Skip to main content

Part of the book series: SpringerBriefs in Earth Sciences ((BRIEFSEARTH))

  • 966 Accesses

Abstract

The Cenozoic era includes four components (A) post K-T impact warming culminating with the Paleocene-Eocene hyperthermal at ~55 Ma; (B) long term cooling ending with a sharp temperature plunge toward formation of the Antarctic ice sheet from 32 Ma; (C) a post-32 Ma era dominated by the Antarctic ice sheet, including limited thermal rises in the end-Oligocene, mid-Miocene and end-Pliocene, and (D) Pleistocene glacial-interglacial cycles. Hominin evolution in Africa occurred during a transition from tropical to dry climates punctuated by alternating periods of extreme orbital forcing-induced glacial-interglacial cycles, suggesting variability selection of Hominids.

Hominids—the group consisting of all modern and extinct Great Apes (that is, modern humans, chimpanzees, gorillas and orang-utans plus all their immediate ancestors). Hominin—the group consisting of modern humans, extinct human species and all our immediate ancestors (including members of the genera Homo, Australopithecus, Paranthropus and Ardipithecus).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extra-terrestrial cause for the cretaceous-tertiary extinction: experimental results and theoretical interpretation. Science 208:1095–11086

    Article  Google Scholar 

  • Bard E, Frank M (2006) Climate change and solar variability: what’s new under the sun? Earth Planet Sci Lett 248:1–14

    Article  Google Scholar 

  • Beerling DJ, Royer D (2011) Convergent cenozoic CO2 history. Nat Geosci 4:418–420

    Article  Google Scholar 

  • Beerling DJ, Lomax BH, Royer DL, Upchurch GR, Kump LR (2002) An atmospheric pCO2 reconstruction across the cretaceous-tertiary boundary from leaf mega fossils. Proc Nat Acad Sci 99:7836–7840

    Article  Google Scholar 

  • Berger WH, Jansen E (1994) Mid-pleistocene climate shift: the Nansen connection. In: Johannessen O, Muench R, Overland J (eds) The polar oceans and their role in shaping the global environment, vol 85., Geophys MonoAmerican Geophysical Union, Washington, DC, p 295–311

    Chapter  Google Scholar 

  • Broecker WS (2000) Abrupt climate change: causal constraints provided by the paleoclimate record. Earth Sci Rev 51:137–154

    Article  Google Scholar 

  • Browning JV, Miller KG, Pak DK (1996) Global implications of lower to middle eocene sequence boundaries on the New Jersey coastal plain: the icehouse cometh. Geology 24:639–642

    Article  Google Scholar 

  • Chandler M, Dowsett H, Haywood A (2008) The PRISM model/data cooperative: mid-pliocene data-model comparisons. PAGES News 16(2):24–25

    Google Scholar 

  • Cortese G, Abelmann A, Gersonde A (2007) The last five glacial-interglacial transitions: a high-resolution 450,000-year record from the subantarctic Atlantic. Paleoocean 22:PA4203

    Google Scholar 

  • Cui Y, Kump LR, Ridgwell AJ, Charles AJ, Junium CK, Diefendorf AF, Freeman KH, Urban NM, Harding IC (2011) Slow release of fossil carbon during the palaeocene–eocene thermal maximum. Nature Geosci 4:481–485

    Article  Google Scholar 

  • Dakos V, Scheffer M, Van Nes EH, Brovkin V, Petoukhov V, Held H (2008) Slowing down as an early warning signal for abrupt climate change. Proc nat Acad Sci 105:14308–14312

    Google Scholar 

  • Deino AL, Kingston JD, Glen JM, Edgar RK, Hill A (2006) Precessional forcing of lacustrine sedimentation in the late Cenozoic Chemeron basin, central Kenya rift, and calibration of the Gauss/Matuyama boundary. Earth Planet Sci Lett 247:41–60

    Article  Google Scholar 

  • deMenocal PB (2004) African climate change and faunal evolution during the Pliocene-Pleistocene. Earth Planet Sci Lett 220:3–24

    Article  Google Scholar 

  • EPICA Community Members (2004) Eight glacial cycles from an Antarctic ice core. Nature 429:623–628

    Article  Google Scholar 

  • Eyles N (1993) Earth’s glacial record and its tectonic setting. Earth Sci Rev 35:1–248

    Article  Google Scholar 

  • Feakins SJ, deMenocal PB, Eglinton TI (2005) Biomarker records of late neogene changes in Northeast African vegetation. Geology 33:977–980

    Article  Google Scholar 

  • Fedorov AV, Dekens PS, McCarthy M, Ravelo AC, deMenocal PB, Barreuri M, Pacanowski RC, Philander SG (2006) The pliocene paradox. Science 312:1485–1489

    Article  Google Scholar 

  • Frakes LA, Francis JE, Syktus JI (1992) Climate modes of the phanerozoic. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ganopolski A, Rahmstorf S (2002) Abrupt glacial climate changes due to stochastic resonance. Physics Rev Lett 88:3–6

    Article  Google Scholar 

  • Glikson AY, Jablonski D, Westlake S (2010) Origin of the Mt Ashmore structural dome, west Bonaparte basin, Timor Sea. Aust J Earth Sci 57:411–430

    Article  Google Scholar 

  • Hansen J, Sato M, Kharecha P, Lea DW, Siddall M (2007) Climate change and trace gases. Phil Trans Roy Soc 365A:1925–1954

    Article  Google Scholar 

  • Hansen J, Sato M, Kharecha P, Beerling D, Masson-Delmotte V, Pagani M, Raymo M, Royer DL, Zachos JC (2008) Target atmospheric CO2: where should humanity aim? Open Atmos Sci J 2:217–231

    Article  Google Scholar 

  • Klein R (2009) The human career: human biological and cultural origins. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Lewis CFM, Miller AAL, Levac E, Piper DJW, Sonnichsen GV (2012) Lake Agassiz outburst age and routing by labrador current and the 8.2 ka cold event. Quatern Int 260:83–97

    Article  Google Scholar 

  • Maslin MA, Seidov D, Lowe J (2001) Synthesis of the nature and causes of sudden climate transitions during the Quaternary. In: Seidov D, Haupt BJ, Maslin M (eds) The Oceans and Rapid Climate Change: Past, Present and Future. Am. Geophys. Union Geophys. Monogr. Series 126:9–52

    Google Scholar 

  • Maslin MA, Trauth MH (2006) Plio-Pleistocene east african pulsed climate variability and its influence on early human evolution. In: Grine GE, Fleagle JG, Leakey RE (eds) Contributions from the third stony brook human evolution symposium and workshop 3–7 Oct

    Google Scholar 

  • Maslin MA, Christensen B (2007) Tectonics, orbital forcing, global climate change, and human evolution in Africa: introduction to the African paleoclimate special volume. J Human Evol 53(5):443–464

    Article  Google Scholar 

  • Maslin MA, Trauth MH (2009) Plio-Pleistocene East African pulsed climate variability and its influence on early human evolution. In: The first humans: origin and early evolution of the genus homo. Verteb paleobiology paleoanthropology, p 151–158

    Google Scholar 

  • Miller KG, Wright JD, Katz ME, Wade BS, Browning JV, Cramer BS, Rosenthal Y (2009) Climate threshold at the Eocene-Oligocene transition: Antarctic ice sheet influence on ocean circulation. In: Koeberl C, Montanari A (eds) The late eocene earth—hothouse, icehouse, and impacts: geological society of American Sp. papers, vol 452, p 1–10

    Google Scholar 

  • Overpeck J, Bette T, Otto-Bliesner L, Gifford H, Mille M, Daniel RM, Alley RB, Kiehl JT (2006) Paleoclimatic evidence for future ice-sheet instability and rapid sea-level rise. Science 311:1747–1750

    Article  Google Scholar 

  • Pearson PN, Foster GL, Wade BS (2009) Atmospheric carbon dioxide through the eocene–oligocene climate transition. Nature 461:1110–1113

    Article  Google Scholar 

  • Petit JR et al (1999) 420,000 years of climate and atmospheric history revealed by the Vostok deep Antarctic ice core. Nature 399:429–436

    Article  Google Scholar 

  • Pollard D, DeConto RM (2005) Hysteresis in cenozoic Antarctic ice sheet variations. Glob Planet Change 45:9–21

    Article  Google Scholar 

  • Potts R (1998) Environmental hypothesis of hominin evolution. Yearbook Phys Anthrop 41:93–136

    Article  Google Scholar 

  • Rahmstorf S (2002) Ocean circulation and climate over the last 120,000 years. Nature 419:6903

    Article  Google Scholar 

  • Rahmstorf S, Stocker TF (2004) Living with global change: consequences of changes in the earth system for human well-being.In: Steffen W (ed) Box 5.6 in: a planet under pressure—global change and the earth system. Springer, Berlin, p 240–241

    Google Scholar 

  • Roe G (2006) In defence of Milankovitch. Geophys Res Lett 33:L24703

    Article  Google Scholar 

  • Royer DL (2006) CO2-forced climate thresholds during the phanerozoic. Geochim Cosmochim Acta 70:5665–5675

    Article  Google Scholar 

  • Royer DL, Berner RA, Montañez I, Neil P, Tabor J, Beerling DJ (2004) CO2 as a primary driver of phanerozoic climate. GSA Today 14:3

    Google Scholar 

  • Ruddiman WF (1997) Tectonic uplift and climate change. Plenum Press, New York, p 535

    Book  Google Scholar 

  • Ruddiman WF (2008) Earth’s climate, past and future, 2nd edn. WH Freeman, New York. ISBN 978-0-7167-8490-6

    Google Scholar 

  • Solanki SK (2002) Solar variability and climate change: is there a link? Sol Phys 43:59–513

    Google Scholar 

  • Steffensen JP et al (2008) High-resolution greenland ice core data show abrupt climate change happens in few years. Science 321:680–684

    Article  Google Scholar 

  • Teaford MF, Ungar PS (2000) Diet and the evolution of the earliest human ancestors. Proc Nat Acad Sci USA 97:13506–13511

    Article  Google Scholar 

  • Trauth MH, Maslin MA, Deino AL, Strecker MR, Bergner AGN, Duhnforth M (2007) High- and low-latitude forcing of Plio-Pleistocene East African climate and human evolution. J Hum Evol 53:475–486

    Article  Google Scholar 

  • Trauth MH, Maslin MA, Deino AL, Junginger A, Lesoloyia M, Odada EO, Olago DO, Olaka LA, Strecker MR, Tiedemann R (2010) Human evolution in a variable environment: the amplifier lakes of Eastern Africa. Quater Sci Rev 29:2981–2988

    Article  Google Scholar 

  • Wagner F, Aaby B, Visscher H (2002) Rapid atmospheric CO2 changes associated with the 8,200-years-B.P. cooling event. Proc Nat Acad Sci 99:12011–12014

    Article  Google Scholar 

  • Yokoyama Y, Esat TM (2011) Global climate and sea level: enduring variability and rapid fluctuations over the past 150,000 years. Oceanography 24:54–69

    Article  Google Scholar 

  • Zachos JC, Breza JR, Wise SW (1992) Early oligocene ice-sheet expansion on Antarctica–stable isotope and sedimentological evidence from Kerguelen Plateau, Southern Indian Ocean. Geology 20:569–573

    Article  Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693

    Article  Google Scholar 

  • Zachos J, Dickens GR, Zeebe RE (2008) An early cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279–283

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Y. Glikson .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Glikson, A.Y. (2014). Cenozoic Atmospheres and Early Hominins. In: Evolution of the Atmosphere, Fire and the Anthropocene Climate Event Horizon. SpringerBriefs in Earth Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7332-5_3

Download citation

Publish with us

Policies and ethics