Advertisement

Climate in Asia and the Pacific: Climate Variability and Change

  • Michael James SalingerEmail author
  • Madan Lall ShresthaEmail author
  • Ailikun
  • Wenjie Dong
  • John L. McGregor
  • Shuyu Wang
Chapter
Part of the Advances in Global Change Research book series (AGLO, volume 56)

Abstract

The geographic extent of Asia and the Pacific leads to great variation in the climate of the region. Major influences on global climate arise from the scale and elevation of the Himalayan Tibetan Plateau (HTP), and from the air-sea interactions in the Pacific associated with the El Niño–Southern Oscillation (ENSO). The monsoon has a profound effect on the climate of Asia, with its strong seasonal cycle. Variability is also caused by ENSO, the Indian Ocean Dipole (IOD) and Pacific Decadal Oscillation (PDO). ENSO is the principal source of inter-annual global climate variability. ENSO has significant climate and societal impacts on both regional and global scales. The climate effects of ENSO are modulated on decadal time scales by the PDO. IOD affects the climate in the Indian Ocean and Australasia. Climate observations show significant warming trends in temperature across Asia and the Pacific; not only is there an increase in mean temperature, but there is more warming in North Asia and less in the Pacific during the twentieth century. Observed trends in precipitation are more variable, with some evidence of increasing intensity of storms. Glacier mass balance studies show dramatic decline in ice mass in the Himalayas and New Zealand, with monitored ice mass losses of 0.3–0.5 km2/year, in the last three decades. Temperature extremes have changed region wide: cool nights, cold days have very significantly decreased universally, and the frequency of hot days has increased. Projections of future climate change for the region suggest longer summer heat waves in South and East Asia and Australia, and increases in precipitation in several areas. Regional downscaling techniques are used to project future climate: warming is projected to be largest in high latitude (Northern Asia, Central Asia) and high altitude (Tibetan Plateau) regions; with a suppression of the south Asian summer monsoon, along with a delay of monsoon onset and increase of monsoon break periods. Monsoon precipitation is projected to increase over South Asia.

Keywords

Monsoon Asia Pacific Climate variability trends Climate change trends 

References

  1. Ashfaq, M., Shi, Y., Tung, W. W., Trapp, R. J., Gao, X., Pal, J. S., & Diffenbaugh, N. S. (2009). Suppression of south Asian summer monsoon precipitation in the 21st century. Geophysical Research Letters, 36, L01704. doi: 10.1029/2008GL036500.CrossRefGoogle Scholar
  2. Australian Bureau of Meteorology & CSIRO. (2011). Climate change in the Pacific: Scientific assessment and new research. Volume 1: Regional overview. Volume 2: Country reports.Google Scholar
  3. Baidya, S. K., Shrestha, M. L., & Sheikh, M. M. (2008). Trend in daily climatic extremes of temperature and precipitation in Nepal. Journal of Hydrology and Meteorology, 5(1), 38–51. SOHAM-Nepal.Google Scholar
  4. Bohannon, J. (2008). The big thaw reaches Mongolia’s pristine north. Science, 319, 567–568.CrossRefGoogle Scholar
  5. Burgman, R. J., Clement, A. C., Mitas, C. M., Chen, J., & Esslinger, K. (2008). Evidence for atmospheric variability over the Pacific on decadal timescales. Geophysical Research Letters, 35, L01704. doi: 10.1029/2007GL031830.CrossRefGoogle Scholar
  6. Caian, M., & Geleyn, J. -F. (1997). Some limits to the variable-mesh solution and comparison with the nested-LAM solution. Quarterly Journal of the Royal Meteorological Society, 123, 743–766.CrossRefGoogle Scholar
  7. Chinn, T., Fitzharris, B. B., Willsman, A., & Salinger, J. (2012). Annual ice volume changes 1976–2008 for the New Zealand Southern Alps. Global and Planetary Change, 92. doi: 10.1016/j.gloplacha.2012.03.002.
  8. Christensen, J. L., Hewitson, B., Busuioc, A., Chen, A., Gao, X., Held, I., … & Kumar K. (2007). Regional climate projections. Climate change 2007: The scientific basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In S. Solomon, D. Qin, M. Manning, Z. Chen, K. Averyt, M. Marquis, K. B. M. Tignor & H. L. Miller (Eds.) (pp. 847–940). Cambridge: Cambridge University Press.Google Scholar
  9. Clark, C. O., Webster, P. J., & Cole, J. E. (2003). Interdecadal variability of the relationship between the Indian Ocean zonal mode and East African coastal rainfall anomalies. Journal of Climate, 16, 548–554.CrossRefGoogle Scholar
  10. Cogley, J. G., Kargel, J. S., Kaser, G., & Van der Veen, C. J. (2010). Tracking the source of glacier misinformation. Science, 327, 522.CrossRefGoogle Scholar
  11. Corney, S. P., Katzfey, J. J., McGregor, J. L., Grose, M. R., Bennett, J., White, C. J., … & Bindoff, N. L. (2010). Climate futures for Tasmania: Modelling technical report. Hobart: Antarctic Climate and Ecosystems Cooperative Research Centre.Google Scholar
  12. Cruz, R. V., Harasawa, H., Lal, M., Wu, S., Anokhin, Y., Punsalmaa, B., … & Huu Ninh, N. (2007). Asia. Climate change 2007: Impacts, adaptation and vulnerability. Contribution of working group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden, & C.E. Hanson (Eds.) (pp. 469–506). Cambridge: Cambridge University Press.Google Scholar
  13. Déqué, M., & Piedlievre, J. P. (1995). High resolution climate simulation over Europe. Climate Dynamics, 11, 321–339.CrossRefGoogle Scholar
  14. Deser, C., Phillips, A. S., & Hurrell, J. W. (2004). Pacific interdecadal climate variability: Linkages between the tropics and the north Pacific during boreal winter since 1900. Journal of Climate, 17, 3109–3124.CrossRefGoogle Scholar
  15. Evans, J., McGregor, J. L., & McGuffie, K. (2012). Future regional climates. In H. Henderson-Sellers, & K. McGuffie (Eds.), Future of the World’s climate. Elsevier, 223–252.Google Scholar
  16. Feng, J., & Fu, C. (2006). Inter-comparison of 10-year precipitation simulated by several RCMs for Asia. Advances in Atmospheric Sciences, 23(4), 531–542.CrossRefGoogle Scholar
  17. Feng, R., et al. (2011a). Regime change of the boreal summer Hadley circulation and its connection with the tropical SST. Journal of Climate, 24, 3867–3877. doi: 10.1175/2011JCLI3959.1.CrossRefGoogle Scholar
  18. Feng, J. M., Wang, Y. L., & Fu, C. (2011b). Simulation of extreme climate events over China with different regional climate models. Atmospheric and Oceanic Science Letters, 4(1), 47–56.Google Scholar
  19. Feng, J., Lee, D. K., Fu, C., Tang, J., Sato, Y., Kato, H., … & Mabuchi, K. (2011c). Comparison of four ensemble methods combining regional climate simulations over Asia. Meteorology and Atmospheric Physics, 11(1–2), 41–53. doi: 10.1007/s00703-010-0115-7.
  20. Folland, C. K., Renwick, J. A., Salinger, M. J., & Mullan, A. B. (2002). Relative influences of Zone. Geophysical Research Letters, 29, 1643. doi: 10.1029/2001GL014201.CrossRefGoogle Scholar
  21. Fox-Rabinovitz, M., Côté, J., Dugas, B., Déqué, M., & McGregor, J. L. (2006). Variable resolution general circulation models: Stretched-grid model intercomparison project (SGMIP). Journal of Geophysical Research, 111, D16104. doi: 10.1029/2005JD006520.CrossRefGoogle Scholar
  22. Frost, A. J., Charles, S. P., Timbal, B., Chiew, F. H. S., Mehrotra, R., Nguyen, K. C., … & Kent, D. M. (2011). A comparison of multi-site daily rainfall downscaling techniques under Australian conditions. Journal of Hydrology, 408(1–2), 1–18. doi: 10.1016/j.jhydrol.2011.06.021.
  23. Fu, C., Wang, S., Xiong, Z., Gutowski, W. J., Lee, D. K., McGregor, J. L., … & Suh, M.S. (2005). Regional climate model intercomparison project for Asia. Bulletin of the American Meteorological Society, 86, 257–266.Google Scholar
  24. Fujii, Y., Nakawo, M., & Shrestha, M. L. (1976). Mass balance studies of the glaciers in hidden valley, Mukut Himal. Journal of the Japanese Society of Snow and Ice, 38, 17–21.CrossRefGoogle Scholar
  25. Fujii, Y., Fujita, K., & Paudyal, P. (1996). Glaciological research in hidden valley, Mukut Himal in 1994. Bulletin of Glacier Research, 14, 7–11.Google Scholar
  26. Fujita, K., & Nuimura, T. (2011). Spatially heterogeneous wastage of Himalayan glaciers. PNAS, 108(34), 14011–14014.CrossRefGoogle Scholar
  27. Gadgil, S. (2003). The Indian monsoon and its variability. Annual Review of Earth and Planetary Sciences, 31, 429–467.CrossRefGoogle Scholar
  28. Giorgi, F., & Bates, G. T. (1989). On the climatological skill of a regional model over complex terrain. Monthly Weather Review, 117, 2325–2347.CrossRefGoogle Scholar
  29. Giorgi, F., & Mearns, L. O. (1991). Approaches to the simulation of regional climate change: A review. Reviews of Geophysics, 29, 191–216.CrossRefGoogle Scholar
  30. Giorgi, F., Jones, C., & Asrar, G. R. (2009). Addressing climate information needs at the regional level: The CORDEX framework. WMO Bulletin, 58(3), 175–183.Google Scholar
  31. Goswami, B. N., Wu, G., & Yasunari, T. (2006a). The annual cycle, intraseasonal oscillations, and roadblock to seasonal predictability of the Asian summer monsoon. Journal of Climate, 19, 5078–5099. doi: 10.1175/JCLI3901.1.CrossRefGoogle Scholar
  32. Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanan, M. S., & Xavier, P. K. (2006b). Increasing trend of extreme rain events over India in a warming environment. Science, 314(5804), 1442–1445. doi: 10.1126/science.1132027.CrossRefGoogle Scholar
  33. Goswami, B. N., Kulkarni, J. R., Mujumdar, V. R., & Chattopadhyay, R. (2010). On factors responsible for recent secular trend in the onset phase of monsoon intraseasonal oscillations. International Journal of Climatology, 30, 2240–2246. doi: 10.1002/joc.2041.CrossRefGoogle Scholar
  34. Grabowski, W. W. (2001). Coupling cloud processes with the large-scale dynamics using the Cloud-Resolving Convection Parameterization (CRCP). Journal of the Atmospheric Sciences, 58, 978–997.CrossRefGoogle Scholar
  35. Higuchi, K., Iozawa, T., & Higuchi, H. (1976). Flight observations for the inventory of glaciers in the Nepal Himalaya. Journal of the Japanese Society of Snow and Ice, 38, 6–9.CrossRefGoogle Scholar
  36. Iizumi, T., Nishimori, M., Dairaku, K., Adachi, S. A., & Yokozawa, M. (2011). Evaluation and intercomparison of downscaled daily precipitation indices over Japan in present-day climate: Strengths and weaknesses of dynamical and bias correction-type statistical downscaling methods. Journal of Geophysical Research, 116, D01111. doi: 10.1029/2010JD014513.CrossRefGoogle Scholar
  37. Immerzeel, W. W., van Beek, L. P. H., & Bierkens, M. F. P. (2010). Climate change will affect the Asian water towers. Science, 328, 1382–1385.CrossRefGoogle Scholar
  38. IPCC. (2007a). In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (Eds.), Climate change 2007: The physical science basis, Contribution of working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK/New York: Cambridge University Press.Google Scholar
  39. IPCC. (2007b). Summary for policymakers. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (Eds.), Climate change 2007: The physical science basis. Contribution of working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK/New York: Cambridge University Press.Google Scholar
  40. IPCC. (2012). In C. B. Field, V. Barros, T. F. Stocker, D. Qin, D. J. Dokken, K. L. Ebi, M. D. Mastrandrea, K. J. Mach, G.-K. Plattner, S. K. Allen, M. Tignor, & P. M. Midgley (Eds.), Managing the risks of extreme events and disasters to advance climate change adaptation. A Special report of working groups I and II of the Intergovernmental Panel on Climate Change. Cambridge, UK/New York: Cambridge University Press.Google Scholar
  41. Ives, J. D., Shrestha, R. B., & Mool, P. K. (2010). Formation of glacial lakes in the Hindu Kush-Himalayas and GLOF risk assessment. Kathmandu: ICIMOD.Google Scholar
  42. Johanson, C. M., & Fu, Q. (2009). Hadley cell widening: Model simulations versus observations. Journal of Climate, 2, 2713–2725.CrossRefGoogle Scholar
  43. Johansson, A. (2007). Prediction skill of the NAO and PNA from daily to seasonal time scales. Journal of Climate, 20, 1957–1975.CrossRefGoogle Scholar
  44. Joshi, U. R., & Rajeevan, M. (2006). Trends in precipitation extremes over India (Research report, Vol. 3/2006). Pune: Indian Meteorological Department.Google Scholar
  45. Kent, D. M., Kirono, D. G. C., Timbal, B., & Chiew, F. H. S. (2011). Representation of the Australian sub-tropical ridge in the CMIP3 models. International Journal of Climatology, 33(1), 48–57. doi: 10.1002/joc.3406.CrossRefGoogle Scholar
  46. Kida, H., Koide, T., Sasaki, H., & Chiba, M. (1991). A new approach for coupling a limited area model to a GCM for regional climate simulations. Journal of the Meteorological Society of Japan, 69, 723–728.Google Scholar
  47. Kidson, J. W. (1999). Principal modes of Southern Hemisphere low frequency variability obtained from NCEP-NCAR reanalyses. Journal of Climate, 12, 2808–2830.CrossRefGoogle Scholar
  48. Kiladis, G. N., von Storch, H., & van Loon, H. (1989). Origin of the South Pacific convergence zone. Journal of Climate, 2, 1185–1195.CrossRefGoogle Scholar
  49. Kinter, J. L., Miyakoda, K., & Yang, S. (2002). Recent change in the connection from the Asian monsoon to ENSO. Journal of Climate, 15, 1203–1215.CrossRefGoogle Scholar
  50. Kitoh, A., & Uchiyama, T. (2006). Changes in onset and withdrawal of the East Asian summer rainy season by multi-model global warming experiments. Journal of the Meteorological Society of Japan, 84, 247–258.CrossRefGoogle Scholar
  51. Knutson, T. R., McBride, J. L., Chan, J., Emanuel, K., Holland, G., Landsea, C., … & Sugi, M. (2010). Tropical cyclones and climate change. Nature Geoscience, 3, 157–163.Google Scholar
  52. Können, G. P., Jones, P. D., Kaltofen, M. H., & Allan, R. J. (1998). Pre-1866 extensions of the Southern Oscillation index using early Indonesian and Tahitian meteorological readings. Journal of Climate, 11, 2325–2339.Google Scholar
  53. Kothawale, J. V., Revasdekar, J. V., & Kumar, K. R. (2009). Recent trends in pre-monsoon daily temperature extremes over India. Journal of Earth System Science, 119(1), 51–65.CrossRefGoogle Scholar
  54. Krishnamurthy, V., & Goswami, B. N. (2000). Indian monsoon-ENSO relationship on interdecadal timescale. Journal of Climate, 13, 579–595.CrossRefGoogle Scholar
  55. Kumar, R., Areendran, G., & Rao, P. (2009). Witnessing change: Glaciers in the Indian Himalayas. Pilani, WWF-India and Birla Institute of Technology.Google Scholar
  56. Kumar, K. K., Patwardhan, S. K., Kulkarni, A., Kamala, K., Rao, K. K., & Jones, R. (2011). Simulated projections for summer monsoon climate over India by a high-resolution regional climate model (PRECIS). Current Science, 101, 312–326.Google Scholar
  57. Kusunoki, S., & Mizuta, R. (2008). Future changes in the Baiu rain band projected by a 20-km mesh global atmosphere model: Sea surface temperature dependence. SOLA, 4, 85–88.CrossRefGoogle Scholar
  58. Kwon, W. T. (2007) Development of indices and indicators for monitoring trends in climate extremes and its application to climate change projection. (APN Project Report for APN project: ARCP2007-20NSG). Retrieved from http://www.apn-gcr.org/resources/items/show/1537
  59. Lambert, S.J., & Fyfe, J.C. (2006). Changes in winter cyclone frequencies and strengths simulated in enhanced greenhouse warming experiments: results from the models participating in the IPCC diagnostic exercise. Climate Dynamics, 26, 713–728.Google Scholar
  60. Larkin, N. K., & Harrison, D. E. (2005). On the definition of El Niño and associated seasonal average U.S. weather anomalies. Geophysical Research Letters, 32, L13705. doi: 10.1029/2005GL022738.CrossRefGoogle Scholar
  61. Lau, K. M., & Nath, M. J. (2000). Impact of ENSO on the variability of the Asian–Australian monsoons as simulated in GCM experiments. Journal of Climate, 13, 4287–4309.CrossRefGoogle Scholar
  62. Lau, N. C., & Nath, M. (2004). Coupled GCM simulation of atmosphere–ocean variability associated with zonally asymmetric SST changes in the tropical Indian Ocean. Journal of Climate, 17, 245–265.CrossRefGoogle Scholar
  63. Lee, D.-K., Gutowski, W., Kang, H. S., & Kim, C. J. (2007). Intercomparison of precipitation simulated by regional climate models over East Asia in 1997 and 1998. Advances in Atmospheric Sciences, 24(4), 539–554.CrossRefGoogle Scholar
  64. Li, J. P., Zhu, Z. W., Jiang, Z. H., & He, J. H. (2010). Can global warming strengthen the East Asian summer monsoon? Journal of Climate, 23, 6696–6705. doi: 10.1175/2010JCLI3434.1.CrossRefGoogle Scholar
  65. Liu, S. C., Fu, C., Shiu, C.-J., Chen, J.-P., & Wu, F. (2009). Temperature dependence of global precipitation extremes. Geophysical Research Letters, 36, L17702.CrossRefGoogle Scholar
  66. Lucas, C., Nguyen, H., & Timbal, B. (2012). An observational analysis of Southern Hemisphere tropical expansion. Journal of Geophysical Research, 117, D17112. doi: 10.1029/2011JD017033.CrossRefGoogle Scholar
  67. Manton, M. J., Della–Marta, P. M., Haylock, M. R., Hennessy, K. J., Nicholls, N., Chambers, L. E., … & Yee, D. (2001). Trends in extreme daily rainfall and temperature in Southeast Asia and the south Pacific: 1961–1998. International Journal of Climatology, 21, 269–284.Google Scholar
  68. Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., & Francis, R. C. (1997). A Pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the American Meteorological Society, 78, 1069–1079.CrossRefGoogle Scholar
  69. McGregor, J. L. (1997). Regional climate modelling. Meteorology and Atmospheric Physics, 63, 105–117.CrossRefGoogle Scholar
  70. McGregor, J. L., & Walsh, K. (1993). Nested simulations of perpetual January climate over the Australian region. Journal of Geophysical Research, 98, 23283–23290.CrossRefGoogle Scholar
  71. McGregor, J. L., Nguyen, K., Katzfey, J. J., & Thatcher, M. (2009). Regional climate modelling over island countries. Extended abstracts, international symposium on equatorial monsoon system, Kuta Paradiso Hotel, Bali, 16–18 July 2009.Google Scholar
  72. McPhaden, M. J. (2004). Evolution of the 2002/03 El Niño. Bulletin of the American Meteorological Society, 85, 677–695.CrossRefGoogle Scholar
  73. McPhaden, M. J., Zebiak, S. E., & Glantz, M. H. (2006). ENSO as an integrating concept in earth science. Science, 314, 1740–1745.CrossRefGoogle Scholar
  74. Mizuta, R., Yoshimura, H., Murakami, H., Matsueda, M., Endo, H., Ose, T., Kamiguchi, K., Hosaka, M., Sugi, M., Yukimoto, S. Kusunoki, S. & Kitoh, A. (2012). Climate simulations using MRI-AGCM3.2 with 20-km grid. Journal of the Meteorological Society of Japan, 90A, 233–258.Google Scholar
  75. Muller, F. (1970). Inventory of glaciers in the Mount Everest region. In Perennial ice and snow masses (Technical papers in hydrology, Vol. 1, pp. 47–59). Paris: UNESCO/IAHS.Google Scholar
  76. Nakajima, T., Yoon, S. C., Ramanathan, V., Shi, G. Y., Takemura, T., Higurashi, A., … & Schutgens, N. (2007). Overview of the Atmospheric Brown Cloud East Asian Regional Experiment 2005 and a study of the aerosol direct radiative forcing in East Asia. Journal of Geophysical Research, 112(D24), D24S91.Google Scholar
  77. Nakawo, M., Fujii, Y., & Shrestha, M. L. (1976). Flow of glaciers in hidden valley, Mukut Himal. Seppyo, 38, 39–43.Google Scholar
  78. Nguyen, K. C., & McGregor, J. L. (2009). Modelling the Asian summer monsoon using CCAM. Climate Dynamics, 32, 219–236.CrossRefGoogle Scholar
  79. Nguyen, K., Katzfey, J. J., & McGregor, J. (2011a). Climate change projections based on downscaling. In G. Cambers. (Ed). Climate change in the Pacific. Pacific Climate Change Science Program Technical Report.Google Scholar
  80. Nguyen, K. C., Katzfey, J. J., & McGregor, J. L. (2011b). Global 60 km simulations with CCAM: Evaluation over the tropics. Climate Dynamics. doi: 10.1007/s00382-011-1197-8.
  81. Ninomiya, K. (2011). Characteristics of the Meiyu and Baiu frontal precipitation zone in the CMIP3 20th century simulation and 21st century projection. Journal of the Meteorological Society of Japan, 89, 151–159.CrossRefGoogle Scholar
  82. Parthasarathy, B., Munot, A. A., & Kothawale, D. R. (1994). All India monthly and seasonal rainfall series: 1871–1993. Theoretical and Applied Climatology, 49, 217–224.CrossRefGoogle Scholar
  83. Power, S., Casey, T., Folland, C., Colman, A., & Mehta, V. (1999). Interdecadal modulation of the impact of ENSO on Australia. Climate Dynamics, 15, 319–324.CrossRefGoogle Scholar
  84. Power, S. B., Schiller, A., Cambers, G., Jones, D., & Hennessy, K. (2011). The Pacific climate change science program. Bulletin of the American Meteorological Society, 92, 1409–1411.Google Scholar
  85. Qin, D., Liu, S., & Li, P. (2006). Snow cover distribution, variability, and response to climate change in Western China. Journal of Climate, 19, 1820–1833.CrossRefGoogle Scholar
  86. Ramanathan, V., Chung, C., Kim, D., Bettge, T., Buja, L., Kiehl, J. T., Washington, W. M., … & Wild, M. (2005). Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle. Proceedings of the National Academy of Sciences of the United States of America, 102, 5326–5333.Google Scholar
  87. Ramanathan, V., Ramana, M. V., Roberts, G., Kim, D., Corrigan, C., Chung, C., & Winker, D. (2007). Warming trends in Asia amplified by brown cloud solar absorption. Nature, 448, 575–578.CrossRefGoogle Scholar
  88. Saji, N. H., Goswami, B. N., Vinayachandran, P. N., & Yamagata, T. (1999). A dipole mode in the tropical Indian Ocean. Nature, 401, 360–363.Google Scholar
  89. Salinger, M. J., Basher, R. E., Fitzharris, B. B., Hay, J. E., Jones, P. D., MacVeigh, J. P., & Leleu, I. (1995). Climate trends in the south-west Pacific. International Journal of Climatology, 15, 285–302.CrossRefGoogle Scholar
  90. Shrestha, M. L., Fujii, Y., & Nakawo, M. (1976). Climate of hidden valley, Mukut Himal during the monsoon in 1974. Journal of the Japanese Society of Snow and Ice, 38, 105–108.CrossRefGoogle Scholar
  91. Smith, T. M., & Reynolds, R. W. (2005). A global merged land and sea surface temperature reconstruction based on historical observations (1880–1997). Journal of Climate, 18, 2021–2036.CrossRefGoogle Scholar
  92. Stevenson, S., Fox-Kemper, B., Jochum, M., Neale, R., Deser, C., & Meehl, G. (2011). Will there be a significant change to El Niño in the 21st century? Journal of Climate, 25, 2129–2145. doi: 10.1175/JCLI-D-11-00252.1.CrossRefGoogle Scholar
  93. Straus, D. M., & Shukla, J. (2002). Does ENSO force the PNA? Journal of Climate, 15, 2340–2358.CrossRefGoogle Scholar
  94. Streten, N. A., & Troup, A. J. (1973). A synoptic climatology of satellite observed cloud vortices over the Southern Hemisphere. Quarterly Journal of the Royal Meteorological Society, 99, 56–72.CrossRefGoogle Scholar
  95. Streten, N. A., & Zillman, J. W. (1984). Climate of the South Pacific Ocean. In H. van Loon (Ed.), Climates of the oceans, World survey of climatology volume 15 (pp. 263–429). Amsterdam: Elsevier.Google Scholar
  96. Tanaka, H. L., Ishizaki, N., & Nohara, N. (2005). Intercomparison of the intensities and trends of Hadley, Walker and Monsoon Circulations in the global warming predictions. Scientific Online Letters on the Atmosphere, 1, 77–80.Google Scholar
  97. Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experimental design. Bulletin of the American Meteorological Society, 9, 485–498. doi: 10.1175/BAMS-D-11-00094.1.CrossRefGoogle Scholar
  98. Terada, K., & Hanzawa, M. (1984). Climate of the North Pacific Ocean. In H. van Loon (Ed.), Climates of the oceans, World survey of climatology volume 15 (pp. 431–503). Amsterdam: Elsevier.Google Scholar
  99. Terray, P., Dominiak, S., & Delecluse, P. (2005). Role of the southern Indian Ocean in the transition of the monsoon-ENSO system during recent decades. Climate Dynamics, 24, 169–195.CrossRefGoogle Scholar
  100. Thatcher, M., & McGregor, J. L. (2009). Using a scale-selective filter for dynamical downscaling with the conformal cubic atmospheric model. Monthly Weather Review, 137, 1742–1752.CrossRefGoogle Scholar
  101. Timbal, B. & Drosdowsky, W. (2012). The relationship between the decline of Southeastern Australian rainfall and the strengthening of the subtropical ridge. doi: 10.1002/joc.3492
  102. Trenberth, K. E. (1976). Spatial and temporal variations of the Southern Oscillation. Quarterly Journal of the Royal Meteorological Society, 102, 639–653.CrossRefGoogle Scholar
  103. Trenberth, K. E. (1984). Signal versus noise in the Southern Oscillation. Monthly Weather Review, 112, 326–332.CrossRefGoogle Scholar
  104. Trenberth, K. E. (1990). Recent observed interdecadal climate changes in the Northern Hemisphere. Bulletin of the American Meteorological Society, 71, 988–993.CrossRefGoogle Scholar
  105. Trenberth, K. E. (1991). General characteristics of El Niño-Southern Oscillation. In M. H. Glantz, R. W. Katz, & N. Nicholls (Eds.), Teleconnections linking worldwide climate anomalies. Scientific basis and societal impact (pp. 13–42). Cambridge, UK: Cambridge University Press.Google Scholar
  106. Trenberth, K. E. (1997). The definition of El Niño. Bulletin of the American Meteorological Society, 78, 2771–2777.CrossRefGoogle Scholar
  107. Trenberth, K. E., & Caron, J. M. (2000). The Southern Oscillation revisited: Sea level pressures, surface temperatures and precipitation. Journal of Climate, 13, 4358–4365.CrossRefGoogle Scholar
  108. Trenberth, K. E., & Stepaniak, D. P. (2001). Indices of El Niño evolution. Journal of Climate, 14, 1697–1701.CrossRefGoogle Scholar
  109. Trenberth, K. E., Caron, J. M., Stepaniak, D. P., & Worley, S. (2002). The evolution of ENSO and global atmospheric surface temperatures. Journal of Geophysical Research, 107, D8. doi: 10.1029/2000JD98. http://www.cgd.ucar.edu/cas/papers/2000JD98.pdf.Google Scholar
  110. Trenberth, K. E., Jones, P. D., Ambenje, P., Bojariu, R., Easterling, D., Tank, A. K., … & Zhai, P. (2007). Observations: Surface and atmospheric climate change. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller. (Eds.), Climate change 2007: The physical science basis. Contribution of working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 235–336). Cambridge, UK/New York: Cambridge University Press.Google Scholar
  111. Troup, A. J. (1965). The Southern Oscillation. Quarterly Journal of the Royal Meteorological Society, 91, 490–506.CrossRefGoogle Scholar
  112. Vincent, D. G. (1994). The South Pacific Convergence Zone (SPCZ): A review. Monthly Weather Review, 122, 1949–1970.CrossRefGoogle Scholar
  113. Wallace, J. M., & Gutzler, D. S. (1981). Teleconnections in the geopotential height field during the northern hemisphere winter. Monthly Weather Review, 109, 784–812.CrossRefGoogle Scholar
  114. Wang, S. (2012.) Building Asian climate change scenarios by regional climate models ensemble. (APN Project Report: ARCP2011-01CMY-Wang). Retrieved from http://www.apn-gcr.org/resources/items/show/1567
  115. Wang, B., & Lin, H. (2002). Rainy season of the Asian–Pacific summer monsoon. Journal of Climate, 15, 386–398.CrossRefGoogle Scholar
  116. Wang, H., & Zhang, Y. (2010). Model projections of east Asian summer monsoon climate under “free Arctic” scenario. Atmospheric and Oceanic Science Letters, 3, 176–180.Google Scholar
  117. Watanabe, O. (1976). On the types of glaciers in the Nepal Himalayas and their characteristics. Journal of the Japanese Society of Snow and Ice, 38, 10–16.CrossRefGoogle Scholar
  118. Watanabe, O., Endo, Y., & Ishida, T. (1967). Glaciers and glaciations in the Nepal Himalaya, mainly on the results of field research on two glaciers in Nepal Himalaya. Low Temperature Science, Series A, 25, 197–218.Google Scholar
  119. Webster, P. J., Magana, V. O., Palmer, T. N., Shukla, J., Tomas, R. A., Yanai, M., & Yasunari, T. (1998). Monsoons: Processes, predictability, and prospects of prediction. Journal of Geophysical Research, 103, 14451–14510.CrossRefGoogle Scholar
  120. Webster, P. J., Andrew, W. M., Loschnigg, J. P., & Leben, R. R. (1999). Coupled ocean-temperature dynamics in the Indian Ocean during 1997–98. Nature, 40, 356–360.CrossRefGoogle Scholar
  121. Wild, M. (2009a). Global dimming and brightening: A review. Journal of Geophysical Research, 114, D00D16. doi: 10.1029/2008JD011470.CrossRefGoogle Scholar
  122. Wild, M. (2009b). How well do IPCC-AR4/CMIP3 climate models simulate global dimming/brightening and twentieth-century daytime and night-time warming? Journal of Geophysical Research Atmospheres, 114, D00D11. doi: 10.1029/2008JD011372.
  123. Wild, M., Trussel, B., Ohmura, A., Long, C. N., Konig-Langlo, G., Dutton, E. G., & Tsvetkov, A. (2009). Global dimming and brightening: An update beyond 2000. Journal of Geophysical Research, 114, D00D13. doi: 10.1029/2008JD011382.CrossRefGoogle Scholar
  124. Zhang, X., & Yang, F. (2004). RClimDex (1.0) user manual. Ontario: Environment Canada.Google Scholar
  125. Zhang, Y., Wallace, J. M., & Battisti, D. S. (1997). ENSO-like variability: 1900–93. Journal of Climate, 10, 1004–1020.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Michael James Salinger
    • 1
    Email author
  • Madan Lall Shrestha
    • 2
    Email author
  • Ailikun
    • 3
  • Wenjie Dong
    • 4
  • John L. McGregor
    • 5
  • Shuyu Wang
    • 6
  1. 1.University of AucklandAucklandNew Zealand
  2. 2.Nepal Academy of Science and TechnologyLalitpurNepal
  3. 3.Institute of Atmospheric PhysicsMonsoon Asia Integrated Regional Study (MAIRS) IPO, Chinese Academy of SciencesBeijingChina
  4. 4.State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System ScienceBeijing Normal UniversityBeijingChina
  5. 5.CSIRO Marine and Atmospheric ResearchAspendaleAustralia
  6. 6.Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations