Skip to main content

Early Atmosphere-Ocean-Biosphere Systems

  • Chapter
  • First Online:
  • 990 Accesses

Part of the book series: SpringerBriefs in Earth Sciences ((BRIEFSEARTH))

Abstract

The application of isotopic tracers to paleo-climate investigations—including oxygen (δ18O), sulphur (δ33S) and carbon (δ13C), integrated with Sedimentological and proxies studies, allows vital insights into the composition of early atmosphere–ocean-biosphere system, suggesting low atmospheric oxygen, high levels of greenhouse gases (CO2 + CH4 and likely H2S), oceanic anoxia and high acidity, limiting habitats to single-cell methanogenic and photosynthesizing autotrophs. Increases in atmospheric oxygen have been related to proliferation of phytoplankton in the oceans, likely about ~2.4 Ga (billion years-ago) and 0.7–0.6 Ga.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allwood AC, Walter MR, Burch IW, Kamber BS (2007) 343 billion-year-old stromatolite reef from the Pilbara Craton of Western Australia: ecosystem-scale insights to early life on. Earth Precam Res 158:198–227

    Article  Google Scholar 

  • Bard E, Frank M (2006) Climate change and solar variability: what’s new under the sun? Earth Planet Sci Lett 248:1–14

    Article  Google Scholar 

  • Beerling DJ, Berner RA (2005) Feedbacks and the coevolution of plants and atmospheric CO2. Proc Nat Acad Sci 102:1302–1305

    Article  Google Scholar 

  • Beerling DJ, Royer D (2011) Convergent Cenozoic CO2 history. Nat Geosci 4:418–420

    Article  Google Scholar 

  • Berner RA (2004) The phanerozoic carbon cycle: CO2 and O2. Oxford University Press, New York

    Google Scholar 

  • Berner RA (2006) GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochim et Cosmochim Acta 70:5653–5664

    Article  Google Scholar 

  • Berner RA, Vanderbrook JM, Ward PD (2007) Oxygen and evolution. Science 316:557–558

    Article  Google Scholar 

  • Brazier MD, Green OR, Jephcoat AP, Kleppe AK, Van Kranendonk MJ, Lindsay JF, Steele A, Grassineau NV (2002) Questioning the evidence for Earth’s oldest fossils. Nature 416:76–81

    Article  Google Scholar 

  • Broecker WS (2000) Abrupt climate change: causal constraints provided by the paleoclimate record. Earth Sci Rev 51:137–154

    Article  Google Scholar 

  • Canfield D, Poulton SW, Narbonne GM (2007) Late-neoproterozoic deep-ocean oxygenation and the rise of animal life. Science 315:92–95

    Article  Google Scholar 

  • Chyba CF (1993) The violent environment of the origin of life: progress and uncertainties. Geochim et Cosmochim Acta 57:3351–3358

    Article  Google Scholar 

  • Chyba CF, Sagan C (1996) Comets as the source of prebiotic organic molecules for the early Earth. In: Thomas PJ, Chyba CF, McKay CP (eds) Comets and the origin and evolution of life. Springer, New York, pp 147–174

    Google Scholar 

  • Cloud P (1968) Atmospheric and hydrospheric evolution of the primitive. Earth Sci 160:729–738

    Google Scholar 

  • Cloud P (1973) Paleoecological significance of the banded iron formation. Econ Geol 68:1135–1143

    Article  Google Scholar 

  • Duck LJ, Glikson M, Golding SD, Webb R, Riches J, Baiano J, Sly L (2008) Geochemistry and nature of organic matter in 35 Ga rocks from Western Australia. Geochim Cosmochim Acta 70:1457–1470

    Google Scholar 

  • Dunlop JSR, Buick R (1981) Archaean epiclastic sediments derived from mafic volcanics, North Pole, Pilbara Block, Western Australia. Geol Soc Aust 7:225–233

    Google Scholar 

  • Eigenbrode JL, Freeman KH (2006) Late Archaean rise of aerobic microbial ecosystems. Proc Nat Acad Sci 103:15759–15764

    Article  Google Scholar 

  • Farquhar J, Bao H, Thiemens M (2000) Atmospheric influence of Earth’s earliest sulfur cycle. Science 289:756

    Article  Google Scholar 

  • Farquhar J, Peters M, Johnston DT, Strauss H, Masterson A, Wiechert U, Kaufman AJ (2007) Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry. Nature 449:706–709

    Article  Google Scholar 

  • Glikson AY (1972) Early precambrian evidence of a primitive ocean crust and island nuclei of sodic granite. Geol Soc Am Bull 83:3323–3344

    Article  Google Scholar 

  • Glikson AY (1980) Uniformitarian assumptions, plate tectonics and the Precambrian Earth. In: Kroner A (ed) Precambrian plate tectonics. Elsevier, Amsterdam, pp 91–104

    Google Scholar 

  • Glikson AY (1984) Significance of early Archaean mafic–ultramafic xenolith patterns. In: Kroner A, Goodwin AM, Hanson GN (eds) Archaean geochemistry. Springer, Berlin, pp 263–280

    Google Scholar 

  • Glikson AY (2006) Asteroid impact ejecta units overlain by iron-rich sediments in 3.5–2.4 Ga terrains, Pilbara and Kaapvaal cratons: Accidental or cause–effect relationships? Earth Planet Sci Lett 246:149–160

    Article  Google Scholar 

  • Glikson AY (2008) Milestones in the evolution of the atmosphere with reference to climate change. Aust J of Earth Sci 55:125–139

    Article  Google Scholar 

  • Glikson AY (2010) Archaean asteroid impacts, banded iron formations and MIF-S anomalies: a discussion. Icarus 207:39–44

    Article  Google Scholar 

  • Glikson AY, Vickers J (2007) Asteroid mega-impacts and Precambrian banded iron formations: 2.63 Ga and 2.56 Ga impact ejecta/fallout at the base of BIF/argillite units, Hamersley Basin, Pilbara Craton. Western Australia. Earth Planet Sci Lett 254:214–226

    Article  Google Scholar 

  • Golding S, Glikson MV (2011) Earliest life on earth: habitats, environments and methods of detection. Springer, Dordrecht

    Google Scholar 

  • Gold T (1999) The deep hot biosphere. Springer, New York, p 235

    Book  Google Scholar 

  • Goodwin AM, Monster J, Thode HG (1976) Carbon and sulfur isotope abundances in Archean iron-formations and early Precambrian life. Econ Geol 71:870–891

    Article  Google Scholar 

  • Gould SJ (1990) Wonderful life: the burgess shale and the nature of history. W W Norton and Company Inc, New York, p 347

    Google Scholar 

  • Halverson GP, Hoffman PF, Schrag DP, Maloof AC, Adam C, Hugh A, Rice N (2005) Toward a Neoproterozoic composite carbon-isotope record. GSA Bull 117:1181–1207

    Article  Google Scholar 

  • Hansen J, Sato M, Kharecha P, Lea DW, Siddall M (2007) Climate change and trace gases. Phil Trans Roy Soc 365A:1925–1954

    Article  Google Scholar 

  • Hoffman PF, Schrag DP (2000) Snowball Earth. Sci Am 282:68–75

    Article  Google Scholar 

  • Hoffman PF, Schrag DP (2002) The snowball Earth hypothesis: testing the limits of global change. Terra Nova 14:129–155

    Article  Google Scholar 

  • Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP (1998) A neoproterozoic snowball Earth. Science 281:1342–1346

    Article  Google Scholar 

  • Hoffman PF, Halverson GP, Domack JM, Husson JA, Higgins D, Schrag DP (2007) Are basal Ediacaran (635 Ma) post-glacial “cap dolostones” diachronous? Earth Planet Sci Lett 258:114–131

    Article  Google Scholar 

  • Hofmann HJ, Grey K, Hickman AH, Thorpe RI (1999) Origin of 3.45 Ga Coniform Stromatolites in the Warrawoona Group, Western Australia. Bull Geol Soc Am 111:1256–1262

    Article  Google Scholar 

  • Kasting JF, Ono S (2006) Palaeoclimates: the first two billion years. Philos Trans R Soc Biol Sci 361:917–929

    Article  Google Scholar 

  • Kirschvink JL (1992) In: Schopf JW, Klein C (eds.) The proterozoic biosphere. Cambridge Univ Press, New York, p 51–52

    Google Scholar 

  • Knauth LP (2005) Temperature and salinity history of the Precambrian ocean: implications for the course of microbial evolution. Palaeogeo Palaeoclimat Palaeoecol 219:53–69

    Article  Google Scholar 

  • Knauth LP, Lowe DR (2003) High Archaean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa. GSA Bulletin 115(5):566–580

    Article  Google Scholar 

  • Knoll AH, Javaux EJ, Hewitt D, Cohen P (2006) Eukaryotic organisms in Proterozoic oceans. Phil Trans R Soc London Part B 361:1023–1038

    Article  Google Scholar 

  • Konhausser K, Hamada T, Raiswell R, Morris R, Ferris F, Southam G, Canfield D (2002) Could bacteria have formed the Precambrian banded iron-formations? Geology 30:1079–1082

    Article  Google Scholar 

  • Kopp RE, Kirschvink JL, Hilburn IA, Nash CZ (2005) The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proc Nat Acad Sci 102:11131–11136

    Article  Google Scholar 

  • Kump LR (2009) The rise of atmospheric oxygen. Nature 451:277–278

    Article  Google Scholar 

  • Longdoz B, Francois LM (1997) The faint young sun climatic paradox: influence of the continental configuration and of the seasonal cycle on the climatic stability. Global Planet Change 14:97–112

    Article  Google Scholar 

  • Lowe DR (1994) Abiological origin of described stromatolites older than 3.2 Ga. Geology 22:387–390

    Article  Google Scholar 

  • McCulloch MT, Bennett VC (1994) Progressive growth of the Earth’s continental crust and depleted mantle: geochemical constraints. Geochim Cosmochim Acta 58:4717–4738

    Article  Google Scholar 

  • Mojzsis SJ, Harrison TM (2000) Vestiges of a beginnings: clues to the emergent biosphere recorded in the oldest known rocks. GSA Today 10:1–6

    Google Scholar 

  • Mojzsis SJ, Harrison TM, Pidgeon RT (2001) Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4,300 Myr ago. Nature 409:178–181

    Article  Google Scholar 

  • Morris RC (1993) Genetic modeling for banded iron-formation of the Hamersley Group, Pilbara Craton, Western Australia. Precamb Res 60:243–286

    Article  Google Scholar 

  • Nutman AP, Friend CRL (2006) Re-evaluation of oldest life evidence: Infrared absorbance spectroscopy and petrography of apatites in ancient metasediments, Akilia, W. Greenland. Precamb Res 147:100–106

    Article  Google Scholar 

  • Ohmoto H, Watanabe Y, Ikemi H, Poulson SR, Taylor BE (2006) Sulphur isotope evidence for an oxic Archaean atmosphere. Nature 442:908–911

    Article  Google Scholar 

  • Peck WH, Valley JW, Wilde SA, Graham CM (2001) Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: Ion microprobe evidence for high δ18O continental crust and oceans in the Early Archaean. Geochim et Cosmochim Acta 65:4215–4229

    Article  Google Scholar 

  • Rosing MT, Bird DK, Sleep NH, Bjerrum CJ (2010) No climate paradox under the faint early Sun. Nature 464:744–749

    Article  Google Scholar 

  • Royer DL (2006) CO2-forced climate thresholds during the Phanerozoic. Geochim Cosmochim Acta 70:5665–5675

    Article  Google Scholar 

  • Royer DL, Berner RA, Beerling DJ (2001) Phanerozoic atmospheric CO change: evaluating geochemical and paleobiological approaches. Earth Sci Rev 54:349–392

    Article  Google Scholar 

  • Royer DL, Berner RA, Montañez I, Neil P, Tabor J, Beerling DJ (2004) CO2 as a primary driver of Phanerozoic climate. GSA Today 14:3

    Google Scholar 

  • Royer DL, Berner RA, Park J (2007) Climate sensitivity constrained by CO2 concentrations over the past 420 million years. Nature 446:530–532

    Article  Google Scholar 

  • Ruddiman WF (1997) Tectonic uplift and climate change. Plenum Press, New York, p 535

    Book  Google Scholar 

  • Ruddiman WF (2003) Orbital insolation, ice volume, and greenhouse gases. Quatern Sci Rev 22:1597–1629

    Article  Google Scholar 

  • Ruddiman WF (2008) Earth’s climate, past and future (2nd edn). WH Freeman ISBN 978-0-7167-8490-6

    Google Scholar 

  • Ryder G (1991) Accretion and bombardment in the Earth–Moon system: the Lunar record. Lunar Planet Sci Instit Contrib 746:42–43

    Google Scholar 

  • Sagan C, Mullen G (1972) Earth and mars: evolution of atmospheres and surface temperatures. Science 177:52–56

    Article  Google Scholar 

  • Schopf JW, Packer BM (1987) Early Archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia. Science 237:70–73

    Article  Google Scholar 

  • Schopf JW, Kudryavtsev AB, Czaja AD, Tripathi AB (2007) Evidence of Archean life: stromatolites and microfossils. Precamb Res 158:141–155

    Article  Google Scholar 

  • Siegenthaler U et al (2005) Stable carbon cycle–climate relationship during the late pleistocene. Science 310:1313–1317

    Article  Google Scholar 

  • Solanki SK (2002) Solar variability and climate change: is there a link? Sol Phys 43:59–513

    Google Scholar 

  • Stevenson DJ (1987) Origin of the Moon-the collision hypothesis. Ann Rev Earth Planet Sci 15:271–315

    Article  Google Scholar 

  • Strik G, de Wit MJ, Langereis CG (2007) Palaeomagnetism of the Neoarchaean Pongola and Ventersdorp supergroups and an appraisal of the 30–19 Ga apparent polar wander path of the Kaapvaal Craton, Southern Africa. Precamb Res 153:96–115

    Article  Google Scholar 

  • Sugitania K, Grey K, Nagaokac T, Mimurad K, Walter M (2009) Taxonomy and biogenicity of Archaean spheroidal microfossils (ca 3.0 Ga) from the Mount Goldsworthy–Mount Grant area in the northeastern Pilbara Craton, Western Australia. Precamb Res 173:50–59

    Article  Google Scholar 

  • Uwins PJR et al (1998) Novel nano-organisms from Australian sandstones. Am Mineral 83:1541–1550

    Google Scholar 

  • Valley JW (2008) The origin of habitats. Geology 36:911–912

    Article  Google Scholar 

  • Van Kranendonk MJ (2007) Tectonics of the early Earth. In: Van Kranendonk MJ, Smithies RH, Bennett VC (eds) Earth’s oldest rocks, developments in precambrian geology, vol 15. Elsevier, Amsterdam, p 1105–1116

    Google Scholar 

  • Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–178

    Article  Google Scholar 

  • Young GM, von Brunn V, Gold WEL, Minter DJC (1998) Earth’s oldest reported glaciation: physical and chemical evidence from the Archean Mozoan Group (~2.9 Ga). S Africa J Geol 106:523–538

    Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693

    Article  Google Scholar 

  • Zahnle K, Sleep NH (1997) Impacts and the early evolution of life. In: Thomas PJ, Chyba CF, McKay CP (eds) Comets and the origin and evolution of life. Springer, New York, p 175–208

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Y. Glikson .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Glikson, A.Y. (2014). Early Atmosphere-Ocean-Biosphere Systems. In: Evolution of the Atmosphere, Fire and the Anthropocene Climate Event Horizon. SpringerBriefs in Earth Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7332-5_1

Download citation

Publish with us

Policies and ethics