Skip to main content

The Gp85 Surface Glycoproteins from Trypanosoma cruzi

  • Chapter
  • First Online:
Proteins and Proteomics of Leishmania and Trypanosoma

Part of the book series: Subcellular Biochemistry ((SCBI,volume 74))

Abstract

Trypanosoma cruzi strains show distinctive characteristics as genetic polymorphism and infectivity. Large repertoires of molecules, such as the Gp85 glycoproteins, members of the Gp85/Trans-sialidase superfamily, as well as multiple signaling pathways, are associated with invasion of mammalian cells by the parasite. Due to the large number of expressed members, encoded by more than 700 genes, the research focused on this superfamily conserved sequences is discussed. Binding sites to laminin have been identified at the N-terminus of the Gp85 molecules. Interestingly, the T. cruzi protein phosphorylation profile is changed upon parasite binding to laminin (or fibronectin), particularly the cytoskeletal proteins such as those from the paraflagellar rod and the tubulins, which are both markedly dephosphorylated. Detailed analysis of the signaling cascades triggered upon T. cruzi binding to extracellular matrix (ECM) proteins revealed the involvement of the MAPK/ERK pathway in this event. At the C-terminus, the conserved FLY sequence is a cytokeratin-binding domain and is involved in augmented host cell invasion in vitro and high levels of parasitemia in vivo. FLY, which is associated to tissue tropism and preferentially binds to the heart vasculature may somehow be correlated with the severe cardiac form, an important clinical manifestation of chronic Chagas’ disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AEP:

Aminoethylphosphonate

Asp Box:

SxDxGxTW amino acid sequence

CK:

Cytokeratin

DGF:

Disperse gene family

DTU:

Discrete typing units

ECM:

Extracellular matrix

ERK1/2:

Extracellular signal-regulated protein kinases 1 and 2

FAY motif:

VTVxNVFAYNR amino acid sequence

FL-160:

T. cruzi 160 kDa flagellum-associated protein

FLY motif:

VTVxNVFLYNR amino acid sequence

FLY-phage:

Bacteriophages expressing the FLY motif

FN:

Fibronectin

FRIP motif:

xRxP amino acid sequence

Gal:

Galactose

Galf:

Galactofuranose

GIPC:

Glycosylinositolphosphoceramide

GIPL:

Glycoinositolphospholipid

GlcN:

Glucosamine

Gp:

Glycoprotein

GPI:

Glycophosphatydilinositol

H1A10:

mAb that recognizes members of the Tc85 glycoprotein family

HBP:

Heparin binding proteinase

IFN-γ:

Interferon gamma

IL-10:

Interleukin 10

LPPG:

Lipopeptidophosphoglycan

Man:

Mannose

MAP:

Mitogen-activated protein

MASP:

Mucin-associated surface protein

Mbp:

Mega base-pair

NO:

Nitric oxide

PD98059:

Selective inhibitor of MAP kinase kinase

PFR:

Paraflagellar rod protein

PI:

Phosphatidylinositol

PIPLC:

Phosphatidylinositol phospholipase C (PI-PLC)

PK:

Protein kinase

PKAc:

Protein kinase A catalytic subunit

PLD:

Phospholipase D

RGD motif:

Amino acid sequence within fibronectin that mediates cell attachment

RNAi:

Interference RNA

SAPA:

Shed acute phase antigen

Tc:

T. cruzi

Tc80 POP:

T. cruzi 80 kDa prolyloligopeptidase

Tc85-11:

A clone member from the T. cruzi Gp85 glycoprotein family

TcMUC:

T. cruzi mucin gene family

TCNA:

T. cruzi neuraminidase

TcSMUG:

T. cruzi small mucin-like gene family

TNF:

Tumor necrosis factor

Treg:

Regulatory T cells

TS:

Trans-sialidase

TS:

Trypomastigotes

U0126:

Selective inhibitor of MAP kinase kinase

VSG:

Variant surface glycoprotein

WGA:

Wheat germ agglutinin

References

  • Abuin G, Colli W, Souza W, Alves MJM (1989) A surface antigen of Trypanosoma cruzi involved in cell invasion (Tc-85) is heterogeneous in expression and molecular constitution. Mol Biochem Parasitol 35:229–238

    CAS  PubMed  Google Scholar 

  • Abuin G, Colli W, Alves MJM (1996a) Turnover and shedding of the Tc-85 surface glycoprotein of Trypanosoma cruzi trypomastigotes. Braz J Med Biol Res 29:335–341

    CAS  PubMed  Google Scholar 

  • Abuin G, Couto AS, Lederkremer RM, Casal OL, Galli C, Colli W, Alves MJM (1996b) Trypanosoma cruzi: the Tc-85 surface glycoprotein shed by trypomastigotes bears a modified glycosylphosphatidylinositol anchor. Exp Parasitol 82:290–297

    CAS  PubMed  Google Scholar 

  • Acosta-Serrano A, Schenkman S, Yoshida N, Mehlert A, Richardson JM, Ferguson MAJ (1995) The lipid structure of the glycosylphosphatidylinositol-anchored mucin-like sialic acid acceptors of Trypanosoma cruzi changes during parasite differentiation from epimastigotes to infective metacyclic trypomastigote forms. J Biol Chem 270:27244–27253

    Google Scholar 

  • Agusti R, Couto AS, Campetella OE, Frasch ACC, Lederkremer RMD (1997) The trans-sialidase of Trypanosoma cruzi is anchored by two different lipids. Glycobiology 7:731–735

    CAS  PubMed  Google Scholar 

  • Agusti R, Couto A, Campetella O, Frasch A, de Lederkremer R (1998) Structure of the glycosylphosphatidylinositol-anchor of the trans-sialidase from Trypanosoma cruzi metacyclic trypomastigote forms. Mol Biochem Parasitol 97:123–131

    CAS  PubMed  Google Scholar 

  • Almeida IC, Gazzinelli RT (2001) Proinflammatory activity of glycosylphosphatidylinositol anchors derived from Trypanosoma cruzi: structural and functional analyses. J Leukoc Biol 70:467–477

    CAS  PubMed  Google Scholar 

  • Alsford S, Turner DJ, Obado SO, Sanchez-Flores A, Glover L, Berriman M, Hertz-Fowler C, Horn D (2011) High-throughput phenotyping using parallel sequencing of RNA interference targets in the African trypanosome. Genome Res 21:915–924

    CAS  PubMed  Google Scholar 

  • Alvarez P, Buscaglia CA, Campetella O (2004) Improving protein pharmacokinetics by genetic fusion to simple amino acid sequences. J Biol Chem 279:3375–3381

    CAS  PubMed  Google Scholar 

  • Alves MJM, Colli W (1974) Agglutination of Trypanosoma cruzi by concanavalin A. J Protozool 21:575–578

    CAS  PubMed  Google Scholar 

  • Alves MJM, Colli W (2007) Trypanosoma cruzi: adhesion to the host cell and intracellular survival. IUBMB Life 59:274–279

    CAS  PubMed  Google Scholar 

  • Alves MJM, Colli W (2008) Role of the gp85/trans-sialidase superfamily of glycoproteins in the interaction of Trypanosoma cruzi with host structures. Subcell Biochem 47:58–69

    PubMed  Google Scholar 

  • Alves MJM, Mortara RA (2009) A century of research: what have we learned about the interaction of Trypanosoma cruzi with host cells? Mem Inst Oswaldo Cruz 104(Suppl 1):76–88

    CAS  PubMed  Google Scholar 

  • Alves MJM, Abuin G, Kuwajima VY, Colli W (1986) Partial inhibition of trypomastigotes entry into cultured mammalian cells by monoclonal antibodies against a surface glycoprotein of Trypanosoma cruzi. Mol Biochem Parasitol 21:75–82

    CAS  PubMed  Google Scholar 

  • Andersson B (2011) The Trypanosoma cruzi genome; conserved core genes and extremely variable surface molecule families. Res Microbiol 162:619–625

    CAS  PubMed  Google Scholar 

  • Andrade LO, Andrews NW (2005) The Trypanosoma cruzi-host-cell interplay: location, invasion, retention. Nat Rev Microbiol 3:819–823

    CAS  PubMed  Google Scholar 

  • Araujo-Jorge TC, Waghabi MC, Soeiro MN, Keramidas M, Bailly S, Feige JJ (2008) Pivotal role for TGF-β in infectious heart disease: the case of Trypanosoma cruzi infection and consequent chagasic myocardiopathy. Cytokine Growth Factor Rev 19:405–413

    CAS  PubMed  Google Scholar 

  • Atwood JA, Minning T, Ludolf F, Nuccio A, Weatherly DB, Alvarez-Manilla G, Tarleton RL, Orlando R (2006) Glycoproteomics of Trypanosoma cruzi trypomastigotes using subcellular fractionation, lectin affinity, and stable isotope labeling. J Proteome Res 5:3376–3384

    CAS  PubMed  Google Scholar 

  • Bambino-Medeiros R, Oliveira FO, Calvet CM, Vicente D, Toma L, Krieger MA, Meirelles MNL, Pereira MCS (2011) Involvement of host cell heparan sulfate proteoglycan in Trypanosoma cruzi amastigote attachment and invasion. Parasitology 138:593–601

    CAS  PubMed  Google Scholar 

  • Bao Y, Weiss LM, Ma YF, Kahn S, Huang H (2010) Protein kinase A catalytic subunit interacts and phosphorylates members of trans-sialidase super-family in Trypanosoma cruzi. Microbes Infect 12:716–726

    CAS  PubMed  Google Scholar 

  • Bluestone JA, Abbas AK (2003) Natural versus adaptive regulatory T cells. Nat Rev Immunol 3:253–257

    CAS  PubMed  Google Scholar 

  • Bogliolo AR, Lauria-Pires L, Gibson WC (1996) Polymorphisms in Trypanosoma cruzi: evidence of genetic recombination. Acta Trop 61:31–40

    CAS  PubMed  Google Scholar 

  • Boscardin SB, Torrecilhas ACT, Manarin R, Revelli S, Rey EG, Tonelli RR, Silber AM (2010) Chagas’ disease: an update on immune mechanisms and therapeutic strategies. J Cell Mol Med 14:1373–1384

    CAS  PubMed  Google Scholar 

  • Brenchley R, Tariq H, McElhinney H, Szoor B, Huxley-Jones J, Stevens R, Matthews KR, Tabernero L (2007) The TriTryp phosphatome: analysis of the protein phosphatase catalytic domains. BMC Genomics 8:434

    PubMed  Google Scholar 

  • Burleigh BA (2005) Host cell signaling and Trypanosoma cruzi invasion: do all roads lead to lysosomes? Sci STKE 2005:36

    Google Scholar 

  • Burleigh BA, Andrews NW (1995) The mechanism of Trypanosoma cruzi invasion of mammalian cells. Annu Rev Microbiol 49:175–200

    CAS  PubMed  Google Scholar 

  • Buscaglia CA, Di Noia JM (2003) Trypanosoma cruzi clonal diversity and the epidemiology of Chagas’ disease. Microbes Infect 5:419–427

    CAS  PubMed  Google Scholar 

  • Buschiazzo A, Tavares GA, Campetella O, Spinelli S, Cremona ML, Paris G, Amaya MF, Frasch ACC, Alzari PM (2000) Structural basis of sialyltransferase activity in trypanosomal sialidases. EMBO J 19:16–24

    CAS  PubMed  Google Scholar 

  • Buschiazzo A, Amaya MF, Cremona ML, Frasch ACC, Alzari PM (2002) The crystal structure and mode of action of trans-sialidase, a key enzyme in Trypanosoma cruzi pathogenesis. Mol Cell 10:757–768

    CAS  PubMed  Google Scholar 

  • Butler CE, Tyler KM (2012) Membrane traffic and synaptic cross-talk during host cell entry by Trypanosoma cruzi. Cell Microbiol 14:1345–1353

    CAS  PubMed  Google Scholar 

  • Calvet CM, Toma L, De Souza FR, Meirelles MN, Pereira MCS (2003) Heparan sulfate proteoglycans mediate the invasion of cardiomyocytes by Trypanosoma cruzi. J Eukaryot Microbiol 50:97–103

    CAS  PubMed  Google Scholar 

  • Calvet CM, Meuser M, Almeida D, Meirelles MNL, Pereira MCS (2004) Trypanosoma cruzi- cardiomyocyte interaction: role of fibronectin in the recognition process and extracellular matrix expression in vitro and in vivo. Exp Parasitol 107:20–30

    Google Scholar 

  • Camargo M, Almeida I, Pereira M, Ferguson M, Travassos L, Gazzinelli R (1997) Glycosylphosphatidylinositol-anchored mucin-like glycoproteins isolated from Trypanosoma cruzi trypomastigotes initiate the synthesis of proinflammatory cytokines by macrophages. J Immunol 158:5890–5901

    CAS  PubMed  Google Scholar 

  • Carvalho ST, Sola-Penna M, Oliveira IA, Pita S, Goncalves AS, Neves BC, Sousa FR, Freire-de-Lima L, Kurogochi M, Hinou H, Nishimura S-I, Mendonca-Previato L, Previato JO, Todeschini AR (2010) A new class of mechanism-based inhibitors for Trypanosoma cruzi trans-sialidase and their influence on parasite virulence. Glycobiology 20:1034–1045

    CAS  PubMed  Google Scholar 

  • Caulin C, Ware CF, Magin TM, Oshima RG (2000) Keratin-dependent, epithelial resistance to tumor necrosis factor-induced apoptosis. J Cell Biol 149:17–22

    CAS  PubMed  Google Scholar 

  • Cazzulo JJ (2002) Proteinases of Trypanosoma cruzi: patential targets for the chemotherapy of Chagas desease. J Cell Biol 2:1261–1271

    CAS  Google Scholar 

  • Choi J, El-Sayed NM (2012) Functional genomics of trypanosomatids. Parasite Immunol 34:72–79

    CAS  PubMed  Google Scholar 

  • Chuenkova MV, Pereira Perrin M (2005) A synthetic peptide modeled on PDNF, Chagas’ disease parasite neurotrophic factor, promotes survival and differentiation of neuronal cells through TrkA receptor. Biochemistry 44:15685–15694

    CAS  PubMed  Google Scholar 

  • Claser C, Curcio M, de Mello SM, Silveira EV, Monteiro HP, Rodrigues MM (2008) Silencing cytokeratin 18 gene inhibits intracellular replication of Trypanosoma cruzi in HeLa cells but not binding and invasion of trypanosomes. BMC Cell Biol 9:68

    PubMed  Google Scholar 

  • Colli W (1993) Trans-sialidase: a unique enzyme activity discovered in the protozoan Trypanosoma cruzi. FASEB J 7:1257–1264

    CAS  PubMed  Google Scholar 

  • Colognato H, Yurchenco PD (2000) Form and function: the laminin family of heterotrimers. Dev Dyn 218:213–234

    CAS  PubMed  Google Scholar 

  • Cortez C, Yoshida N, Bahia D, Sobreira TJ (2012) Structural basis of the interaction of a Trypanosoma cruzi surface molecule implicated in oral infection with host cells and gastric mucin. PLoS One 7:e42153

    CAS  PubMed  Google Scholar 

  • Coura JR, Viñas PA (2010) Chagas disease: a new worldwide challenge. Nature 465:S6–S7

    PubMed  Google Scholar 

  • Couto A, De Lederkremer R, Colli W, Alves M (1993) The glycosylphosphatidylinositol anchor of the trypomastigote-specific Tc-85 glycoprotein from Trypanosoma cruzi. Metabolic-labeling and structural studies. Eur J Biochem 217:597–602

    CAS  PubMed  Google Scholar 

  • Cremona ML, Sanchez DO, Frasch ACC, Campetella O (1995) A single tyrosine differentiates active and inactive Trypanosoma cruzi trans-sialidases. Gene 160:123–128

    CAS  PubMed  Google Scholar 

  • Cross GAM (1990) Glycolipid anchoring of plasma membrane proteins. Annu Rev Cell Biol 6:1–39

    CAS  PubMed  Google Scholar 

  • Cross GAM, Takle GB (1993) The surface trans-sialidase family of Trypanosoma cruzi. Annu Rev Microbiol 47:385–411

    CAS  PubMed  Google Scholar 

  • Cyktor JC, Turner J (2011) Interleukin-10 and immunity against prokaryotic and eukaryotic intracellular pathogens. Infect Immun 79:2964–2973

    CAS  PubMed  Google Scholar 

  • de Melo-Jorge M, PereiraPerrin M (2007) The Chagas’ disease parasite Trypanosoma cruzi exploits nerve growth factor receptor TrkA to infect mammalian hosts. Cell Host Microbe 1:251–261

    PubMed  Google Scholar 

  • de Souza W, de Carvalho T, Barrias E (2010) Review on Trypanosoma cruzi: host cell interaction. Int J Cell Biol 2010:1–19

    Google Scholar 

  • Dias WB, Fajardo FD, Graca-Souza AV, Freire-de-Lima L, Vieira F, Girard MF, Bouteille B, Previato JO, Mendonça-Previato L, Todeschini AR (2008) Endothelial cell signalling induced by trans-sialidase from Trypanosoma cruzi. Cell Microbiol 10:88–99

    CAS  PubMed  Google Scholar 

  • Dias FA, Santos AL, Lery LM, Alves E, Silva TL, Oliveira MM, Bisch PM, Saraiva EM, Souto-Padron TC, Lopes AH (2012) Evidence that a laminin-like insect protein mediates early events in the interaction of a Phytoparasite with its vector’s salivary gland. PLoS One 7:e48170

    Google Scholar 

  • do Carmo MS, Santos MRM, Cano MI, Araya JE, Yoshida N, Silveira JF (2002) Expression and genome-wide distribution of the gene family encoding a 90 kDa surface glycoprotein of metacyclic trypomastigotes of Trypanosoma cruzi. Mol Biochem Parasitol 125:201–206

    PubMed  Google Scholar 

  • El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G, Tran A-N, Ghedin E, Worthey EA, Delcher AL, Blandin G, Westenberger SJ, Caler E, Cerqueira GC, Branche C, Haas B, Anupama A, Arner E, Aslund L, Attipoe P, Bontempi E, Bringaud F, Burton P, Cadag E, Campbell DA, Carrington M, Crabtree J, Darban H, da Silveira JF, de Jong P, Edwards K, Englund PT, Fazelina G, Feldblyum T, Ferella M, Frasch AC, Gull K, Horn D, Hou L, Huang Y, Kindlund E, Klingbeil M, Kluge S, Koo H, Lacerda D, Levin MJ, Lorenzi H, Louie T, Machado CR, McCulloch R, McKenna A, Mizuno Y, Mottram JC, Nelson S, Ochaya S, Osoegawa K, Pai G, Parsons M, Pentony M, Pettersson U, Pop M, Ramirez JL, Rinta J, Robertson L, Salzberg SL, Sanchez DO, Seyler A, Sharma R, Shetty J, Simpson AJ, Sisk E, Tammi MT, Tarleton R, Teixeira S, Van Aken S, Vogt C, Ward PN, Wickstead B, Wortman J, White O, Fraser CM, Stuart KD, Andersson B (2005) The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas’ disease. Science 309:409–415

    CAS  PubMed  Google Scholar 

  • Epting CL, Coates BM, Engman DM (2010) Molecular mechanisms of host cell invasion by Trypanosoma cruzi. Exp Parasitol 126:283–291

    CAS  PubMed  Google Scholar 

  • Favareto S Jr, Dorta ML, Yoshida N (1998) Trypanosoma cruzi 175-kDa protein tyrosine phosphorilation is associated with host cell invasion. Exp Parasitol 89:188–194

    Google Scholar 

  • Ferguson MAJ (1997) The surface glycoconjugates of trypanosomatid parasites. Philos Trans R Soc Lond B Biol Sci 352:1295–1302

    CAS  PubMed  Google Scholar 

  • Ferguson MA, Homans SW, Dwek RA, Rademacher TW (1988) Glycosyl-phosphatidylinositol moiety that anchors Trypanosoma brucei variant surface glycoprotein to the membrane. Science 239:753–759

    CAS  PubMed  Google Scholar 

  • Fontenot J, Gavin M, Rudensky A (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4:330–336

    CAS  PubMed  Google Scholar 

  • Franco D, Vago A, Chiari E, Meira F, Galvao L, Machado C (2003) Trypanosoma cruzi: mixture of two populations can modify virulence and tissue tropism in rat. Exp Parasitol 104:54–61

    CAS  PubMed  Google Scholar 

  • Franzen O, Ochaya S, Sherwood E, Lewis MD, Llewellyn MS, Miles MA, Andersson B (2011) Shotgun sequencing analysis of Trypanosoma cruzi I Sylvio X10/1 and comparison with T. cruzi VI CL Brener. PLoS Negl Trop Dis 5:e984

    CAS  PubMed  Google Scholar 

  • Frasch ACC (1994) Trans-sialidase, SAPA amino acid repeats and the relationship between Trypanosoma cruzi and the mammalian host. Parasitology 108(Suppl S1):S37–S44

    PubMed  Google Scholar 

  • Frasch ACC (2000) Functional diversity in the trans-sialidase and mucin families in Trypanosoma cruzi. Parasitol Today 16:282–286

    CAS  PubMed  Google Scholar 

  • Freitas LM, dos Santos SL, Rodrigues-Luiz GF, Mendes TA, Rodrigues TS, Gazzinelli RT, Teixeira SMR, Fujiwara RT, Bartholomeu DC (2011) Genomic analyses, gene expression and antigenic profile of the trans-sialidase superfamily of Trypanosoma cruzi reveal an undetected level of complexity. PLoS One 6:e25914

    CAS  PubMed  Google Scholar 

  • Fuchs E, Cleveland DW (1998) A structural scaffolding of intermediate filaments in health and disease. Science 279:514–519

    CAS  PubMed  Google Scholar 

  • Fuchs E, Weber K (1994) Intermediate filaments: structure, dynamics, function, and disease. Annu Rev Biochem 63:345–382

    CAS  PubMed  Google Scholar 

  • Fuenmayor C, Higuchi ML, Carrasco H, Parada H, Gutierrez P, Aiello V, Palomino S (2005) Acute Chagas’ disease: immunohistochemical characteristics of T cell infiltrate and its relationship with T. cruzi parasitic antigens. Acta Cardiol 60:33–37

    PubMed  Google Scholar 

  • Gaunt MW, Yeo M, Frame IA, Stothard JR, Carrasco HJ, Taylor MC, Mena SS, Veazey P, Miles GA, Acosta N, de Arias AR, Miles MA (2003) Mechanism of genetic exchange in American trypanosomes. Nature 421:936–939

    CAS  PubMed  Google Scholar 

  • Gilbert S, Loranger A, Daigle N, Marceau N (2001) Simple epithelium keratins 8 and 18 provide resistance to Fas-mediated apoptosis. The protection occurs through a receptor-targeting modulation. J Cell Biol 154:763–774

    CAS  PubMed  Google Scholar 

  • Giordano RJ, Chamas R, Veiga SS, Colli W, Alves MJM (1994a) An acidic component of the heterogeneous Tc-85 protein family from surface of Trypanosoma cruzi is a laminin binding glycoprotein. Mol Biochem Parasitol 65:85–94

    CAS  PubMed  Google Scholar 

  • Giordano RJ, Chammas R, Veiga SS, Colli W, Alves MJM (1994b) Trypanosoma cruzi binds to laminin in a carbohydrate-independent way. Braz J Med Biol Res 27:2315–2318

    CAS  PubMed  Google Scholar 

  • Giordano R, Fouts DL, Tewari DS, Colli W, Manning JE, Alves MJM (1999) Cloning of a surface membrane glycoprotein specific for the infective form of Trypanosoma cruzi having adhesive properties to laminin. J Biol Chem 274:3461–3468

    CAS  PubMed  Google Scholar 

  • Grellier P, Vendeville S, Joyeau R, Bastos IM, Drocbeq H, Frappier F, Teixeira ARL, Schrevel J, Davioud-Charvet E, Sergheraert C, Santana JM (2001) Trypanosoma cruzi prolyl oligopeptidaseTc80 is involved in nonphagocytic mammalian cell invasion by trypomastigotes. J Biol Chem 276:47078–47086

    CAS  PubMed  Google Scholar 

  • Heise N, de Almeida M, Ferguson M (1995) Characterization of the lipid moiety of the glycosylphosphatidylinositol anchor of Trypanosoma cruzi 1G7-antigen. Mol Biochem Parasitol 70:71–84

    CAS  PubMed  Google Scholar 

  • Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061

    CAS  PubMed  Google Scholar 

  • Hutton E, Paladini RD, Yu Q-C, Yen M, Coulombe PA, Fuchs E (1998) Functional differences between keratins of stratified and simple epithelia. J Cell Biol 143:487–499

    CAS  PubMed  Google Scholar 

  • Johnson CA, Kleshchenko YY, Ikejiani AO, Udoko AN, Cardenas TC, Pratap S, Duquette MA, Lima MF, Lawler J, Villalta F, Nde PN (2012) Thrombospondin-1 interacts with Trypanosoma cruzi surface calreticulin to enhance cellular infection. PLoS One 7:e40614

    CAS  PubMed  Google Scholar 

  • Kadler K (1995) Extracellular matrix 1: fibril-forming collagens. Protein Profile 2:491–619

    CAS  PubMed  Google Scholar 

  • Kahn SJ, Nguyen D, Norsen J, Wleklinski M, Granston T, Kahn M (1999) Trypanosoma cruzi: monoclonal antibodies to the surface glycoprotein superfamily differentiate subsets of the 85-kDa surface glycoproteins and confirm simultaneous expression of variant 85-kDa surface glycoproteins. Exp Parasitol 92:48–56

    CAS  PubMed  Google Scholar 

  • Kielty CM, Sherratt MJ, Shuttleworth CA (2002) Elastic fibres. J Cell Sci 115:2817–2828

    CAS  PubMed  Google Scholar 

  • Kim SH, Turnbull J, Guimond S (2011) Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol 209:139–151

    CAS  PubMed  Google Scholar 

  • Kolev NG, Tschudi C, Ullu E (2011) RNA interference in protozoan parasites: achievements and challenges. Eukaryot Cell 10:1156–1163

    CAS  PubMed  Google Scholar 

  • Lederkremer RM, Agusti R (2009) Glycobiology of Trypanosoma cruzi. Adv Carbohydr Chem Biochem 62:311–366

    PubMed  Google Scholar 

  • Lederkremer RM, Colli W (1995) Galactofuranose-containing glycoconjugates in trypanosomatids. Glycobiology 5:547–552

    CAS  PubMed  Google Scholar 

  • Lederkremer RM, Alves MJM, Fonseca GC, Colli W (1976) A lipopeptidophosphoglycan from Trypanosoma cruzi (epimastigota). Isolation, purification and carbohydrate composition. Biochim Biophys Acta 444:85–96

    PubMed  Google Scholar 

  • Lederkremer RM, Casal OL, Tanaka CT, Colli W (1978) Ceramide and inositol content of the lipopeptidophosphoglycan from Trypanosoma cruzi. Biochem Biophys Res Commun 85:1268–1274

    PubMed  Google Scholar 

  • Lederkremer R, Lima C, Ramirez M, Casal O (1990) Structural features of the lipopeptidophosphoglycan from Trypanosoma cruzi common with the glycophosphatidylinositol anchors. Eur J Biochem 192:337–345

    PubMed  Google Scholar 

  • Lederkremer RM, Lima C, Ramirez MI, Ferguson MA, Homans SW, Thomas-Oates J (1991) Complete structure of the glycan of lipopeptidophosphoglycan from Trypanosoma cruzi Epimastigotes. J Biol Chem 266:23670–23675

    PubMed  Google Scholar 

  • Lederkremer R, Lima C, Ramirez M, Goncalvez M, Colli W (1993) Hexadecylpalmitoylglycerol or ceramide is linked to similar glycophosphoinositol anchor-like structures in Trypanosoma cruzi. Eur J Biochem 218:929–936

    PubMed  Google Scholar 

  • Lederkremer RM, Lima C, del C Vila M (1996) Ceramide 1-phosphate is released from a glycoinositolphosphoceramide of Trypanosoma cruzi by rat blood plasma. Mol Biochem Parasitol 79:219–223

    PubMed  Google Scholar 

  • Ley V, Robbins ES, Nussenzweig V, Andrews NW (1990) The exit of Trypanosoma cruzi from the phagosome is inhibited by raising the pH of acidic compartments. J Exp Med 171:401–413

    CAS  PubMed  Google Scholar 

  • Lima L, Ortiz PA, da Silva FM, Alves JM, Serrano MG, Cortez AP, Alfieri SC, Buck GA, Teixeira MMG (2012) Repertoire, genealogy and genomic organization of cruzipain and homologous genes in Trypanosoma cruzi, T. cruzi-like and other trypanosome species. PLoS One 7:e38385

    CAS  PubMed  Google Scholar 

  • Machado FS, Martins GA, Aliberti JCS, Mestriner FLAC, Cunha FQ, Silva JS (2000) Trypanosoma cruzi-infected cardiomyocytes produce chemokines and cytokines that trigger potent nitric oxide-dependent trypanocidal activity. Circulation 102:3003–3008

    CAS  PubMed  Google Scholar 

  • MacRae JI, Acosta-Serrano A, Morrice NA, Mehlert A, Ferguson MAJ (2005) Structural characterization of NETNES, a novel glycoconjugate in Trypanosoma cruzi epimastigotes. J Biol Chem 280:12201–12211

    CAS  PubMed  Google Scholar 

  • Magdesian MH, Giordano R, Ulrich H, Juliano MA, Juliano L, Schumacher RI, Colli W, Alves MJM (2001) Infection by Trypanosoma cruzi. Identification of a parasite ligand and its host cell receptor. J Biol Chem 276:19382–19389

    CAS  PubMed  Google Scholar 

  • Magdesian MH, Tonelli RR, Fessel MR, Silveira MS, Schumacher RI, Linden R, Colli W, Alves MJM (2007) A conserved domain of the gp85/trans-sialidase family activates host cell extracellular signal-regulated kinase and facilitates Trypanosoma cruzi infection. Exp Cell Res 313:210–218

    CAS  PubMed  Google Scholar 

  • Mantilla JC, Zafra GA, Macedo AM, Gonzalez CI (2010) Mixed infection of Trypanosoma cruzi I and II in a Colombian cardiomyopathic patient. Hum Pathol 41:610–613

    PubMed  Google Scholar 

  • Marchini FK, de Godoy LM, Rampazzo RC, Pavoni DP, Probst CM, Gnad F, Mann M, Krieger MA (2011) Profiling the Trypanosoma cruzi phosphoproteome. PLoS One 6:e25381

    CAS  PubMed  Google Scholar 

  • Marroquin-Quelopana M, Oyama S Jr, Pertinhez TA, Spisni A, Juliano MA, Juliano L, Colli W, Alves MJM (2004) Modeling the Trypanosoma cruzi Tc85-11 protein and mapping the laminin-binding site. Biochem Biophys Res Commun 325:612–618

    CAS  PubMed  Google Scholar 

  • Mattos EC, Schumacher RI, Colli W, Alves MJM (2012) Adhesion of Trypanosoma cruzi trypomastigotes to fibronectin or laminin modifies tubulin and paraflagellar rod protein phosphorylation. PLoS One 7:e46767

    CAS  PubMed  Google Scholar 

  • Mendonça-Previato L, Todeschini AR, Heise N, Previato JO (2005) Protozoan parasite-specific carbohydrate structures. Curr Opin Struct Biol 15:499–505

    PubMed  Google Scholar 

  • Minning TA, Weatherly DB, Flibotte S, Tarleton RL (2011) Widespread, focal copy number variations (CNV) and whole chromosome aneuploidies in Trypanosoma cruzi strains revealed by array comparative genomic hybridization. BMC Genomics 12:139

    PubMed  Google Scholar 

  • Moll R, Franke WW, Schiller DL, Geiger B, Krepler R (1982) The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31:11–24

    CAS  PubMed  Google Scholar 

  • Montagna G, Cremona ML, Paris G, Amaya MF, Buschiazzo A, Alzari PM, Frasch ACC (2002) The trans-sialidase from the African trypanosome Trypanosoma brucei. Eur J Biochem 269:2941–2950

    CAS  PubMed  Google Scholar 

  • Moody TN, Ochieng J, Villalta F (2000) Novel mechanism that Trypanosoma cruzi uses to adhere to the extracellular matrix mediated by human galectin-3. FEBS Lett 470:305–308

    CAS  PubMed  Google Scholar 

  • Moraes Barros RR, Marini MM, Antonio CR, Cortez DR, Miyake AM, Lima FM, Ruiz JC, Bartholomeu DC, Chiurillo MA, Ramirez JL, Silveira JF (2012) Anatomy and evolution of telomeric and subtelomeric regions in the human protozoan parasite Trypanosoma cruzi. BMC Genomics 13:229

    PubMed  Google Scholar 

  • Nakayasu ES, Gaynor MR, Sobreira TJ, Ross JA, Almeida IC (2009) Phosphoproteomic analysis of the human pathogen Trypanosoma cruzi at the epimastigote stage. Proteomics 9:3489–3506

    CAS  PubMed  Google Scholar 

  • Nde PN, Simmons KJ, Kleshchenko YY, Pratap S, Lima MF, Villalta F (2006) Silencing of the laminin γ-1 gene blocks Trypanosoma cruzi infection. Infect Immun 74:1643–1648

    CAS  PubMed  Google Scholar 

  • Nett IRE, Martin DMA, Miranda-Saavedra D, Lamont D, Barber JD, Mehlert A, Ferguson MAJ (2009) The phosphoproteome of bloodstream form Trypanosoma brucei, causative agent of African sleeping sickness. Mol Cell Proteomics 8:1527–1538

    CAS  PubMed  Google Scholar 

  • Oliveira FO, Alves CR, Calvet CM, Toma L, Boucas RI, Nader HB, Castro Cortes LM, Krieger MA, Meirelles MN, Souza Pereira MC (2008) Trypanosoma cruzi heparin-binding proteins and the nature of the host cell heparan sulfate-binding domain. Microb Pathog 44:329–338

    PubMed  Google Scholar 

  • Oliveira-Jr F, Alves C, Silva F, Cortes L, Toma L, Boucas R, Aguilar T, Nader H, Pereira M (2013) Trypanosoma cruzi heparin-binding proteins present a flagellar membrane localization and serine proteinase activity. Parasitology 140:171–180

    CAS  PubMed  Google Scholar 

  • Omary MB, Ku NO, Liao J, Price D (1998) Keratin modifications and solubility properties in epithelial cells and in vitro. Subcell Biochem 31:105–140

    CAS  PubMed  Google Scholar 

  • Oppezzo P, Obal G, Baraibar MA, Pritsch O, Alzari PM, Buschiazzo A (2011) Crystal structure of an enzymatically inactive trans-sialidase-like lectin from Trypanosoma cruzi: the carbohydrate binding mechanism involves residual sialidase activity. Biochim Biophys Acta 1814:1154–1161

    CAS  PubMed  Google Scholar 

  • Ouaissi MA, Afchain D, Capron A, Grimaud JA (1984) Fibronectin receptors on Trypanosoma cruzi trypomastigotes and their biological function. Nature 308:380–382

    CAS  PubMed  Google Scholar 

  • Ouaissi A, Cornette J, Afchain D, Capron A, Gras-Masse H, Tartar A (1986) Trypanosoma cruzi infection inhibited by peptides modeled from fibronectin cell attachment domain. Science 234:603–607

    CAS  PubMed  Google Scholar 

  • Pablos LM, Osuna A (2012) Conserved regions as markers of different patterns of expression and distribution of the mucin-associated surface proteins of Trypanosoma cruzi. Infect Immun 80:169–174

    PubMed  Google Scholar 

  • Parsons M, Worthey EA, Ward PN, Mottram JC (2005) Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi. BMC Genomics 6:127

    PubMed  Google Scholar 

  • Pasqualini R (1999) Vascular targeting with phage peptide libraries. Q J Nucl Med 43:159–162

    CAS  PubMed  Google Scholar 

  • Pasqualini R, Ruoslahti E (1996) Organ targeting in vivo using phage display peptide libraries. Nature 380:364–366

    CAS  PubMed  Google Scholar 

  • Pena SD, Machado CR, Macedo AM (2009) Trypanosoma cruzi: ancestral genomes and population structure. Mem Inst Oswaldo Cruz 104(Suppl 1):108–114

    CAS  PubMed  Google Scholar 

  • Pereira ME (1983) A developmentally regulated neuraminidase activity in Trypanosoma cruzi. Science 219:1444–1446

    CAS  PubMed  Google Scholar 

  • Pereira ME, Hoff R (1986) Heterogeneous distribution of neuraminidase activity in strains and clones of Trypanosoma cruzi and its possible association with parasite myotropism. Mol Biochem Parasitol 20:183–189

    CAS  PubMed  Google Scholar 

  • Pereira ME, Mejia JS, Ortega-Barria E, Matzilevich D, Prioli RP (1991) The Trypanosoma cruzi neuraminidase contains sequences similar to bacterial neuraminidases, YWTD repeats of the low density lipoprotein receptor, and type III modules of fibronectin. J Exp Med 174:179–191

    CAS  PubMed  Google Scholar 

  • Pierleoni A, Martelli PL, Casadio R (2008) PredGPI: a GPI-anchor predictor. BMC Bioinforma 9:392

    Google Scholar 

  • Pollevick GD, Affranchino JL, Frasch ACC, Sanchez DO (1991) The complete sequence of a shed acute-phase antigen of Trypanosoma cruzi. Mol Biochem Parasitol 47:247–250

    CAS  PubMed  Google Scholar 

  • Pollevick GD, Di Noia JM, Salto ML, Lima C, Leguizamon MS, Lederkremer RM, Frasch ACC (2000) Trypanosoma cruzi surface mucins with exposed variant epitopes. J Biol Chem 275:27671–22005

    CAS  PubMed  Google Scholar 

  • Previato JO, Gorin PA, Mazurek M, Xavier MT, Fournet B, Wieruszesk JM, Mendonca-Previato L (1990) Primary structure of the oligosaccharide chain of lipopeptidophosphoglycan of epimastigote forms of Trypanosoma cruzi. J Biol Chem 265:2518–2526

    CAS  PubMed  Google Scholar 

  • Previato JO, Jones C, Xavier MT, Wait R, Parodi AJ, MendonÁa-Previato L (1995) Structural characterization of the major glycosylphosphatidylinositol membrane-anchored glycoprotein from epimastigote forms of Trypanosoma cruzi Y-strain. J Biol Chem 270:7241–7250

    CAS  PubMed  Google Scholar 

  • Prucca CG, Slavin I, Quiroga R, Elias EV, Rivero FD, Saura A, Carranza PG, Luján HD (2008) Antigenic variation in Giardia lamblia is regulated by RNA interference. Nature 456:750–754

    CAS  PubMed  Google Scholar 

  • Rajotte D, Arap W, Hagedorn M, Koivunen E, Pasqualini R, Ruoslahti E (1998) Molecular heterogeneity of the vascular endothelium revealed by in vivo phage display. J Clin Investig 102:430–437

    CAS  PubMed  Google Scholar 

  • Ramirez JD, Guhl F, Rendon LM, Rosas F, Marin-Neto JA, Morillo CA (2010) Chagas cardiomyopathy manifestations and Trypanosoma cruzi genotypes circulating in chronic Chagasic patients. PLoS Negl Trop Dis 4:e899

    CAS  PubMed  Google Scholar 

  • Ridge KM, Linz L, Flitney FW, Kuczmarski ER, Chou Y-H, Omary MB, Sznajder JI, Goldman RD (2005) Keratin 8 phosphorylation by protein Kinase C δ regulates shear stress-mediated disassembly of keratin intermediate filaments in alveolar epithelial cells. J Biol Chem 280:30400–30405

    CAS  PubMed  Google Scholar 

  • Rubin SS, Schenkman S (2012) Trypanosoma cruzi trans-sialidase as a multifunctional enzyme in Chagas’ disease. Cell Microbiol 14:1522–1530

    Google Scholar 

  • Rubin-de-Celis SS, Uemura H, Yoshida N, Schenkman S (2006) Expression of trypomastigote trans-sialidase in metacyclic forms of Trypanosoma cruzi increases parasite escape from its parasitophorous vacuole. Cell Microbiol 8:1888–1898

    PubMed  Google Scholar 

  • Ruoslahti E (1988) Structure and biology of proteoglycans. Annu Rev Cell Biol 4:229–255

    CAS  PubMed  Google Scholar 

  • Ruoslahti E (1996) RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 12:697–715

    CAS  PubMed  Google Scholar 

  • Ruoslahti E, Rajotte D (2000) An address system in the vasculature of normal tissues and tumors. Annu Rev Immunol 18:813–827

    CAS  PubMed  Google Scholar 

  • Salto ML, Bertello LE, Vieira M, Docampo R, Moreno SNJ, de Lederkremer RM (2003) Formation and remodeling of inositolphosphoceramide during differentiation of Trypanosoma cruzi from trypomastigote to amastigote. Eukaryot Cell 2:756–768

    CAS  PubMed  Google Scholar 

  • Santos SL, Freitas LM, Lobo FP, Rodrigues-Luiz GF, Mendes TA, Oliveira AC, Andrade LO, Chiari E, Gazzinelli RT, Teixeira SMR, Fujiwara RT, Bartholomeu DC (2012) The MASP family of Trypanosoma cruzi: changes in gene expression and antigenic profile during the acute phase of experimental infection. PLoS Negl Trop Dis 6:e1779

    PubMed  Google Scholar 

  • Sardinha LR, Mosca T, Elias RM, Nascimento RS, Goncalves LA, Bucci DZ, Marinho CR, Penha-Goncalves C, Lima MR, Alvarez JM (2010) The liver plays a major role in clearance and destruction of blood trypomastigotes in Trypanosoma cruzi chronically infected mice. PLoS Negl Trop Dis 4:e578

    PubMed  Google Scholar 

  • Schenkman S, Eichinger D (1994) Trypanosoma cruzi trans-sialidase and cell invasion. Parasitol Today 9:218–221

    Google Scholar 

  • Schenkman S, Eichinger D, Pereira ME, Nussenzweig V (1994) Structural and functional properties of Trypanosoma trans-sialidase. Annu Rev Microbiol 48:499–523

    CAS  PubMed  Google Scholar 

  • Schwede A, Kramer S, Carrington M (2012) How do trypanosomes change gene expression in response to the environment? Protoplasma 249:223–238

    CAS  PubMed  Google Scholar 

  • Sivaramakrishnan S, Schneider JL, Sitikov A, Goldman RD, Ridge KM (2009) Shear stress induced reorganization of the keratin intermediate filament network requires phosphorylation by protein kinase C ζ. Mol Biol Cell 20:2755–2765

    CAS  PubMed  Google Scholar 

  • Smith GP (1985) Filamentous fusion phage: novel expression vectors that display antigens on the virion surface. Science 228:1315–1317

    CAS  PubMed  Google Scholar 

  • Sturm NR, Campbell DA (2010) Alternative lifestyles: the population structure of Trypanosoma cruzi. Acta Trop 115:35–43

    PubMed  Google Scholar 

  • Tarleton RL (2007) Immune system recognition of Trypanosoma cruzi. Curr Opin Immunol 19:430–434

    CAS  PubMed  Google Scholar 

  • Tarleton RL, Sun J, Zhang L, Postan M (1994) Depletion of T-cell subpopulations results in exacerbation of myocarditis and parasitism in experimental Chagas’ disease. Infect Immun 62:1820–1829

    CAS  PubMed  Google Scholar 

  • Tarleton RL, Grusby MJ, Postan M, Glimcher LH (1996) Trypanosoma cruzi infection in MHC-deficient mice: further evidence for the role of both class I- and class II-restricted T cells in immune resistance and disease. Int Immunol 8:13–22

    CAS  PubMed  Google Scholar 

  • Telleria J, Biron DG, Brizard J-P, Demettre E, Seveno M, Barnabe C, Ayala FJ, Tibayrenc M (2010) Phylogenetic character mapping of proteomic diversity shows high correlation with subspecific phylogenetic diversity in Trypanosoma cruzi. PNAS 107:20411–20416

    CAS  PubMed  Google Scholar 

  • Tomlinson S, Pontes de Carvalho L, Vanderkeckhove F, Nussenzweig V (1994) Role of sialic acid in resistance of Trypanosoma cruzi trypomastigote to complement. J Immunol 153:3141–3148

    CAS  PubMed  Google Scholar 

  • Tonelli RR, Silber AM, Almeida-de-Faria M, Hirata IY, Colli W, Alves MJ (2004) L-proline is essential for the intracellular differentiation of Trypanosoma cruzi. Cell Microbiol 6:733–741

    CAS  PubMed  Google Scholar 

  • Tonelli RR, Giordano RJ, Barbu EM, Torrecilhas AC, Kobayashi GS, Langley RR, Arap W, Pasqualini R, Colli W, Alves MJM (2010) Role of the gp85/trans-sialidases in Trypanosoma cruzi tissue tropism: preferential binding of a conserved peptide motif to the vasculature in vivo. PLoS Negl Trop Dis 4:e864

    PubMed  Google Scholar 

  • Tonelli RR, Torrecilhas AC, Jacysyn JF, Juliano MA, Colli W, Alves MJM (2011) In vivo infection by Trypanosoma cruzi: the conserved FLY domain of the gp85/trans-sialidase family potentiates host infection. Parasitology 138:481–492

    CAS  PubMed  Google Scholar 

  • Torrecilhas ACT, Schumacher RI, Alves MJM, Colli W (2012) Vesicles as carriers of virulence factors in parasitic protozoan diseases. Microbes Infect 14:1465–1474

    CAS  PubMed  Google Scholar 

  • Urban I, Santurio LB, Chidichimo A, Yu H, Chen X, Mucci J, Aguero F, Buscaglia CA (2011) Molecular diversity of the Trypanosoma cruzi TcSMUG family of mucin genes and proteins. Biochem J 438:303–313

    CAS  PubMed  Google Scholar 

  • Velge P, Ouaissi MA, Cornette J, Afchain D, Capron A (1988) Identification and isolation of Trypanosoma cruzi trypomastigote collagen-binding proteins: possible role in cell-parasite interaction. Parasitology 97:255–268

    CAS  PubMed  Google Scholar 

  • Villalta F, Scharfstein J, Ashton AW, Tyler KM, Guan F, Mukherjee S, Lima MF, Alvarez S, Weiss LM, Huang H, Machado FS, Tanowitz HB (2009) Perspectives on the Trypanosoma cruzi-host cell receptor interactions. Parasitol Res 104:1251–1260

    PubMed  Google Scholar 

  • Weinkauf C, Salvador R, Pereiraperrin M (2011) Neurotrophin receptor TrkC is an entry receptor for Trypanosoma cruzi in neural, glial, and epithelial cells. Infect Immun 79:4081–4087

    CAS  PubMed  Google Scholar 

  • Yoshida N (2009) Molecular mechanisms of Trypanosoma cruzi infection by oral route. Mem Inst Oswaldo Cruz 104(1):101–107

    CAS  PubMed  Google Scholar 

  • Zafra GA, Mantilla JC, Jacome J, Macedo AM, Gonzalez CI (2011) Direct analysis of genetic variability in Trypanosoma cruzi populations from tissues of Colombian Chagasic patients. Hum Pathol 42:1159–1168

    CAS  PubMed  Google Scholar 

  • Zhong L, Lu HG, Moreno SNJ, Docampo R (1998) Tyrosine phosphate hydrolysis of host proteins by Trypanosoma cruzi is linked to cell invasion. FEMS Microbiol Lett 161:15–20

    CAS  PubMed  Google Scholar 

  • Zingales B, Andrade SG, Briones MR, Campbell DA, Chiari E, Fernandes O, Guhl F, Lages-Silva E, Macedo AM, Machado CR, Miles MA, Romanha AJ, Sturm NR, Tibayrenc M, Schijman AG (2009) A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz 104:1051–1054

    CAS  PubMed  Google Scholar 

  • Zingales B, Miles MA, Campbell DA, Tibayrenc M, Macedo AM, Teixeira MMG, Schijman AG, Llewellyn MS, Lages-Silva E, Machado CR, Andrade SG, Sturm NR (2012) The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. Infect Genet Evol 12:240–253

    PubMed  Google Scholar 

Download references

Acknowledgements

Part of the work herein discussed was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Julia M. Alves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mattos, E.C., Tonelli, R.R., Colli, W., Alves, M.J.M. (2014). The Gp85 Surface Glycoproteins from Trypanosoma cruzi . In: Santos, A., Branquinha, M., d’Avila-Levy, C., Kneipp, L., Sodré, C. (eds) Proteins and Proteomics of Leishmania and Trypanosoma. Subcellular Biochemistry, vol 74. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7305-9_7

Download citation

Publish with us

Policies and ethics