Skip to main content

Integrated Genomics Approaches in Evolutionary and Ecological Endocrinology

  • Chapter
  • First Online:
Ecological Genomics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 781))

Abstract

Hormones can act on a variety of target tissues to regulate the expression of multiple phenotypic traits. Therefore, phenotypes regulated by the same hormones can be genetically correlated due to their common regulatory mechanism. Such genetic correlations may either facilitate or constrain adaptive evolution. In addition, hormone signaling pathways are regulated by external environmental factors, so hormones can mediate phenotypic plasticity and polyphenism. When different responses to environmental signals are favored, hormone signaling pathways can vary between populations and species exploiting dissimilar environments and thus mediate genotype-by-environment interactions. A complete understanding of the evolutionary causes and ecological implications of hormone signal variation requires examining several components of hormone signaling pathways across multiple individuals, populations, and species. Genomic technologies are excellent tools for undertaking genetic studies of naturally occurring variation in hormone signals. In this chapter, we review how genomic approaches can help to answer major questions in evolutionary endocrinology, including how environmental cues can be translated into phenotypic development through hormone pathways, how multiple hormone-mediated phenotypic traits are coupled and decoupled, how gene functions in hormone pathways influence the evolutionary rate of genes, and how divergence in hormone pathways can contribute to phenotypic diversification and speciation in non-model organisms. We also discuss how emerging analytical and experimental technologies in genomics and hormone measurement can provide valuable new insights into the roles of hormone signal variation in adaptive evolution and phenotypic diversification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adkins-Regan E (2005) Hormones and animal social behavior. Princeton University Press, Princeton

    Google Scholar 

  • Allis CD, Jenuwein T, Reinberg D, Caparros M-L (2007) Epigenetics. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Alvarez-Ponce D, Aguade M, Rozas J (2009) Network-level molecular evolutionary analysis of the insulin/TOR signal transduction pathway across 12 Drosophila genomes. Genome Res 19:234–242

    PubMed  CAS  Google Scholar 

  • Alvergne A, Lummaa V (2009) Does the contraceptive pill alter mate choice in humans? Trends Ecol Evol 25:171–179

    PubMed  Google Scholar 

  • Andersson M (1994) Sexual selection. Princeton University Press, Princeton

    Google Scholar 

  • Ansai S, Ochiai H, Kanie Y, Kamei Y, Gou Y, Kitano T, Yamamoto T, Kinoshita M (2012) Targeted disruption of exogenous EGFP gene in medaka using zinc-finger nucleases. Dev Growth Differ 54:546–556

    PubMed  CAS  Google Scholar 

  • Anway MD, Cupp AS, Uzumcu M, Skinner MK (2005) Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308:1466–1469

    PubMed  CAS  Google Scholar 

  • Arnqvist G, Rowe L (2005) Sexual conflict. Princeton University Press, Princeton

    Google Scholar 

  • Aubin-Horth N, Renn SCP (2009) Genomic reaction norms: using integrative biology to understand molecular mechanisms of phenotypic plasticity. Mol Ecol 18:3763–3780

    PubMed  CAS  Google Scholar 

  • Auger CJ, Coss D, Auger AP, Forbes-Lorman RM (2011) Epigenetic control of vasopressin expression is maintained by steroid hormones in the adult male rat brain. Proc Natl Acad Sci USA 108:4242–4247

    PubMed  CAS  Google Scholar 

  • Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3:e3376

    PubMed  Google Scholar 

  • Balment RJ, Lu W, Weybourne E, Warne JM (2006) Arginine vasotocin a key hormone in fish physiology and behaviour: a review with insights from mammalian models. Gen Comp Endocrinol 147:9–16

    PubMed  CAS  Google Scholar 

  • Barsh GS, Copenhaver GP, Gibson G, Williams SM (2012) Guidelines for genome-wide association studies. PLoS Genet 8:e1002812

    PubMed  CAS  Google Scholar 

  • Baum AE, Solberg LC, Kopp P, Ahmadiyeh N, Churchill G, Takahashi JS, Jameson JL, Redei EE (2005) Quantitative trait loci associated with elevated thyroid-stimulating hormone in the Wistar-Kyoto rat. Endocrinology 146:870–878

    PubMed  CAS  Google Scholar 

  • Becker C, Hagmann J, Muller J, Koenig D, Stegle O, Borgwardt K, Weigel D (2011) Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature 480:245–249

    PubMed  CAS  Google Scholar 

  • Behncken SN, Rowlinson SW, Rowland JE, Conway-Campbell BL, Monks TA, Waters MJ (1997) Aspartate 171 Is the major primate-specific determinant of human growth hormone: engineering porcine growth hormone to activate the human receptor. J Biol Chem 272:27077–27083

    PubMed  CAS  Google Scholar 

  • Bethke A, Fielenbach N, Wang Z, Mangelsdorf DJ, Antebi A (2009) Nuclear hormone receptor regulation of microRNAs controls developmental progression. Science 324:95–98

    PubMed  CAS  Google Scholar 

  • Bogdanove AJ, Voytas DF (2011) TAL effectors: customizable proteins for DNA targeting. Science 333:1843–1846

    PubMed  CAS  Google Scholar 

  • Boorse GC, Denver RJ (2004) Endocrine mechanisms underlying plasticity in metamorphic timing in spadefoot toads. Inetgr Comp Biol 43:646–657

    Google Scholar 

  • Bradshaw D (2007) Environmental endocrinology. Gen Comp Endocrinol 152:125–141

    PubMed  CAS  Google Scholar 

  • Buchholz DR, Hayes TB (2005) Variation in thyroid hormone action and tissue content underlies species differences in the timing of metamorphosis in desert frogs. Evol Dev 7:458–467

    PubMed  CAS  Google Scholar 

  • Carroll SB (2005) Evolution at two levels: on genes and form. PLoS Biol 3:e245

    PubMed  Google Scholar 

  • Champagne FA, Curley JP (2009) Epigenetic mechanisms mediating the long-term effects of maternal care on development. Neurosci Biobehav Rev 33:593–600

    PubMed  Google Scholar 

  • Champagne FA, Weaver ICG, Diorio J, Dymov S, Szyf M, Meaney MJ (2006) Maternal care associated with methylation of the estrogen receptor-α1b promoter and estrogen receptor-α expression in the medial preoptic area of female offspring. Endocrinology 147:2909–2915

    PubMed  CAS  Google Scholar 

  • Chen W, Kelly MA, Opitz-Araya X, Thomas RE, Low MJ, Cone RD (1997) Exocrine gland dysfunction in MC5-R-deficient mice: evidence for coordinated regulation of exocrine gland function by melanocortin peptides. Cell 91:789–798

    PubMed  CAS  Google Scholar 

  • Chen AS, Marsh DJ, Trumbauer ME, Frazier EG, Guan X-M, Yu H, Rosenblum CI, Vongs A, Feng Y, Cao L, Metzger JM, Strack AM, Camacho RE, Mellin TN, Nunes CN, Min W, Fisher J, Gopal-Truter S, MacIntyre DE, Chen HY, Van der Ploeg LHT (2000) Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nat Genet 26:97–102

    PubMed  CAS  Google Scholar 

  • Chutimanitsakun Y, Nipper R, Cuesta-Marcos A, Cistue L, Corey A, Filichkina T, Johnson E, Hayes P (2011) Construction and application for QTL analysis of a Restriction Site Associated DNA (RAD) linkage map in barley. BMC Genomics 12:4

    PubMed  CAS  Google Scholar 

  • Cork JM, Purugganan MD (2004) The evolution of molecular genetic pathways and networks. Bioessays 26:479–484

    PubMed  CAS  Google Scholar 

  • Cox RM, Calsbeek R (2009) Sexually antagonistic selection, sexual dimorphism, and the resolution of intralocus sexual conflict. Am Nat 173:176–187

    PubMed  Google Scholar 

  • Crews D, Williams EE (1977) Hormones, reproductive behavior, and speciation. Am Zool 17:271–286

    Google Scholar 

  • Crews D, Gore AC, Hsu TS, Dangleben NL, Spinetta M, Schallert T, Anway MD, Skinner MK (2007) Transgenerational epigenetic imprints on mate preference. Proc Natl Acad Sci USA 104:5942–5946

    PubMed  CAS  Google Scholar 

  • Crews D, Gillette R, Scarpino SV, Manikkam M, Savenkova MI, Skinner MK (2012) Epigenetic transgenerational inheritance of altered stress responses. Proc Natl Acad Sci USA 109:9143–9148

    PubMed  CAS  Google Scholar 

  • Dardente H, Wyse CA, Birnie MJ, Dupré SM, Loudon ASI, Lincoln GA, Hazlerigg DG (2010) A molecular switch for photoperiod responsiveness in mammals. Curr Biol 20:2193–2198

    PubMed  CAS  Google Scholar 

  • Darwin C (1874) The decent of man; and selection in relation to sex. Humbolt, New York

    Google Scholar 

  • Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510

    PubMed  CAS  Google Scholar 

  • Deagle BE, Jones FC, Chan YF, Absher DM, Kingsley DM, Reimchen TE (2011) Population genomics of parallel phenotypic evolution in stickleback across stream-lake ecological transitions. Proc R Soc B 279:1277–1286

    PubMed  Google Scholar 

  • Denver RJ (1997) Environmental stress as a developmental cue: corticotropin-releasing hormone is a proximate mediator of adaptive phenotypic plasticity in amphibian metamorphosis. Horm Behav 31:169–179

    PubMed  CAS  Google Scholar 

  • Denver RJ (1998) Hormonal correlates of environmentally induced metamorphosis in the western spadefoot toad, Scaphiopus hammondii. Gen Comp Endocrinol 110:326–336

    PubMed  CAS  Google Scholar 

  • DeWitt TJ, Scheiner SM (2004) Phenotypic plasticity: functional and conceptual approaches. Oxford University Press, Oxford

    Google Scholar 

  • Dormitzer PR, Ellison PT, Bode HH (1989) Anomalously low endemic goiter prevalence among Efe pygmies. Am J Phys Anthropol 78:527–531

    PubMed  CAS  Google Scholar 

  • Ducrest A-L, Keller L, Roulin A (2008) Pleiotropy in the melanocortin system, coloration and behavioural syndromes. Trends Ecol Evol 23:502–510

    PubMed  Google Scholar 

  • Duret L, Mouchiroud D (2000) Determinants of substitution rates in mammalian genes: expression pattern affects selection intensity but not mutation rate. Mol Biol Evol 17:68–070

    PubMed  CAS  Google Scholar 

  • Ekblom R, Galindo J (2011) Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity 107:1–15

    PubMed  CAS  Google Scholar 

  • Ellegren H, Smeds L, Burri R, Olason PI, Backstrom N, Kawakami T, Kunstner A, Makinen H, Nadachowska-Brzyska K, Qvarnstrom A, Uebbing S, Wolf JBW (2012) The genomic landscape of species divergence in Ficedula flycatchers. Nature 491:756–760

    PubMed  CAS  Google Scholar 

  • Faupel-Badger JM, Fuhrman BJ, Xu X, Falk RT, Keefer LK, Veenstra TD, Hoover RN, Ziegler RG (2010) Comparison of liquid chromatography-tandem mass spectrometry, RIA, and ELISA methods for measurement of urinary estrogens. Cancer Epidemiol Biomark Prev 19:292–300

    CAS  Google Scholar 

  • Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114

    PubMed  CAS  Google Scholar 

  • Finch CE, Rose MR (1995) Hormones and the physiological architecture of life history evolution. Q Rev Biol 70:1–52

    PubMed  CAS  Google Scholar 

  • Flatt T, Tu MP, Tatar M (2005) Hormonal pleiotropy and the juvenile hormone regulation of Drosophila development and life history. Bioessays 27:999–1010

    PubMed  CAS  Google Scholar 

  • Fowden AL, Forhead AJ (2009) Hormones as epigenetic signals in developmental programming. Exp Physiol 94:607–625

    PubMed  CAS  Google Scholar 

  • Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C, Feldman MW (2002) Evolutionary rate in the protein interaction network. Science 296:750–752

    PubMed  CAS  Google Scholar 

  • Gabor CR, Grober MS (2010) A potential role of male and female androgen in species recognition in a unisexual-bisexual mating complex. Horm Behav 57:427–433

    PubMed  CAS  Google Scholar 

  • Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10:94–108

    PubMed  CAS  Google Scholar 

  • Gilad Y, Rifkin SA, Pritchard JK (2008) Revealing the architecture of gene regulation: the promise of eQTL studies. Trends Genet 24:408–415

    PubMed  CAS  Google Scholar 

  • Gilad Y, Pritchard JK, Thornton K (2009) Characterizing natural variation using next-generation sequencing technologies. Trends Genet 25:463–471

    PubMed  CAS  Google Scholar 

  • Graves JAM, Peichel CL (2010) Are homologies in vertebrate sex determination due to shared ancestry or to limited options? Genome Biol 11:205

    Google Scholar 

  • Greenwood AK, Jones FC, Chan YF, Brady SD, Absher DM, Grimwood J, Schmutz J, Myers RM, Kingsley DM, Peichel CL (2011) The genetic basis of divergent pigment patterns in juvenile threespine sticklebacks. Heredity 107:155–166

    PubMed  CAS  Google Scholar 

  • Grossniklaus U, Kelly B, Ferguson-Smith AC, Pembrey M, Lindquist S (2013) Transgenerational epigenetic inheritance: how important is it? Nat Rev Genet 14:228–235

    PubMed  CAS  Google Scholar 

  • Haig D (2008) Placental growth hormone-related proteins and prolactin-related proteins. Placenta 29(Suppl A):S36–S41

    PubMed  Google Scholar 

  • Handwerger S, Freemark M (2000) The roles of placental growth hormone and placental lactogen in the regulation of human fetal growth and development. J Pediatr Endocrinol Metab 13:343–356

    PubMed  CAS  Google Scholar 

  • Hanon EA, Lincoln GA, Fustin JM, Dardente H, Masson-Pevet M, Morgan PJ, Hazlerigg DG (2008) Ancestral TSH mechanism signals summer in a photoperiodic mammal. Curr Biol 18:1147–1152

    PubMed  CAS  Google Scholar 

  • Harper JM, Galecki AT, Burke DT, Pinkosky SL, Miller RA (2003) Quantitative trait loci for insulin-like growth factor I, leptin, thyroxine, and corticosterone in genetically heterogeneous mice. Physiol Genomics 15:44–51

    PubMed  CAS  Google Scholar 

  • Hau M (2007) Regulation of male traits by testosterone: implications for the evolution of vertebrate life histories. Bioessays 29:133–144

    PubMed  CAS  Google Scholar 

  • Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, Slagboom PE, Lumey LH (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA 105:17046–17049

    PubMed  CAS  Google Scholar 

  • Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, Manolio TA (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci USA 106:9362–9367

    PubMed  CAS  Google Scholar 

  • Hirschenhauser K, Oliveira RF (2006) Social modulation of androgens in male vertebrates: meta-analyses of the challenge hypothesis. Anim Behav 71:265–277

    Google Scholar 

  • Hohenlohe PA, Bassham S, Etter PD, Stiffler N, Johnson EA, Cresko WA (2010) Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet 6:e1000862

    PubMed  Google Scholar 

  • Insel TR, Young LJ (2000) Neuropeptides and the evolution of social behavior. Curr Opin Neurobiol 10:784–789

    PubMed  CAS  Google Scholar 

  • Ishikawa A, Kitano J (2012) Ecological genetics of thyroid hormone physiology in humans and animals. In: Agrawal NK (ed) Thyroid hormone. InTech, Rijeka, pp 37–50

    Google Scholar 

  • Ishikawa A, Ogawa K, Gotoh H, Walsh TK, Tagu D, Brisson JA, Rispe C, Jaubert-Possamai S, Kanbe T, Shiotsuki T, Miura T (2012) Juvenile hormone titer and gene expression during the change of reproductive modes in the pea aphid. Insect Mol Biol 12:49–60

    Google Scholar 

  • Jarvis JP, Scheinfeldt LB, Soi S, Lambert C, Omberg L, Ferwerda B, Froment A, Bodo J-M, Beggs W, Hoffman G, Mezey J, Tishkoff SA (2012) Patterns of ancestry, signatures of natural selection, and genetic association with stature in Western African pygmies. PLoS Genet 8:e1002641

    PubMed  CAS  Google Scholar 

  • Johansson ML (2009) Next generation sequencing in nonmodel organisms: has the future arrived? J Hered 100:807–807

    PubMed  CAS  Google Scholar 

  • Johnson KM, Lema SC (2011) Tissue-specific thyroid hormone regulation of gene transcripts encoding iodothyronine deiodinases and thyroid hormone receptors in striped parrotfish (Scarus iseri). Gen Comp Endocrinol 172:505–517

    PubMed  CAS  Google Scholar 

  • Jones FC, Chan YF, Schmutz J, Grimwood J, Brady SD, Southwick AM, Absher DM, Myers RM, Reimchen TE, Deagle BE, Schluter D, Kingsley DM (2012a) A genome-wide SNP genotyping array reveals patterns of global and repeated species-pair divergence in sticklebacks. Curr Biol 22:83–90

    PubMed  CAS  Google Scholar 

  • Jones FC, Grabherr MG, Chan YF, Russell P, Mauceli E, Johnson J, Swofford R, Pirun M, Zody MC, White S, Birney E, Searle S, Schmutz J, Grimwood J, Dickson MC, Myers RM, Miller CT, Summers BR, Knecht AK, Brady SD, Zhang H, Pollen AA, Howes T, Amemiya C, Lander ES, Di Palma F, Lindblad-Toh K, Kingsley DM (2012b) The genomic basis of adaptive evolution in threespine sticklebacks. Nature 484:55–61

    PubMed  CAS  Google Scholar 

  • Ketterson ED, Nolan VJ (1992) Hormones and life histories: an integrative approach. Am Nat 140:S33–S62

    PubMed  Google Scholar 

  • Ketterson ED, Nolan V Jr (1999) Adaptation, exaptation, and constraint: a hormonal perspective. Am Nat 154:S4–S24

    Google Scholar 

  • Ketterson ED, Nolan VJ, Cawthorn MJ, Parker PG, Ziegenfus C (1996) Phenotypic engineering: using hormones to explore the mechanistic and functional bases of phenotypic variation in nature. Ibis 138:70–86

    Google Scholar 

  • Ketterson ED, Atwell JW, McGlothlin JW (2009) Phenotypic integration and independence: hormones, performance, and response to environmental change. Integr Comp Biol 49:365–379

    PubMed  CAS  Google Scholar 

  • Kijas JW, Lenstra JA, Hayes B, Boitard S, Porto Neto LR, San Cristobal M, Servin B, McCulloch R, Whan V, Gietzen K, Paiva S, Barendse W, Ciani E, Raadsma H, McEwan J, Dalrymple B, Members ISGC (2012) Genome-wide analysis of the world’s sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biol 10:e1001258

    PubMed  CAS  Google Scholar 

  • Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139

    PubMed  CAS  Google Scholar 

  • King EG, Merkes CM, McNeil CL, Hoofer SR, Sen S, Broman KW, Long AD, Macdonald SJ (2012) Genetic dissection of a model complex trait using the Drosophila synthetic population resource. Genome Res 22:1558–1566

    PubMed  CAS  Google Scholar 

  • Kitano J, Lema S (2013) Divergence in thyroid hormone levels between juveniles of marine and stream ecotypes of the threespine stickleback (Gasterosteus aculeatus). Curr Zool 15:143–153

    Google Scholar 

  • Kitano J, Ross JA, Mori S, Kume M, Jones FC, Chan YF, Absher DM, Grimwood J, Schmutz J, Myers RM, Kingsley DM, Peichel CL (2009) A role for a neo-sex chromosome in stickleback speciation. Nature 461:1079–1083

    PubMed  CAS  Google Scholar 

  • Kitano J, Lema SC, Luckenbach JA, Mori S, Kawagishi Y, Kusakabe M, Swanson P, Peichel CL (2010) Adaptive divergence in the thyroid hormone signaling pathway in the stickleback radiation. Curr Biol 20:2124–2130

    PubMed  CAS  Google Scholar 

  • Kitano J, Kawagishi Y, Mori S, Peichel CL, Makino T, Kawata M, Kusakabe M (2011) Divergence in sex steroid hormone signaling between sympatric species of Japanese threespine stickleback. PLoS ONE 6:e29253

    PubMed  CAS  Google Scholar 

  • Kitano J, Yoshida K, Suzuki Y (2013) RNA sequencing reveals small RNAs differentially expressed between incipient Japanese threespine sticklebacks. BMC Genomics 14:214

    PubMed  CAS  Google Scholar 

  • Kuokkanen S, Chen B, Ojalvo L, Benard L, Santoro N, Pollard JW (2010) Genomic profiling of microRNAs and messenger RNAs reveals hormonal regulation in microRNA expression in human endometrium. Biol Reprod 82:791–801

    PubMed  CAS  Google Scholar 

  • Lande R (1979) Quantitative genetic analysis of multivariate evolution, applied to brain: body size allometry. Evolution 33:402–416

    Google Scholar 

  • Landry CR, Wittkopp PJ, Taubes CH, Ranz JM, Clark AG, Hartl DL (2005) Compensatory cis-trans evolution and the dysregulation of gene expression in interspecific hybrids of Drosophila. Genetics 171:1813–1822

    PubMed  CAS  Google Scholar 

  • Leduc MS, Hageman RS, Meng Q, Verdugo RA, Tsaih S-W, Churchill GA, Paigen B, Yuan R (2010) Identification of genetic determinants of IGF-1 levels and longevity among mouse inbred strains. Aging Cell 9:823–836

    PubMed  CAS  Google Scholar 

  • Lei Y, Guo X, Liu Y, Cao Y, Deng Y, Chen X, Cheng CH, Dawid IB, Chen Y, Zhao H (2012) Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs). Proc Natl Acad Sci USA 109:17484–17489

    PubMed  CAS  Google Scholar 

  • Lema S (2008) The phenotypic plasticity of Death Valley’s pupfishes. Am Sci 96:28–36

    Google Scholar 

  • Lema SC, Nevitt GA (2006) Testing an ecophysiological mechanism of morphological plasticity in pupfish and its relevance to conservation efforts for endangered Devils Hole pupfish. J Exp Biol 209:3499–3509

    PubMed  Google Scholar 

  • Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, Yang B (2011) TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res 39:359–372

    PubMed  Google Scholar 

  • Lim MM, Wang Z, Olazabal DE, Ren X, Terwilliger EF, Young LJ (2004) Enhanced partner preference in a promiscuous species by manipulating the expression of a single gene. Nature 429:754–757

    PubMed  CAS  Google Scholar 

  • Liu JC, Makova KD, Adkins RM, Gibson S, Li WH (2001) Episodic evolution of growth hormone in primates and emergence of the species specificity of human growth hormone receptor. Mol Biol Evol 18:945–953

    PubMed  CAS  Google Scholar 

  • Loh Y-HE, Yi SV, Streelman JT (2011) Evolution of microRNAs and the diversification of species. Genome Biol Evol 3:55–65

    PubMed  CAS  Google Scholar 

  • López Herráez D, Bauchet M, Tang K, Theunert C, Pugach I, Li J, Nandineni MR, Gross A, Scholz M, Stoneking M (2010) Genetic variation and recent positive selection in worldwide human populations: evidence from nearly 1 million SNPs. PLoS One 4:e7888

    Google Scholar 

  • Lu Y, Rausher MD (2003) Evolutionary rate variation in anthocyanin pathway genes. Mol Biol Evol 20:1844–1853

    PubMed  CAS  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, Sunderland

    Google Scholar 

  • Ma S, Zhang S, Wang F, Liu Y, Liu Y, Xu H, Liu C, Lin Y, Zhao P, Xia Q (2012) Highly efficient and specific genome editing in silkworm using custom TALENs. PLoS One 7:e45035

    PubMed  CAS  Google Scholar 

  • Majewski J, Pastinen T (2011) The study of eQTL variations by RNA-seq: from SNPs to phenotypes. Trends Genet 27:72–79

    PubMed  CAS  Google Scholar 

  • Manceau M, Domingues VS, Linnen CR, Rosenblum EB, Hoekstra HE (2010) Convergence in pigmentation at multiple levels: mutations, genes and function. Philos Trans R Soc B 365:2439–2450

    CAS  Google Scholar 

  • Mank JE (2007) The evolution of sexually selected traits and antagonistic androgen expression in Actinopterygiian fishes. Am Nat 169:142–149

    PubMed  Google Scholar 

  • Martin D, Maestro O, Cruz J, Mane-Padros D, Belles X (2006) RNAi studies reveal a conserved role for RXR in molting in the cockroach Blattella germanica. J Insect Physiol 52:410–416

    PubMed  CAS  Google Scholar 

  • McGlothlin JW, Ketterson ED (2008) Hormone-mediated suites as adaptations and evolutionary constraints. Philos Trans R Soc B 363:1611–1620

    Google Scholar 

  • McGlothlin JW, Neudorf DL, Casto JM, Nolan JV, Ketterson ED (2004) Elevated testosterone reduces choosiness in female dark-eyed juncos (Junco hyemalis): evidence for a hormonal constraint on sexual selection? Proc R Soc B 271:1377–1384

    PubMed  CAS  Google Scholar 

  • McLean CY, Reno PL, Pollen AA, Bassan AI, Capellini TD, Guenther C, Indjeian VB, Lim X, Menke DB, Schaar BT, Wenger AM, Bejerano G, Kingsley DM (2011) Human-specific loss of regulatory DNA and the evolution of human-specific traits. Nature 471:216–219

    PubMed  CAS  Google Scholar 

  • McManus CJ, Coolon JD, Duff MO, Eipper-Mains J, Graveley BR, Wittkopp PJ (2010) Regulatory divergence in Drosophila revealed by mRNA-seq. Genome Res 20:816–825

    PubMed  CAS  Google Scholar 

  • Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA (2007) Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res 17:240–248

    PubMed  CAS  Google Scholar 

  • Minakuchi C, Namiki T, Yoshiyama M, Shinoda T (2008) RNAi-mediated knockdown of juvenile hormone acid O-methyltransferase gene causes precocious metamorphosis in the red flour beetle Tribolium castaneum. FEBS J 275:2919–2931

    PubMed  CAS  Google Scholar 

  • Moran NA (1992) The evolution of aphid life cycles. Annu Rev Ecol Syst 37:321–348

    Google Scholar 

  • Moss T, Leblanc B (2009) DNA-protein interactions: principles and protocols. Humana Press, New York

    Google Scholar 

  • Nakao N, Ono H, Yamamura T, Anraku T, Takagi T, Higashi K, Yasuo S, Katou Y, Kageyama S, Uno Y, Kasukawa T, Iigo M, Sharp PJ, Iwasawa A, Suzuki Y, Sugano S, Niimi T, Mizutani M, Namikawa T, Ebihara S, Ueda HR, Yoshimura T (2008) Thyrotrophin in the pars tuberalis triggers photoperiodic response. Nature 452:317–322

    PubMed  CAS  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, Oxford

    Google Scholar 

  • Nielsen R (2005) Molecular signatures of natural selection. Annu Rev Genet 39:197–218

    PubMed  CAS  Google Scholar 

  • Nijhout HF (2003) Development and evolution of adaptive polyphenism. Evol Dev 5:9–18

    PubMed  Google Scholar 

  • Niwa M, Jaaro-Peled H, Tankou S, Seshadri S, Hikida T, Matsumoto Y, Cascella NG, Kano S-i, Ozaki N, Nabeshima T, Sawa A (2013) Adolescent stress-induced epigenetic control of dopaminergic neurons via glucocorticoids. Science 339:335–339

    PubMed  CAS  Google Scholar 

  • Nosil P (2012) Ecological speciation. Oxford University Press, New York

    Google Scholar 

  • Ochiai H, Sakamoto N, Fujita K, Nishikawa M, Suzuki K-i, Matsuura S, Miyamoto T, Sakuma T, Shibata T, Yamamoto T (2012) Zinc-finger nuclease-mediated targeted insertion of reporter genes for quantitative imaging of gene expression in sea urchin embryos. Proc Natl Acad Sci USA 109:10915–10920

    PubMed  CAS  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, New York

    Google Scholar 

  • Ohta T (1993) Pattern of nucleotide substitutions in growth hormone-prolactin gene family: a paradigm for evolution by gene duplication. Genetics 134:1271–1276

    PubMed  CAS  Google Scholar 

  • Oleksyk TK, Smith MW, O’Brien SJ (2010) Genome-wide scans for footprints of natural selection. Philos Trans R Soc B 365:185–205

    CAS  Google Scholar 

  • Olsen KM, Womack A, Garrett AR, Suddith JI, Purugganan MD (2002) Contrasting evolutionary forces in the Arabidopsis thaliana floral developmental pathway. Genetics 160:1641–1650

    PubMed  CAS  Google Scholar 

  • Oostra V, de Jong MA, Invergo BM, Kesbeke F, Wende F, Brakefield PM, Zwaan BJ (2011) Translating environmental gradients into discontinuous reaction norms via hormone signalling in a polyphenic butterfly. Proc R Soc B 278:789–797

    PubMed  CAS  Google Scholar 

  • Pamuru RR, Rosen O, Manor R, Chung JS, Zmora N, Glazer L, Aflalo ED, Weil S, Tamone L, Sagi A (2012) Stimulation of molt by RNA interference of the molt-inhibiting hormone in the crayfish Cherax quadricarinatus. Gen Comp Endocrinol 178:227–236

    PubMed  CAS  Google Scholar 

  • Price TD, Qvarnström A, Irwin DE (2003) The role of phenotypic plasticity in driving genetic evolution. Proc R Soc B 270:1433–1440

    PubMed  Google Scholar 

  • Ramirez CL, Foley JE, Wright DA, Muller-Lerch F, Rahman SH, Cornu TI, Winfrey RJ, Sander JD, Fu F, Townsend JA, Cathomen T, Voytas DF, Joung JK (2008) Unexpected failure rates for modular assembly of engineered zinc fingers. Nat Methods 5:374–375

    PubMed  CAS  Google Scholar 

  • Ramsay H, Rieseberg LH, Ritland K (2009) The correlation of evolutionary rate with pathway position in plant terpenoid biosynthesis. Mol Biol Evol 26:1045–1053

    PubMed  CAS  Google Scholar 

  • Ramsey ME, Wong RY, Cummings ME (2011) Estradiol, reproductive cycle and preference behavior in a northern swordtail. Horm Behav 170:381–390

    CAS  Google Scholar 

  • Rausher MD, Miller RE, Tiffin P (1999) Patterns of evolutionary rate variation among genes of the anthocyanin biosynthetic pathway. Mol Biol Evol 16:266–274

    PubMed  CAS  Google Scholar 

  • Rice WR (1984) Sex chromosomes and the evolution of sexual dimorphism. Evolution 38:735–742

    Google Scholar 

  • Richter-Boix A, Tejedo M, Rezende EL (2011) Evolution and plasticity of anuran larval development in response to desiccation. A comparative analysis. Ecol Evol 1:15–25

    PubMed  Google Scholar 

  • Roberts ML, Buchanan KL, Evans MR (2004) Testing the immunocompetence handicap hypothesis: a review of the evidence. Anim Behav 68:227–239

    Google Scholar 

  • Rosen CJ, Churchill GA, Donahue LR, Shultz KL, Burgess JK, Powell DR, Beamer WG (2000) Mapping quantitative trait loci for serum insulin-like growth factor-1 levels in mice. Bone 27:521–528

    PubMed  CAS  Google Scholar 

  • Ross AW, Helfer G, Russell L, Darras VM, Morgan PJ (2011) Thyroid hormone signalling genes are regulated by photoperiod in the hypothalamus of F344 rats. PLoS ONE 6:e21351

    PubMed  CAS  Google Scholar 

  • Rubin CJ, Zody MC, Eriksson J, Meadows JR, Sherwood E, Webster MT, Jiang L, Ingman M, Sharpe T, Ka S, Hallböök F, Besnier F, Carlborg O, Bed’hom B, Tixier-Boichard M, Jensen P, Siegel P, Lindblad-Toh K, Andersson L (2010) Whole-genome resequencing reveals loci under selection during chicken domestication. Nature 464:587–591

    PubMed  CAS  Google Scholar 

  • Sabeti PC, Schaffner SF, Fry B, Lohmueller J, Varilly P, Shamovsky O, Palma A, Mikkelsen TS, Altshuler D, Lander ES (2006) Positive natural selection in the human lineage. Science 312:1614–1620

    PubMed  CAS  Google Scholar 

  • Sasaki S, Lesoon-Wood LA, Dey A, Kuwata T, Weintraub BD, Humphrey G, Yang W-M, Seto E, Yen PM, Howard BH, Ozato K (1999) Ligand-induced recruitment of a histone deacetylase in the negative-feedback regulation of the thyrotropin β gene. EMBO J 18:5389–5398

    PubMed  CAS  Google Scholar 

  • Sauvage C, Vagner M, Derôme N, Audet C, Bernatchez L (2012a) Coding gene SNP mapping reveals QTL linked to growth and stress response in brook charr (Salvelinus fontinalis). G3 2:707–720

    PubMed  CAS  Google Scholar 

  • Sauvage C, Vagner M, Derôme N, Audet C, Bernatchez L (2012b) Coding gene single nucleotide polymorphism mapping and quantitative trait loci detection for physiological reproductive traits in brook charr, Salvelinus fontinalis. G3 2:379–392

    PubMed  CAS  Google Scholar 

  • Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, New York

    Google Scholar 

  • Schmitz RJ, Schultz MD, Urich MA, Nery JR, Pelizzola M, Libiger O, Alix A, McCosh RB, Chen H, Schork NJ, Ecker JR (2013) Patterns of population epigenomic diversity. Nature 495:193–198

    PubMed  CAS  Google Scholar 

  • Sexton OJ, Bizer JR (1978) Life history patterns of Ambystoma tigrinum in Montane Colorado. Am Midl Nat 99:101–118

    Google Scholar 

  • Shaffer HB (1993) Phylogenetics of model organisms: the laboratory axolotl, Ambystoma mexicanum. Syst Biol 42:508–522

    Google Scholar 

  • Sim C, Denlinger DL (2008) Insulin signaling and FOXO regulate the overwintering diapause of the mosquito Culex pipiens. Proc Natl Acad Sci USA 105:6777–6781

    PubMed  CAS  Google Scholar 

  • Soldin SJ, Soldin OP (2009) Steroid hormone analysis by tandem mass spectrometry. Clin Chem 55:1061–1066

    PubMed  CAS  Google Scholar 

  • Soldin OP, Soldin SJ (2011) Thyroid hormone testing by tandem mass spectrometry. Clin Biochem 44:89–94

    PubMed  CAS  Google Scholar 

  • Soma KK, Bindra RK, Gee J, Wingfield JC, Schlinger BA (1999) Androgen-metabolizing enzymes show region-specific changes across the breeding season in the brain of a wild songbird. J Neurobiol 41:176–188

    PubMed  CAS  Google Scholar 

  • Souza SC, Frick GP, Wang X, Kopchick JJ, Lobo RB, Goodman HM (1995) A single arginine residue determines species specificity of the human growth hormone receptor. Proc Natl Acad Sci USA 92: 959–963

    PubMed  CAS  Google Scholar 

  • Stapley J, Reger J, Feulner PGD, Smadja C, Galindo J, Ekblom R, Bennison C, Ball AD, Beckerman AP, Slate J (2010) Adaptation genomics: the next generation. Trends Ecol Evol 25:705–712

    PubMed  Google Scholar 

  • Tomikawa J, Uenoyama Y, Ozawa M, Fukanuma T, Takase K, Goto T, Abe H, Ieda N, Minabe S, Deura C, Inoue N, Sanbo M, Tomita K, Hirabayashi M, Tanaka S, Imamura T, Okamura H, Maeda K, Tsukamura H (2012) Epigenetic regulation of Kiss1 gene expression mediating estrogen-positive feedback action in the mouse brain. Proc Natl Acad Sci USA 109:E1294–E1301

    PubMed  CAS  Google Scholar 

  • Tost J (2009) DNA methylation: methods and protocols. Humana Press, New York

    Google Scholar 

  • van Doorn GS, Kirkpatrick M (2007) Turnover of sex chromosomes induced by sexual conflict. Nature 449:909–912

    PubMed  Google Scholar 

  • Vogel C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 13:227–232

    PubMed  CAS  Google Scholar 

  • Voss SR, Kump DK, Walker JA, Shaffer HB, Voss GJ (2012) Thyroid hormone responsive QTL and the evolution of paedomorphic salamanders. Heredity 109:293–298

    PubMed  CAS  Google Scholar 

  • Waddington CH (1961) Genetic assimilation. Adv Genet 10:257–293

    PubMed  CAS  Google Scholar 

  • Wallis M (2000) Episodic evolution of protein hormones: molecular evolution of pituitary prolactin. J Mol Evol 50:465–473

    PubMed  CAS  Google Scholar 

  • Wallis OC, Mac-Kwashie A, Makri G, Wallis M (2005) Molecular evolution of prolactin in primates. J Mol Evol 60:606–614

    PubMed  CAS  Google Scholar 

  • Wang D, Xia X, Weiss RE, Refetoff S, Yen PM (2010) Distinct and histone-specific modifications mediate positive versus negative transcriptional regulation of TSHβ promoter. PLoS ONE 5:e9853

    PubMed  Google Scholar 

  • Wark AR, Mills MG, Dang L-H, Chan YF, Jones FC, Brady SD, Absher DM, Grimwood J, Schmutz J, Myers RM, Kingsley DM, Peichel CL (2012) Genetic architecture of variation in the lateral line sensory system of threespine sticklebacks. G3 2:1047–1056

    PubMed  Google Scholar 

  • Watanabe T, Ochiai H, Sakuma T, Horch HW, Hamaguchi N, Nakamura T, Bando T, Ohuchi H, Yamamoto T, Noji S, Mito T (2012) Non-transgenic genome modifications in a hemimetabolous insect using zinc-finger and TAL effector nucleases. Nat Commun 3:1017

    PubMed  Google Scholar 

  • Weaver ICG, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR, Dymov S, Szyf M, Meaney MJ (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7:847–854

    PubMed  CAS  Google Scholar 

  • Weltring A, Schaebs FS, Perry SE, Deschner T (2012) Simultaneous measurement of endogenous steroid hormones and their metabolites with LC–MS/MS in faeces of a New World primate species, Cebus capucinus. Physiol Behav 105:510–521

    PubMed  CAS  Google Scholar 

  • Werner EE (1986) Amphibian metamorphosis: growth rate, predation risk, and the optimal size at transformation. Am Nat 128:319–341

    Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Williams TM, Carroll SB (2009) Genetic and molecular insights into the development and evolution of sexual dimorphism. Nat Rev Genet 10:797–804

    PubMed  CAS  Google Scholar 

  • Wingfield JC, Hegner RE, Dufty AM, Ball GF (1990) The ‘challenge hypothesis’: theoretical implications for patterns of testosterone secretion, mating systems and breeding strategies. Am Nat 136:829–846

    Google Scholar 

  • Wittkopp PJ, Haerum BK, Clark AG (2004) Evolutionary changes in cis and trans gene regulation. Nature 430:85–88

    PubMed  CAS  Google Scholar 

  • Wu X, Chi X, Wang P, Zheng D, Ding R, Li Y (2010) The evolutionary rate variation among genes of HOG-signaling pathway in yeast genomes. Biol Direct 5:46

    PubMed  Google Scholar 

  • Yang Y-h, Zhang F-m, Ge S (2009) Evolutionary rate patterns of the Gibberellin pathway genes. BMC Evol Biol 9:206

    PubMed  Google Scholar 

  • Young LJ, Nilsen R, Waymire KG, MacGregor GR, Insel TR (1999) Increased affiliative response to vasopressin in mice expressing the V1a receptor from a monogamous vole. Nature 400:766–768

    PubMed  CAS  Google Scholar 

  • Zera AJ, Harshman LG (2001) The physiology of life history trade-offs in animals. Annu Rev Ecol Syst 32:95–126

    Google Scholar 

  • Zhang J (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18:292–298

    Google Scholar 

  • Zhang X, Ho S-M (2011) Epigenetics meets endocrinology. J Mol Endocrinol 46:R11–R32

    PubMed  CAS  Google Scholar 

  • Zhou X, Tarver MR, Scharf ME (2007) Hexamerin-based regulation of juvenile hormone-dependent gene expression underlies phenotypic plasticity in a social insect. Development 134:601–610

    PubMed  CAS  Google Scholar 

  • Zijlstra W, Steigenga MJ, Koch PB, Zwaan BJ, Brakefield PM (2004) Butterfly selected lines explore the hormonal basis of interactions between life histories and morphology. Am Nat 163:E76–E87

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Kitano .

Editor information

Editors and Affiliations

Glossary

Endocrine signaling pathway

The collection of physiologically-linked hormones, binding proteins, membrane transporters, conversion enzymes and receptors that jointly mediate the effects of a hormone signal on a target cell

Endocrine system

The system of ductless glands or organs that secrete hormone molecules into systemic circulation

Epigenetics

There exists several definitions of epigenetics. Here, we define epigenetic modification as mitotically heritable functional modification of gene expression, including DNA methylation and histone modification, which can remain through cell divisions for the reminder of the cell’s life. Some of them are meiotically heritable and show transgenerational inheritance

Genetic assimilation

Environmentally induced phenotypic variation that becomes constitutively produced without environmental cues

Genome-wide association studies (GWAS)

Identification of common genetic variants associated with a particular phenotypic trait, such as disease, by genotyping many individuals

Hormone

Chemical messenger produced by specialized populations of cells located in an endocrine organ, released into systemic circulation, and carried throughout the organism’s body. Examples of hormones include polypeptides (e.g., growth hormone [GH], arginine vasotocin [AVT], gonadotropin-releasing hormone [GnRH]), modified amino acids (e.g., thyroid hormones, epinephrine, serotonin), and cholesterol-derived steroids (e.g., androgens, estrogens, glucocorticoids)

Hormone pleiotropy

The phenomenon in which a single hormone affects two or more different phenotypic traits

Phenotypic plasticity

The ability of a single genotype to produce different phenotypes in response to environmental stimuli

Polyphenism

The ability of a single genotype to produce different discrete phenotypes in response to environmental stimuli

Quantitative trait loci (QTL) mapping

Identifying genomic regions that explain substantial variation of a particular quantitative trait in experimental crosses

Small RNA

Non-coding RNAs, ranging from 20 to 30 nucleotides in length, which contribute to the regulation of gene expression

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kitano, J., Ishikawa, A., Lema, S.C. (2014). Integrated Genomics Approaches in Evolutionary and Ecological Endocrinology. In: Landry, C., Aubin-Horth, N. (eds) Ecological Genomics. Advances in Experimental Medicine and Biology, vol 781. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7347-9_15

Download citation

Publish with us

Policies and ethics