Skip to main content

Towards the Phosphoproteome of Trypanosomatids

  • Chapter
  • First Online:
Proteins and Proteomics of Leishmania and Trypanosoma

Abstract

The identification and localization of protein phosphorylation sites provide clues to what proteins or pathways might be activated in a given condition, helping to improve our understanding about signaling networks. Advances in strategies for enrichment of phosphorylated peptides/proteins, mass spectrometry (MS) instrumentation, and specific MS techniques for identification and quantification of post-translational modifications have allowed for large-scale mapping of phosphorylation sites, promoting the field of phosphoproteomics. The great promise of phosphoproteomics is to unravel the dynamics of signaling networks, a layer of the emerging field of systems biology. Until a few years ago only a small number of phosphorylation sites had been described. Following large-scale trends, recent phosphoproteomic studies have reported the mapping of thousands of phosphorylation sites in trypanosomatids. However, quantitative information about the regulation of such sites in different conditions is still lacking. In this chapter, we provide a historical overview of phosphoproteomic studies for trypanosomatids and discuss some challenges and perspectives in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D-DIGE:

Two dimensional differential gel electrophoresis

2DE:

Two dimensional electrophoresis

AGC:

Kinases containing PKA, PKG, and PKC

ALK:

Anaplastic lymphoma kinase

aPK:

Atypical protein kinase

CAMK:

Group of kinases containing calcium/calmodulin-dependent kinases

CaMKK:

Calmodulin-dependent protein kinase kinase

CDK1:

Cyclin-dependent kinase 1

CID:

Collision-induced dissociation

CK:

Casein-kinase

CMGC:

Group of kinases containing cyclin-dependent kinases, mitogen-activated protein kinases, Glycogen synthase kinases, and CDK-like kinases.

CRK:

CT10 regulator of kinase

DGF:

Dispersed gene family

DHB:

2,5-dihydroxybenzoic acid

DYRK:

Dual-specificity tyrosine-regulated kinase

ECD:

Electron capture dissociation

EGFR:

Epidermal growth factor receptor

ePK:

Eukaryotic protein kinase

ERK:

Extracellular signal-regulated kinase

ERLIC:

Electrostatic repulsion- hydrophilic interaction chromatography

ESI:

Electron spray ionization

ETD:

Electron transfer dissociation

FRAP:

FKBP12-rapamycin-associated protein

GMD:

Glycosomal malate dehydrogenase

GSK3:

Glycogen synthase kinase 3

HCD:

Higher-energy C-trap dissociation

HILIC:

Hydrophilic interaction chromatography

HOP:

HSP organizing protein

HSP:

Heat shock protein

IDA:

Iminodiacetic acid

IgE-HRF:

Immunoglobulin E-dependent histamine-releasing factor

IMAC:

Immobilized metal affinity chromatography

iTRAQ:

Isobaric tag for relative and absolute quantification

LC:

Liquid chromatography

m/z:

Mass-to-charge-ratio

MALDI:

Matrix-assisted laser desorption/ionization

MAP kinase:

Mitogen-activated protein kinase

MOAC:

Metal oxide affinity chromatography

mRNA:

Messenger RNA

MS:

Mass spectrometry

MSA:

Multi-stage activation

NEK:

NimA related kinase

NTA:

Nitrilotriacetic acid

PEK:

Pancreatic eukaryotic initiation factor-2alpha kinase

Pf2αS:

Prostaglandin F2-alpha synthase

PK:

Protein kinase

PKA:

Protein kinase A

PP:

Protein phosphatase

PTM:

Post-translational modification

PTP:

Tyrosine-specific phosphatase

RIO2:

Right open reading frame 2

RP:

Reverse phase

SAX:

Strong anion exchange

SCX:

Strong cation exchange

SH2:

Src homology 2

SILAC:

Stable isotope labeling by amino acids in cell culture

SIMAC:

Sequential elution from IMAC

STE:

Group of kinases homolog of Sterile

STI:

Stress inducible protein

STP:

Serine/threonine phosphatase

TCTP:

Translationally controlled-tumor-protein

TED:

Tris-(carbomethyl)-ethylendiamine

TFA:

Trifluoroacetic acid

TGF-β:

Transforming growth factor beta

TOF:

Time of flight

TPR:

Tetratricopeptide repeat

ULK:

UNC-51-like kinases

References

  • Agabian N (1990) Trans splicing of nuclear pre-mRNAs. Cell 61:1157–1160

    Article  PubMed  CAS  Google Scholar 

  • Alonso A, Rojas A, Godzik A et al (2004a) The dual-specific protein tyrosine phosphatase family. In: Protein phosphatases. Topics in current genetics. Springer: Berlin Heidelberg

    Google Scholar 

  • Alonso A, Sasin J, Bottini N et al (2004b) Protein tyrosine phosphatases in the human genome. Cell 117:699–711

    Article  PubMed  CAS  Google Scholar 

  • Alpert AJ (2008) Electrostatic repulsion hydrophilic interaction chromatography for isocratic separation of charged solutes and selective isolation of phosphopeptides. Anal Chem 80:62–76

    Article  PubMed  CAS  Google Scholar 

  • Andersson L, Porath J (1986) Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Anal Biochem 154:250–254

    Article  PubMed  CAS  Google Scholar 

  • Bakalarski CE, Haas W, Dephoure NE et al (2007) The effects of mass accuracy, data acquisition speed, and search algorithm choice on peptide identification rates in phosphoproteomics. Anal Bioanal Chem 389:1409–1419

    Article  PubMed  CAS  Google Scholar 

  • Ballif BA, Villen J, Beausoleil SA et al (2004) Phosphoproteomic analysis of the developing mouse brain. Mol Cell Proteomics 3:1093–1101

    Article  PubMed  CAS  Google Scholar 

  • Beausoleil SA, Jedrychowski M, Schwartz D et al (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci USA 101:12130–12135

    Article  PubMed  CAS  Google Scholar 

  • Beausoleil SA, Villen J, Gerber SA et al (2006) A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol 24:1285–1292

    Article  PubMed  CAS  Google Scholar 

  • Berriman M, Ghedin E, Hertz-Fowler C et al (2005) The genome of the African trypanosome Trypanosoma brucei. Science 309:416–422

    Article  PubMed  CAS  Google Scholar 

  • Bodenmiller B, Mueller LN, Mueller M et al (2007) Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nat Methods 4:231–237

    Article  PubMed  CAS  Google Scholar 

  • Bodenmiller B, Wanka S, Kraft C et al (2010) Phosphoproteomic analysis reveals interconnected system-wide responses to perturbations of kinases and phosphatases in yeast. Sci Signal 3:rs4

    Article  PubMed  CAS  Google Scholar 

  • Boersema PJ, Mohammed S, HECK AJ (2009) Phosphopeptide fragmentation and analysis by mass spectrometry. J Mass Spectrom 44:861–878

    Article  PubMed  CAS  Google Scholar 

  • Brenchley R, Tariq H, Mcelhinney H et al (2007) The TriTryp phosphatome: analysis of the protein phosphatase catalytic domains. BMC Genomics 8:434

    Article  PubMed  Google Scholar 

  • Chapman AB, Agabian N (1994) Trypanosoma brucei RNA polymerase II is phosphorylated in the absence of carboxyl-terminal domain heptapeptide repeats. J Biol Chem 269:4754–4760

    PubMed  CAS  Google Scholar 

  • Clayton CE (2002) Life without transcriptional control? From fly to man and back again. EMBO J 21:1881–1888

    Article  PubMed  CAS  Google Scholar 

  • Cohen PTW (2004) Overview of protein serine/threonine phosphatases. Topics in current genetics: protein phosphatases. Springer: Berlin Heidelberg

    Google Scholar 

  • Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372

    Article  PubMed  CAS  Google Scholar 

  • DA Cunha JP, Nakayasu ES, Elias MC et al (2005) Trypanosoma cruzi histone H1 is phosphorylated in a typical cyclin dependent kinase site accordingly to the cell cycle. Mol Biochem Parasitol 140:75–86

    Article  PubMed  Google Scholar 

  • Das A, Peterson GC, Kanner SB et al (1996) A major tyrosine-phosphorylated protein of Trypanosoma brucei is a nucleolar RNA-binding protein. J Biol Chem 271:15675–15681

    Article  PubMed  CAS  Google Scholar 

  • de Jong EP, Griffin TJ (2012) Online nanoscale ERLIC-MS outperforms RPLC-MS for shotgun proteomics in complex mixtures. J Proteome Res 11:5059–5064

    Article  PubMed  Google Scholar 

  • Dean S, Marchetti R, KIRK K et al (2009) A surface transporter family conveys the trypanosome differentiation signal. Nature 459:213–217

    Article  PubMed  CAS  Google Scholar 

  • Dephoure N, Gygi SP (2011) A solid phase extraction-based platform for rapid phosphoproteomic analysis. Methods 54:379–386

    Article  PubMed  CAS  Google Scholar 

  • El-Sayed NM, Myler PJ, Bartholomeu DC et al (2005) The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 309:409–415

    Article  PubMed  CAS  Google Scholar 

  • Engholm-Keller K, Hansen TA, PALMISANO G et al (2011) Multidimensional strategy for sensitive phosphoproteomics incorporating protein prefractionation combined with SIMAC, HILIC, and TiO(2) chromatography applied to proximal EGF signaling. J Proteome Res 10:5383–5397

    Article  PubMed  CAS  Google Scholar 

  • Engholm-Keller K, Birck P, STORLING J et al (2012) TiSH – a robust and sensitive global phosphoproteomics strategy employing a combination of TiO(2), SIMAC, and HILIC. J Proteomics 75:5749–5761

    Article  PubMed  CAS  Google Scholar 

  • Ferrao PM, de Oliveira FL, Degrave WM et al (2012) A phosphoproteomic approach towards the understanding of the role of TGF-beta in Trypanosoma cruzi biology. PLoS One 7:e38736

    Article  PubMed  CAS  Google Scholar 

  • Ficarro SB, Mccleland ML, Stukenberg PT et al (2002) Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 20:301–305

    Article  PubMed  CAS  Google Scholar 

  • Ficarro SB, Adelmant G, Tomar MN et al (2009) Magnetic bead processor for rapid evaluation and optimization of parameters for phosphopeptide enrichment. Anal Chem 81:4566–4575

    Article  PubMed  CAS  Google Scholar 

  • Ficarro SB, Zhang Y, Carrasco-Alfonso MJ (2011) Online nanoflow multidimensional fractionation for high efficiency phosphopeptide analysis. Mol Cell Proteomics 10(O111):011064

    PubMed  Google Scholar 

  • Gaberc-Porekar V, Menart V (2001) Perspectives of immobilized-metal affinity chromatography. J Biochem Biophys Methods 49:335–360

    Article  PubMed  CAS  Google Scholar 

  • Gnad F, De Godoy LM, Cox J et al (2009) High-accuracy identification and bioinformatic analysis of in vivo protein phosphorylation sites in yeast. Proteomics 9(20):4642–4652

    Google Scholar 

  • Gomez EB, Medina G, Ballesta JP et al (2001) Acidic ribosomal P proteins are phosphorylated in Trypanosoma cruzi. Int J Parasitol 31:1032–1039

    Article  PubMed  CAS  Google Scholar 

  • Grimsrud PA, SWANEY DL, Wenger CD et al (2010) Phosphoproteomics for the masses. ACS Chem Biol 5:105–119

    Article  PubMed  CAS  Google Scholar 

  • Han G, Ye M, Zhou H et al (2008) Large-scale phosphoproteome analysis of human liver tissue by enrichment and fractionation of phosphopeptides with strong anion exchange chromatography. Proteomics 8:1346–1361

    Article  PubMed  CAS  Google Scholar 

  • Hem S, Gherardini PF, Osorio Y, Fortea J et al (2010) Identification of Leishmania-specific protein phosphorylation sites by LC-ESI-MS/MS and comparative genomics analyses. Proteomics 10:3868–3883

    Article  PubMed  CAS  Google Scholar 

  • Hunt DF, Yates JR 3rd, Shabanowitz J et al (1986) Protein sequencing by tandem mass spectrometry. Proc Natl Acad Sci USA 83:6233–6237

    Article  PubMed  CAS  Google Scholar 

  • Huttlin EL, Jedrychowski MP, Elias JE et al (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143:1174–1189

    Article  PubMed  CAS  Google Scholar 

  • Ivens AC, Peacock CS, Worthey EA et al (2005) The genome of the kinetoplastid parasite, Leishmania major. Science 309:436–442

    Article  PubMed  Google Scholar 

  • Jedrychowski MP, Huttlin EL, Haas W et al (2011) Evaluation of HCD- and CID-type fragmentation within their respective detection platforms for murine phosphoproteomics. Mol Cell Proteomics 10(M111):009910

    PubMed  Google Scholar 

  • Jensen SS, Larsen MR (2007) Evaluation of the impact of some experimental procedures on different phosphopeptide enrichment techniques. Rapid Commun Mass Spectrom 21:3635–3645

    Article  PubMed  CAS  Google Scholar 

  • Johnson H, White FM (2012) Toward quantitative phosphotyrosine profiling in vivo. Semin Cell Dev Biol 23:854–862

    Article  PubMed  CAS  Google Scholar 

  • Kettenbach AN, Gerber SA (2011) Rapid and reproducible single-stage phosphopeptide enrichment of complex peptide mixtures: application to general and phosphotyrosine-specific phosphoproteomics experiments. Anal Chem 83:7635–7644

    Article  PubMed  CAS  Google Scholar 

  • Kokubu M, Ishihama Y, Sato T et al (2005) Specificity of immobilized metal affinity-based IMAC/C18 tip enrichment of phosphopeptides for protein phosphorylation analysis. Anal Chem 77:5144–5154

    Article  PubMed  CAS  Google Scholar 

  • Kramer S (2012) Developmental regulation of gene expression in the absence of transcriptional control: the case of kinetoplastids. Mol Biochem Parasitol 181:61–72

    Article  PubMed  CAS  Google Scholar 

  • Kunz RC, Mcallister FE, Rush J et al (2012) A high-throughput, multiplexed kinase assay using a benchtop orbitrap mass spectrometer to investigate the effect of kinase inhibitors on kinase signaling pathways. Anal Chem 84:6233–6239

    Article  PubMed  CAS  Google Scholar 

  • Kweon HK, Hakansson K (2006) Selective zirconium dioxide-based enrichment of phosphorylated peptides for mass spectrometric analysis. Anal Chem 78:1743–1749

    Article  PubMed  CAS  Google Scholar 

  • Larsen MR, Thingholm TE, Jensen ON et al (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 4:873–886

    Article  PubMed  CAS  Google Scholar 

  • Leitner A, Sturm M, Lindner W (2011) Tools for analyzing the phosphoproteome and other phosphorylated biomolecules: a review. Anal Chim Acta 703:19–30

    Article  PubMed  CAS  Google Scholar 

  • Lim KB, Kassel DB (2006) Phosphopeptides enrichment using on-line two-dimensional strong cation exchange followed by reversed-phase liquid chromatography/mass spectrometry. Anal Biochem 354:213–219

    Article  PubMed  CAS  Google Scholar 

  • Lundby A, Secher A, Lage K et al (2012) Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. Nat Commun 3:876

    Article  PubMed  Google Scholar 

  • Marchini FK, de Godoy LM, Rampazzo RC et al (2011) Profiling the Trypanosoma cruzi Phosphoproteome. PLoS One 6:e25381

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Calvillo S, Yan S, Nguyen D et al (2003) Transcription of Leishmania major Friedlin chromosome 1 initiates in both directions within a single region. Mol Cell 11:1291–1299

    Article  PubMed  CAS  Google Scholar 

  • Mclafferty FW, Horn DM, Breuker K et al (2001) Electron capture dissociation of gaseous multiply charged ions by Fourier-transform ion cyclotron resonance. J Am Soc Mass Spectrom 12:245–249

    Article  PubMed  CAS  Google Scholar 

  • Mcnulty DE, Li Z, White CD et al (2011) MAPK scaffold IQGAP1 binds the EGF receptor and modulates its activation. J Biol Chem 286:15010–15021

    Article  PubMed  CAS  Google Scholar 

  • Michalski A, Damoc E, Hauschild JP et al (2011) Mass spectrometry-based proteomics using Q Exactive, a high-performance benchtop quadrupole Orbitrap mass spectrometer. Mol Cell Proteomics 10(M111):011015

    PubMed  Google Scholar 

  • Mikesh LM, Ueberheide B, Chi A et al (2006) The utility of ETD mass spectrometry in proteomic analysis. Biochim Biophys Acta 1764:1811–1822

    Article  PubMed  CAS  Google Scholar 

  • Monetti M, NAGARAJ N, Sharma K et al (2011) Large-scale phosphosite quantification in tissues by a spike-in SILAC method. Nat Methods 8:655–658

    Article  PubMed  CAS  Google Scholar 

  • Morales MA, Watanabe R, Laurent C et al (2008) Phosphoproteomic analysis of Leishmania donovani pro- and amastigote stages. Proteomics 8:350–363

    Article  PubMed  CAS  Google Scholar 

  • Morales MA, Watanabe R, Dacher M et al (2010) Phosphoproteome dynamics reveal heat-shock protein complexes specific to the Leishmania donovani infectious stage. Proc Natl Acad Sci USA 107:8381–8386

    Article  PubMed  CAS  Google Scholar 

  • Mortensen P, Gouw JW, Olsen JV et al (2010) MSQuant, an open source platform for mass spectrometry-based quantitative proteomics. J Proteome Res 9:393–403

    Article  PubMed  CAS  Google Scholar 

  • Nakayasu ES, Gaynor MR, Sobreira TJ et al (2009) Phosphoproteomic analysis of the human pathogen Trypanosoma cruzi at the epimastigote stage. Proteomics 9:3489–3506

    Article  PubMed  CAS  Google Scholar 

  • Nardelli SC, da Cunha JP, Motta MC et al (2009) Distinct acetylation of Trypanosoma cruzi histone H4 during cell cycle, parasite differentiation, and after DNA damage. Chromosoma 118:487–499

    Article  PubMed  CAS  Google Scholar 

  • Nett IR, Davidson L, Lamont D et al (2009a) Identification and specific localization of tyrosine-phosphorylated proteins in Trypanosoma brucei. Eukaryot Cell 8:617–626

    Article  PubMed  CAS  Google Scholar 

  • Nett IR, Martin DM, Miranda-Saavedra D et al (2009b) The phosphoproteome of bloodstream form Trypanosoma brucei, causative agent of African sleeping sickness. Mol Cell Proteomics 8:1527–1538

    Article  PubMed  CAS  Google Scholar 

  • Nie S, Dai J, Ning ZB et al (2010) Comprehensive profiling of phosphopeptides based on anion exchange followed by flow-through enrichment with titanium dioxide (AFET). J Proteome Res 9:4585–4594

    Article  PubMed  CAS  Google Scholar 

  • Nuhse TS, Stensballe A, Jensen ON et al (2003) Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. Mol Cell Proteomics 2:1234–1243

    Article  PubMed  Google Scholar 

  • Nuhse T, Yu K, Salomon A (2007) Isolation of phosphopeptides by immobilized metal ion affinity chromatography. Curr Protoc Mol Biol Chapter 18: Unit 18.13

    Google Scholar 

  • Olsen JV, Mann M (2004) Improved peptide identification in proteomics by two consecutive stages of mass spectrometric fragmentation. Proc Natl Acad Sci USA 101:13417–13422

    Article  PubMed  CAS  Google Scholar 

  • Olsen JV, Blagoev B, Gnad F et al (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127:635–648

    Article  PubMed  CAS  Google Scholar 

  • Olsen JV, Macek B, Lange O et al (2007) Higher-energy C-trap dissociation for peptide modification analysis. Nat Methods 4:709–712

    Article  PubMed  CAS  Google Scholar 

  • Olsen JV, Vermeulen M, Santamaria A et al (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3:ra3

    Article  PubMed  Google Scholar 

  • Ong SE, Blagoev B, Kratchmarova I et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386

    Article  PubMed  CAS  Google Scholar 

  • Palumbo AM, Tepe JJ, Reid GE (2008) Mechanistic insights into the multistage gas-phase fragmentation behavior of phosphoserine- and phosphothreonine-containing peptides. J Proteome Res 7:771–779

    Article  PubMed  CAS  Google Scholar 

  • Parsons M, Worthey EA, Ward PN et al (2005) Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi. BMC Genomics 6:127

    Article  PubMed  Google Scholar 

  • Pinkse MW, Uitto PM, Hilhorst MJ et al (2004) Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal Chem 76:3935–3943

    Article  PubMed  CAS  Google Scholar 

  • Posewitz MC, Tempst P (1999) Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal Chem 71:2883–2892

    Article  PubMed  CAS  Google Scholar 

  • Rikova K, Guo A, Zeng Q et al (2007) Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131:1190–1203

    Article  PubMed  CAS  Google Scholar 

  • Roepstorff P, Fohlman J (1984) Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed Mass Spectrom 11:601

    Article  PubMed  CAS  Google Scholar 

  • Rush J, Moritz A, Lee KA et al (2005) Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat Biotechnol 23:94–101

    Article  PubMed  CAS  Google Scholar 

  • Salih E (2005) Phosphoproteomics by mass spectrometry and classical protein chemistry approaches. Mass Spectrom Rev 24:828–846

    Article  PubMed  CAS  Google Scholar 

  • Sather S, Agabian N (1985) A 5′ spliced leader is added in trans to both alpha- and beta-tubulin transcripts in Trypanosoma brucei. Proc Natl Acad Sci USA 82:5695–5699

    Article  PubMed  CAS  Google Scholar 

  • Schroeder MJ, Shabanowitz J, Schwartz JC et al (2004) A neutral loss activation method for improved phosphopeptide sequence analysis by quadrupole ion trap mass spectrometry. Anal Chem 76:3590–3598

    Article  PubMed  CAS  Google Scholar 

  • Sleno L, Volmer DA (2004) Ion activation methods for tandem mass spectrometry. J Mass Spectrom 39:1091–1112

    Article  PubMed  CAS  Google Scholar 

  • Steen H, Kuster B, Fernandez M et al (2001) Detection of tyrosine phosphorylated peptides by precursor ion scanning quadrupole TOF mass spectrometry in positive ion mode. Anal Chem 73:1440–1448

    Article  PubMed  CAS  Google Scholar 

  • Stern A, Privman E, Rasis M et al (2007) Evolution of the metazoan protein phosphatase 2C superfamily. J Mol Evol 64:61–70

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama N, Masuda T, Shinoda K et al (2007) Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications. Mol Cell Proteomics 6:1103–1109

    Article  PubMed  CAS  Google Scholar 

  • Syka JE, Coon JJ, Schroeder MJ et al (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci USA 101:9528–9533

    Article  PubMed  CAS  Google Scholar 

  • Thingholm TE, Jorgensen TJ, Jensen ON et al (2006) Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat Protoc 1:1929–1935

    Article  PubMed  CAS  Google Scholar 

  • Thingholm TE, Jensen ON, Robinson PJ et al (2008) SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Mol Cell Proteomics 7:661–671

    Article  PubMed  CAS  Google Scholar 

  • Thingholm TE, Jensen ON, Larsen MR (2009) Analytical strategies for phosphoproteomics. Proteomics 9:1451–1468

    Article  PubMed  CAS  Google Scholar 

  • Thomas S, Green A, Sturm NR et al (2009) Histone acetylations mark origins of polycistronic transcription in Leishmania major. BMC Genomics 10:152

    Article  PubMed  Google Scholar 

  • Trinidad JC, Specht CG, Thalhammer A et al (2006) Comprehensive identification of phosphorylation sites in postsynaptic density preparations. Mol Cell Proteomics 5:914–922

    Article  PubMed  CAS  Google Scholar 

  • Tsai CF, Wang YT, Chen YR et al (2008) Immobilized metal affinity chromatography revisited: pH/acid control toward high selectivity in phosphoproteomics. J Proteome Res 7:4058–4069

    Article  PubMed  CAS  Google Scholar 

  • Urabaniak MD, Martin D, Ferguson MA (2013) Global quantitative SILAC phosphoproteomics reveals differential phosphorylation is widespread between the procyclic and bloodstream form lifecycle stages of Trypanosoma brucei. J Proteome Res 12(5):2233–2244

    Google Scholar 

  • van der Ploeg LHT, Liu AYC, Michels PAM et al (1982) RNA splicing is required to make the messenger RNA for a variant surface antigen in trypanosomes. Nucleic Acids Res 10:3591–3604

    Article  PubMed  Google Scholar 

  • Villen J, Beausoleil SA, Gerber SA et al (2007) Large-scale phosphorylation analysis of mouse liver. Proc Natl Acad Sci USA 104:1488–1493

    Article  PubMed  CAS  Google Scholar 

  • Wells JM, Mcluckey SA (2005) Collision-induced dissociation (CID) of peptides and proteins. Methods Enzymol 402:148–185

    Article  PubMed  CAS  Google Scholar 

  • Wilkes JM, Doerig C (2008) The protein-phosphatome of the human malaria parasite Plasmodium falciparum. BMC Genomics 9:412

    Article  PubMed  Google Scholar 

  • Wilson NF, Lefebvre PA (2004) Regulation of flagellar assembly by glycogen synthase kinase 3 in Chlamydomonas reinhardtii. Eukaryot Cell 3:1307–1319

    Article  PubMed  CAS  Google Scholar 

  • Wolschin F, Wienkoop S, WECKWERTH W (2005) Enrichment of phosphorylated proteins and peptides from complex mixtures using metal oxide/hydroxide affinity chromatography (MOAC). Proteomics 5:4389–4397

    Article  PubMed  CAS  Google Scholar 

  • Wu CJ, Chen YW, Tai JH et al (2011) Quantitative phosphoproteomics studies using stable isotope dimethyl labeling coupled with IMAC-HILIC-nanoLC-MS/MS for estrogen-induced transcriptional regulation. J Proteome Res 10:1088–1097

    Article  PubMed  CAS  Google Scholar 

  • Zarei M, Sprenger A, Metzger F et al (2011) Comparison of ERLIC-TiO2, HILIC-TiO2, and SCX-TiO2 for global phosphoproteomics approaches. J Proteome Res 10:3474–3483

    Article  PubMed  CAS  Google Scholar 

  • Zarei M, Sprenger A, Gretzmeier C et al (2012) Combinatorial use of electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) and strong cation exchange (SCX) chromatography for in-depth phosphoproteome analysis. J Proteome Res 11:4269–4276

    Article  PubMed  CAS  Google Scholar 

  • Zubarev RA, Horn DM, Fridriksson EK et al (2000) Electron capture dissociation for structural characterization of multiply charged protein cations. Anal Chem 72:563–573

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco A. Krieger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Marchini, F.K., de Godoy, L.M.F., Batista, M., Kugeratski, F.G., Krieger, M.A. (2014). Towards the Phosphoproteome of Trypanosomatids. In: Santos, A., Branquinha, M., d’Avila-Levy, C., Kneipp, L., Sodré, C. (eds) Proteins and Proteomics of Leishmania and Trypanosoma. Subcellular Biochemistry, vol 74. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7305-9_15

Download citation

Publish with us

Policies and ethics