamics of cytoplasmic male-sterility. Am Nat 133:345–376

    Google Scholar 

  • Fujimoto R, Okazaki K, Fukai E, Kusaba M, Nishio T (2006) Comparison of the genome structure of the self-incompatibility (S) locus in inter-specific pairs of S haplotypes. Genetics 173:1157–1167

    PubMed  CAS  Google Scholar 

  • Fukai E, Fujimoto R, Nishio T (2003) Genomic organization of the S core region and the S flanking regions of a class-II S haplotype in Brassica rapa. Mol Gen Genomics 269:361–369

    CAS  Google Scholar 

  • Gervais CE, Castric V, Ressayre A, Billiard S (2011) Origin and diversification dynamics of self-incompatibility haplotypes. Genetics 188:625–636

    PubMed  CAS  Google Scholar 

  • Glémin S (2007) Mating systems and the efficacy of selection at the molecular level. Genetics 177:905–916

    PubMed  Google Scholar 

  • Glémin S, Galtier N (2012) Genome evolution in outcrossing versus selfing versus asexual species. Methods Mol Biol 855:311–335

    PubMed  Google Scholar 

  • Glémin S, Ronfort J (2013) Adaptation and maladaptation in selfing and outcrossing species: new mutations versus standing variation. Evolution 67:224–240

    Google Scholar 

  • Glémin S, Bazin E, Charlesworth D (2006) Impact of mating systems on patterns of sequence polymorphism in flowering plants. Proc R Soc Land B 273:3011–3019

    Google Scholar 

  • Goldberg EE, Igic B (2012) Tempo and mode in plant breeding system evolution. Evolution 66:3701–3709

    PubMed  Google Scholar 

  • Goldberg EE, Kohn JR, Lande R et al (2010) Species selection maintains self-incompatibility. Science 330:493–495

    PubMed  CAS  Google Scholar 

  • Goubet PM, Bergès H, Bellec A et al (2012) Contrasted patterns of molecular evolution in dominant and recessive self-incompatibility haplotypes in Arabidopsis. PLoS Genet 8:e1002495

    PubMed  CAS  Google Scholar 

  • Gouyon PH, Vichot F, Van Damme JMM (1991) Nuclear-cytoplasmic male sterility: single point equilibria versus limit cycles. Am Nat 137:498–514

    Google Scholar 

  • Graham SW, Barrett SCH (2004) Phylogenetic reconstruction of the evolution of stylar polymorphisms in Narcissus (Amaryllidaceae). Am J Bot 91:1007–1021

    PubMed  Google Scholar 

  • Guo YL, Bechsgaard JS, Slotte T, Neuffer B, Lascoux M, Weigel D, Schierup MH (2009) Recent speciation of Capsella rubella from Capsella grandiflora, associated with loss of self-incompatibility and an extreme bottleneck. Proc Natl Acad Sci USA 106(13):5246–5251

    PubMed  CAS  Google Scholar 

  • Guo Y, Zhao X, Lanz C, Weigel D (2011) Evolution of the S-locus region in Arabidopsis thaliana relatives. Plant Physiol 157:937–946

    PubMed  CAS  Google Scholar 

  • Haudry A, Cenci A, Ravel C, Bataillon T, Brunel D, Poncet C, Hochu I, Poirier S, Santoni S, Glémin S, David J (2007) Grinding up wheat: a massive loss of nucleotide diversity since domestication. Mol Biol Evol 24:1506–1517

    PubMed  CAS  Google Scholar 

  • Haudry A, Cenci A, Guilhaumon C et al (2008) Mating system and recombination affect molecular evolution in four Triticeae species. Genet Res 90:97–109

    CAS  Google Scholar 

  • Heilbuth JC, Ilves KL, Otto SP (2001) The consequences of dioecy for seed dispersal: modeling the seed-shadow handicap. Evolution 55:880–888

    PubMed  CAS  Google Scholar 

  • Husse L, Billiard S, Lepart J, Vernet P, Saumitou-Laprade P (2013) A one-locus model of androdioecy in a context with two homomorphic self-incompatibility groups: expected vs. observed male frequencies. J Evol Biol 26(6):1269–1280

    PubMed  CAS  Google Scholar 

  • Igic B, Lande R, Kohn JR (2008) Loss of self-incompatiblity and its evolutionary consequences. Int J Plant Sci 169:93–104

    Google Scholar 

  • Indriolo E, Tharmapalan P, Wright SI, Goring DR (2012) The ARC1 E3 Ligase gene is frequently deleted in self-compatible Brassicaceae species and has a conserved role in Arabidopsis lyrata self-pollen rejection. Plant Cell 24:4607–4620

    PubMed  CAS  Google Scholar 

  • Ingvarsson PK (2002) A metapopulation perspective on genetic diversity and differentiation in partially self-fertilizing plants. Evolution 56:2368–2373

    PubMed  Google Scholar 

  • Ingvarsson PK, Taylor DR (2002) Genealogical evidence for epidemics of selfish genes. Proc Natl Acad Sci USA 99:11265–11269

    PubMed  CAS  Google Scholar 

  • Käfer J, Talianov M, Bigot T et al (2013) Patterns of molecular evolution in dioecious and non-dioecious Silene. J Evol Biol 26:335–346

    PubMed  Google Scholar 

  • Kaplan NL, Hudson RR, Langley CH (1989) The hitchhiking effect revisited. Genetics 123:887–899

    PubMed  CAS  Google Scholar 

  • Kim M, Cui ML, Cubas P, Gillies A, Lee K, Chapman MA, Abbott RJ, Coen E (2008) Regulatory genes control a key morphological and ecological trait transferred between species. Science 322(5904):1116–1119

    PubMed  CAS  Google Scholar 

  • Kubo K, Entani T, Takara A, Wang N, Fields AM, Hua Z, Toyoda M, Kawashima S, Ando T, Isogai A, Kao TH, Takayama S (2010) Collaborative non-self recognition system in S-RNase-based self-incompatibility. Science 330(6005):796–799

    PubMed  CAS  Google Scholar 

  • Lahiani E, Dufaÿ M, Castric V, Le Cadre S, Charlesworth D, Van Rossum F, Touzet P (2013) Disentangling the effects of mating systems and mutation rates on cytoplamic diversity in gynodioecious Silene nutans and dioecious Silene otites. Heredity 111:157–164

    PubMed  CAS  Google Scholar 

  • Lahn BT, Page DC (1999) Four evolutionary strata on the human X chromosome. Science 286:964–967

    PubMed  CAS  Google Scholar 

  • Liu Z, Moore PH, Ma H et al (2004) A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 427:348–352

    PubMed  CAS  Google Scholar 

  • Lloyd DG (1975) The maintenance of gynodioecy and androdioecy in angiosperms. Genetica 45:325–339

    Google Scholar 

  • Lloyd DG (1977) Genetic and phenotypic models of natural selection. J Theor Biol 69:543–560

    PubMed  CAS  Google Scholar 

  • Lloyd DG (1979) Evolution towards dioecy in heterostylous populations. Plant Syst Evol 131:71–80

    Google Scholar 

  • Lloyd DG (1980) The distribution of gender in four angiosperm species illustrating two evolutionary pathways to dioecy. Evolution 34:123–134

    Google Scholar 

  • Lloyd DG, Webb CJ (1992) The evolution of heterostyly. In: Barrett SCH (ed) Evolution and function of heterostyly. Springer, Berlin/Heidelberg/New York, pp 151–178

    Google Scholar 

  • Lockton S, Gaut BS (2010) The evolution of transposable elements in natural populations of self-fertilizing Arabidopsis thaliana and its outcrossing relative Arabidopsis lyrata. BMC Evol Biol 10:10

    PubMed  Google Scholar 

  • Lynch M, Conery J, Burger R (1995a) Mutation accumulation and the extinction of small populations. Am Nat 146:489–518

    Google Scholar 

  • Lynch M, Conery J, Burger R (1995b) Mutational meltdowns in sexual population. Evolution 49:1067–1080

    Google Scholar 

  • Maddison WP, Midford PE, Otto SP (2007) Estimating a binary character’s effect on speciation and extinction. Syst Biol 56:701–710

    PubMed  Google Scholar 

  • Marais G (2003) Biased gene conversion: implications for genome and sex evolution. Trends Genet 19:330–338

    PubMed  CAS  Google Scholar 

  • Marais G, Charlesworth B, Wright SI (2004) Recombination and base composition: the case of the highly self-fertilizing plant Arabidopsis thaliana. Genome Biol 5:R45

    PubMed  CAS  Google Scholar 

  • Martin A, Orgogozo V (2013) The loci of repeated evolution: a catalog of genetic hotspots of phenotypic variation. Evolution 67(5):1235–1250

    PubMed  CAS  Google Scholar 

  • Martin A, Troadec C, Boualem A, Rajab M, Fernandez R, Morin H, Pitrat M, Dogimont C, Bendahmane A (2009) A transposon-induced epigenetic change leads to sex determination in melon. Nature 461(7267):1135–1138

    PubMed  CAS  Google Scholar 

  • Mayrose I, Barker MS, Otto SP (2010) Probabilistic models of chromosome number evolution and the inference of polyploidy. Syst Biol 59:132–144

    PubMed  Google Scholar 

  • McDaniel SF, Atwood J, Burleigh JG (2013) Recurrent evolution of dioecy in bryophytes. Evolution 67:567–572

    PubMed  Google Scholar 

  • Ming R, Bendahmane A, Renner SS (2011) Sex chromosomes in land plants. Annu Rev Plant Biol 62:485–514

    PubMed  CAS  Google Scholar 

  • Modliszewski JL, Willis JH (2012) Allotetraploid Mimulus sookensis are highly interfertile despite independent origins. Mol Ecol 21:5280–5298

    PubMed  Google Scholar 

  • Morgan MT (2001) Transposable element number in mixed mating populations. Genet Res 77:261–275

    PubMed  CAS  Google Scholar 

  • Muyle A, Zemp N, Deschamps C et al (2012) Rapid de novo evolution of X chromosome dosage compensation in Silene latifolia, a plant with young sex chromosomes. PLoS Biol 10:e1001308

    PubMed  CAS  Google Scholar 

  • Naithani S, Chookajorn T, Ripoll DR, Nasrallah JB (2007) Structural modules for receptor dimerization in the S-locus receptor kinase extracellular domain. Proc Natl Acad Sci USA 104:12211–12216

    PubMed  CAS  Google Scholar 

  • Nasrallah ME, Liu P, Nasrallah JB (2002) Generation of self-incompatible Arabidopsis thaliana by transfer of two S locus genes from A. lyrata. Science 297:247–249

    PubMed  CAS  Google Scholar 

  • Nasrallah M, Liu P, Sherman-Broyles S, Boggs N, Nasrallah J (2004) Natural variation in expression of self-incompatibility in Arabidopsis thaliana: implications for the evolution of selfing. Proc Natl Acad Sci USA 101:16070–16074

    PubMed  CAS  Google Scholar 

  • Nasrallah JB, Liu P, Sherman-Broyles S, Schmidt R, Nasrallah ME (2007) Epigenetic mechanisms for breakdown of self-incompatibility in interspecific hybrids. Genetics 175:1965–1973

    PubMed  CAS  Google Scholar 

  • Ness RW, Wright SI, Barrett SCH (2010) Mating-system variation, demographic history and patterns of nucleotide diversity in the tristylous plant Eichhornia paniculata. Genetics 184:381–392

    PubMed  CAS  Google Scholar 

  • Nicolas M, Marais G, Hykelova V et al (2005) A gradual process of recombination restriction in the evolutionary history of the sex chromosomes in dioecious plants. PLoS Biol 3:e4

    PubMed  Google Scholar 

  • Nordborg M (2000) Linkage disequilibrium, gene trees and selfing: an ancestral recombination graph with partial self-fertilization. Genetics 154:923–929

    PubMed  CAS  Google Scholar 

  • Nordborg M, Hu TT, Ishino Y et al (2005) The pattern of polymorphism in Arabidopsis thaliana. PLoS Biol 3:1289–1299

    CAS  Google Scholar 

  • Ornduff R (1969) Reproductive biology in relation to systematics. Taxon 18:121–133

    Google Scholar 

  • Pannell JR, Verdu M (2006) The evolution of gender specialization from dimorphic hermaphroditism: paths from heterodichogamy to gynodioecy and androdioecy. Evolution 60:660–673

    PubMed  Google Scholar 

  • Pettengill JB, Moeller DA (2011) Tempo and mode of mating system evolution between incipient Clarkia species. Evolution 66:1210–1225

    PubMed  Google Scholar 

  • Porcher E, Lande R (2005a) The evolution of self-fertilization and inbreeding depression under pollen discounting and pollen limitation. J Evol Biol 18:497–508

    PubMed  CAS  Google Scholar 

  • Porcher E, Lande R (2005b) Loss of gametophytic self-incompatibility with evolution of inbreeding depression. Evolution 59:46–60

    PubMed  Google Scholar 

  • Qiu S, Zeng K, Slotte T et al (2011) Reduced efficacy of natural selection on codon usage bias in selfing Arabidopsis and Capsella species. Genome Biol Evol 3:868–880

    PubMed  CAS  Google Scholar 

  • Renner SS, Ricklefs RE (1995) Dioecy and its correlates in the flowering plants. Am J Bot 82:596–606

    Google Scholar 

  • Roselius K, Stephan W, Stadler T (2005) The relationship of nucleotide polymorphism, recombination rate and selection in wild tomato species. Genetics 171:753–763

    PubMed  CAS  Google Scholar 

  • Ross MD (1982) Five evolutionary pathways to subdioecy. Am Nat 119:297–318

    Google Scholar 

  • Ross-Ibarra J, Wright SI, Foxe JP et al (2008) Patterns of polymorphism and demographic history in natural populations of Arabidopsis lyrata. PLoS ONE 3:e2411

    PubMed  Google Scholar 

  • Roze D, Rousset F (2004) Joint effects of self-fertilization and population structure on the mutation load, inbreeding depression and heterosis. Genetics 167:1001–1015

    PubMed  Google Scholar 

  • Saumitou-Laprade P, Vernet P, Vassiliadis C, Hoareau Y, de Magny G, Dommée B, Lepart J (2010) A self-incompatibility system explains high male frequencies in an androdioecious plant. Science 327(5973):1648–1650

    PubMed  CAS  Google Scholar 

  • Schierup MH, Vekemans X, Christiansen FB (1997) Evolutionary dynamics of sporophytic self-incompatibility alleles in plants. Genetics 147:835–846

    PubMed  CAS  Google Scholar 

  • Schoen DJ, Brown AHD (1991) Intraspecific variation in population gene diversity and effective population size correlates with the mating system in plants. Proc Natl Acad Sci USA 88:4494–4497

    PubMed  CAS  Google Scholar 

  • Segawa M, Kishi S, Tatuno S (1971) Sex chromosomes of Cycas revoluta. Jpn J Genet 46:33–39

    Google Scholar 

  • Shimizu KK, Cork JM, Caicedo AL et al (2004) Darwinian selection on a selfing locus. Science 306:2081–2084

    PubMed  CAS  Google Scholar 

  • Shimizu KK, Shimizu-Inatsugi R, Tsuchimatsu T, Purugganan MD (2008) Independent origins of self-compatibility in Arabidopsis thaliana. Mol Ecol 17:704–714

    PubMed  CAS  Google Scholar 

  • Sicard A, Stacey N, Hermann K, Dessoly J, Neuffer B, Bäurle I, Lenhard M (2011) Genetics, evolution, and adaptive significance of the selfing syndrome in the genus Capsella. Plant Cell 23(9):3156–3171

    CAS  Google Scholar 

  • Slotte T, Foxe JP, Hazzouri KM, Wright SI (2010) Genome-wide evidence for efficient positive and purifying selection in Capsella grandiflora, a plant species with a large effective population size. Mol Biol Evol 27:1813–1821

    PubMed  CAS  Google Scholar 

  • Slotte T, Hazzouri KM, Stern D, Andolfatto P, Wright SI (2012) Genetic architecture and adaptive significance of the selfing syndrome in Capsella. Evolution 66(5):1360–1374

    PubMed  Google Scholar 

  • Slotte T, Hazzouri KM, Ågren JA, Koenig D, Maumus F, Guo Y, Steige K, Platts AE, Escobar JS, Newman LK, Wang W, Mandakova T, Vello E, Smith SM, Steffen J, Takuno S, Brandvain Y, Coop G, Andolfatto P, Hu TT, Blanchette M, Clark RM, Queseville H, Nordborg M, Gaut BS, Lysak MA, Jenkins J, Grimwood J, Prochnick S, Shu S, Rokhsar D, Schmutz J, Weigel D, Wright SI (2013) The Capsella rubella genome and the genomic consequences of rapid mating system evolution. Nat Genet 45:831–835

    PubMed  CAS  Google Scholar 

  • Spigler RB, Lewers KS, Main DS, Ashman TL (2008) Genetic mapping of sex determination in a wild strawberry, Fragaria virginiana, reveals earliest form of sex chromosome. Heredity 101:507–517

    PubMed  CAS  Google Scholar 

  • St Onge KR, Kallman T, Slotte T et al (2011) Contrasting demographic history and population structure in Capsella rubella and Capsella grandiflora, two closely related species with different mating systems. Mol Ecol 20:3306–3320

    PubMed  Google Scholar 

  • Stadler T (2011) Inferring speciation and extinction processes from extant species data. Proc Natl Acad Sci USA 108:16145–16146

    PubMed  CAS  Google Scholar 

  • Stadler T, Delph LF (2002) Ancient mitochondrial haplotypes and evidence for intragenic recombination in a gynodioecious plant. Proc Natl Acad Sci USA 99:11730–11735

    PubMed  CAS  Google Scholar 

  • Stebbins GL (1957) Self fertilization and population variability in higher plants. Am Nat 91:337–354

    Google Scholar 

  • Stebbins GL (1974) Flowering plants: evolution above the species level. Harvard University Press, Cambridge

    Google Scholar 

  • Takayama S, Isogai A (2005) Self-incompatibility in plants. Annu Rev Plant Biol 56:467–489

    PubMed  CAS  Google Scholar 

  • Takebayashi N, Morrell PL (2001) Is self-fertilization an evolutionary deed end? Revisiting an old hypothesis with genetic theories and a macroevolutionary approach. Am J Bot 88:1143–1150

    PubMed  CAS  Google Scholar 

  • Tam SM, Causse M, Garchery C et al (2007) The distribution of copia-type retrotransposons and the evolutionary history of tomato and related wild species. J Evol Biol 20:1056–1072

    PubMed  CAS  Google Scholar 

  • Tang C, Toomajian C, Sherman-Broyles S, Plagnol V, Guo YL et al (2007) The evolution of selfing in Arabidopsis thaliana. Science 317:1070–1072

    PubMed  CAS  Google Scholar 

  • Tantikanjana T, Rizvi N, Nasrallah ME, Nasrallah JB (2009) A dual role for the S-locus receptor kinase in self-incompatibility and pistil development revealed by an Arabidopsis rdr6 mutation. Plant Cell 21(9):2642–2654

    PubMed  CAS  Google Scholar 

  • Torices R, Méndez M, Gomez MJ (2011) Where do monomorphic sexual systems fit in the evolution of dioecy? Insights from the largest family of angiosperms. New Phytol 190:234–248

    PubMed  Google Scholar 

  • Touzet P (2012) Mitochondrial genome evolution and gynodioecy. In: Marechal-Drouard L (ed) Advances in botanical research, vol 63. Academic Press/Elsevier Science, London, pp 71–98

    Google Scholar 

  • Touzet P, Budar F (2004) Unveiling the molecular arms race between two conflicting genomes in cytoplasmic male sterility? Trends Plant Sci 9:568–570

    PubMed  CAS  Google Scholar 

  • Touzet P, Delph LF (2009) The effect of breeding system on polymorphism in mitochondrial genes of Silene. Genetics 181:631–644

    PubMed  CAS  Google Scholar 

  • Tsuchimatsu T, Suwabe K, Shimizu-Inatsugi R et al (2010) Evolution of self-compatibility in Arabidopsis by a mutation in the male specificity gene. Nature 464:1342–1346

    PubMed  CAS  Google Scholar 

  • Tsuchimatsu T, Kaiser P, Yew C-L, Bachelier JB, Shimizu KK (2012) Recent loss of self-incompatibility by degradation of the male component in allotetraploid Arabidopsis kamchatica. PLoS Genet 8(7):e1002838

    PubMed  CAS  Google Scholar 

  • Uyenoyama MK (2003) Genealogy-dependent variation in viability among self-incompatibility genotypes. Theor Popul Biol 63:281–293

    PubMed  Google Scholar 

  • Uyenoyama M, Zhang Y, Newbigin E (2001) On the origin of self-incompatibility haplotypes: transition through self-compatible intermediates. Genetics 157:1805–1817

    PubMed  CAS  Google Scholar 

  • Vamosi JC, Otto SP (2002) When looks can kill: the evolution of sexually dimorphic floral display and the extinction of dioecious plants. Proc R Soc Lond B 269:1187–1194

    Google Scholar 

  • van Doorn GS, Kirkpatrick M (2007) Turnover of sex chromosomes induced by sexual conflict. Nature 449:909–912

    PubMed  Google Scholar 

  • Vekemans X, Slatkin M (1994) Gene and allelic genealogies at a gametophytic self-incompatibility locus. Genetics 137:1157–1165

    PubMed  CAS  Google Scholar 

  • Wang J, Naa JK, Yub Q et al (2012) Sequencing papaya X and Y chromosomes reveals molecular basis of incipient sex chromosome evolution. Proc Natl Acad Sci USA 109:13710–13715

    PubMed  CAS  Google Scholar 

  • Wright SI, Schoen DJ (1999) Transposon dynamics and the breeding system. Genetica 107:139–148

    PubMed  CAS  Google Scholar 

  • Wright SI, Le QH, Schoen DJ, Bureau TE (2001) Population dynamics of an Ac-like transposable element in self- and crosspollinating Arabidopsis. Genetics 158:1279–1288

    PubMed  CAS  Google Scholar 

  • Wright SI, Lauga B, Charlesworth D (2002) Rates and patterns of molecular evolution in inbred and outbred Arabidopsis. Mol Biol Evol 19:1407–1420

    PubMed  CAS  Google Scholar 

  • Wright S, Ness RW, Foxe JP, Barrett SC (2008) Genomic consequences of outcrossing and selfing in plants. Int J Plant Sci 169:105–118

    Google Scholar 

Download references

Acknowledgements

We thank two anonymous reviewers for helpful comments. Our work on plant mating systems is supported by the French Agence Nationale de la Recherche (ANR-11-BSV7- 013-03 and ANR 11 JSV7 008 01) and by the Région Nord Pas de Calais.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Castric .

Editor information

Editors and Affiliations

Glossary

Hermaphroditism

Hermaphroditism is the simultaneous coexistence of male and female reproductive organs on the same (co-sexual) individual (Fig. 2.1). Hermaphroditism is believed to be the ancestral state in Angiosperms, and the defining organ of Angiosperms (the flower) is itself a hermaphroditic organ, producing both pollen and ovules.

Selfing versus outcrossing
figure 5

A major consequence of hermaphroditism is the potential for self-fertilization, the most extreme form of inbreeding.

Self-incompatibility (SI)

A genetic system promoting allogamy in many plants. There are two different types of SI, homomorphic and heteromorphic. In homomorphic SI, the different groups of mating partners differ by the type of recognition proteins they produce, but remain morphologically undistinguishable. In heteromorphic SI (e.g. heterostyly), the two (distyly) or three (tristyly) self- and within-morph incompatible mating groups typically differ by style length, anther height and pollen size.

Inbreeding depression

Inbreeding depression is the decrease of fitness of offspring produced by inbred parents relatively to those produced by unrelated parents.

Pollen limitation

A plant is pollen-limited if it does not receive enough pollen to fertilize all its ovules. Pollen limitation thus leads to a reduction in reproductive output through the female function.

Pollen discounting

The loss of male reproduction in cross-fertilization due to the decrease of exported pollen, which occurs especially in autogamous species.

Gynodioecy (resp. androdioecy)

Gynodioecy (resp. androdioecy) is a mating system whereby hermaphrodite individuals coexist with female (resp. male) individuals (Fig. 2.1).

Dioecy

Dioecy is the separation of sexual functions in specialized (male and female) individuals (Fig. 2.1). Species in which some individuals with incomplete sexual specialization occur along with strictly unisexual individuals are termed subdioecious.

Monoecious

Monoecious species are composed of hermaphrodites only, but in which male and female flowers are separated on each individual.

In gynomonoecious species, some individuals produce female-only flowers in variable proportion along with hermaphroditic flowers, while in andromonoecious species, some individuals produce male-only flowers along with hermaphroditic flowers.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Castric, V., Billiard, S., Vekemans, X. (2014). Trait Transitions in Explicit Ecological and Genomic Contexts: Plant Mating Systems as Case Studies. In: Landry, C., Aubin-Horth, N. (eds) Ecological Genomics. Advances in Experimental Medicine and Biology, vol 781. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7347-9_2

Download citation

Publish with us

Policies and ethics