Skip to main content

The Expected Outcome of the Trypanosoma cruzi Proteomic Map: A Review of Its Potential Biological Applications for Drug Target Discovery

  • Chapter
  • First Online:
Proteins and Proteomics of Leishmania and Trypanosoma

Part of the book series: Subcellular Biochemistry ((SCBI,volume 74))

Abstract

Chagas disease is a neglected tropical illness endemic to Latin America, and its treatment remains unsatisfactory. This disease is caused by the hemoflagellate protozoan Trypanosoma cruzi, which has a complex life cycle involving three evolutive forms in both vertebrate and invertebrate hosts. Targeting metabolic pathways in the parasite for rational drug design represents a promising research field. This research area requires high performance techniques and proteomics become a powerful tool in this context. Here, we review advances in the construction of proteomic maps of the different forms of T. cruzi, emphasizing their biological applications towards the identification of alternative candidates for drug intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-DE:

Two-dimensional electrophoresis

GPI:

Glycosilphosphatydilinositol

LC-MS/MS:

Liquid chromatography and tandem mass spectrometry

MALDI-TOF:

Matrix-assisted laser desorption/ionization-time of flight

PAF:

Platelet-activating factor

References

  • Abad-Franch F, Santos WS, Schofield CJ (2010) Research needs for Chagas disease prevention. Acta Trop 115:44–54

    Article  PubMed  Google Scholar 

  • Andrade HM, Murta SM, Chapeaurouge A et al (2008) Proteomic analysis of Trypanosoma cruzi resistance to Benznidazole. J Proteome Res 7:2357–2367

    Article  PubMed  Google Scholar 

  • Atwood JA 3rd, Weatherly DB, Minning TA et al (2005) The Trypanosoma cruzi proteome. Science 309:473–476

    Article  PubMed  CAS  Google Scholar 

  • Atwood JA 3rd, Minning T, Ludolf F et al (2006) Glycoproteomics of Trypanosoma cruzi trypomastigotes using subcellular fractionation, lectin affinity, and stable isotope labeling. J Proteome Res 5:3376–3384

    Article  PubMed  CAS  Google Scholar 

  • Batista DG, Pacheco MG, Kumar A et al (2010) Biological, ultrastructural effect and subcellular localization of aromatic diamidines in Trypanosoma cruzi. Parasitology 137:251–259

    Article  PubMed  CAS  Google Scholar 

  • Beghini DG, Ferreira ATS, Caminha MA et al (2012) New insights in Trypanosoma cruzi proteomic map: further post-translational modifications and potential drug targets in Y strain epimastigotes. J Integr Omics 2:106–113

    Google Scholar 

  • Buckner FS, Navabi N (2010) Advances in Chagas disease drug development. Curr Opin Infect Dis 23:609–616, 2009–2010

    Article  PubMed  CAS  Google Scholar 

  • Cazzulo JJ (1994) Intermediate metabolism in Trypanosoma cruzi. J Bioenerg Biomembr 26:157–165

    Article  PubMed  CAS  Google Scholar 

  • Clayton C, Shapira M (2007) Post-transcriptional regulation of gene expression in trypanosomes and leishmanias. Mol Biochem Parasitol 156:93–101

    Article  PubMed  CAS  Google Scholar 

  • Cordero EM, Nakayasu ES, Gentil LG et al (2009) Proteomic analysis of detergent-solubilized membrane proteins from insect-developmental forms of Trypanosoma cruzi. J Proteome Res 8:3642–3652

    Article  PubMed  CAS  Google Scholar 

  • Dantas AP, Barbosa HS, de Castro SL (2003) Biological and Ultrastructural effects of the anti-microtubule agent taxol against Trypanosoma cruzi. J Submicrosc Cytol Pathol 35:287–294

    PubMed  CAS  Google Scholar 

  • Dantas AP, Salomão K, Barbosa HS et al (2006) The effect of Bulgarian propolis against Trypanosoma cruzi and during its interaction with host cells. Mem Inst Oswaldo Cruz 101:207–211

    Article  PubMed  Google Scholar 

  • de Godoy LM, Marchini FK, Pavoni D et al (2012) Quantitative proteomics of Trypanosoma cruzi during metacyclogenesis. Proteomics 12:2694–2703

    Article  PubMed  Google Scholar 

  • de Souza W (2002) From the cell biology to the development of new chemotherapeutic approaches against trypanosomatids: dreams and reality. Kinetoplastid Biol Dis 1:3

    Article  PubMed  Google Scholar 

  • de Souza W, Rodrigues JC (2009) Sterol biosynthesis pathway as target for anti-trypanosomatid drugs. Interdisc Perspect Infect Dis 2009:642502

    Google Scholar 

  • de Souza EM, Lansiaux A, Bailly C et al (2004) Phenyl substitution of furamidine markedly potentiates its antiparasitic activity against Trypanosoma cruzi and Leishmania amazonensis. Biochem Pharmacol 68:593–600

    Article  PubMed  Google Scholar 

  • de Souza EM, Menna-Barreto RFS, Araujo-Jorge TC et al (2006) Antiparasitic activity of aromatic diamidines is related to apoptosis-like death in Trypanosoma cruzi. Parasitology 133:75–79

    Article  PubMed  Google Scholar 

  • Detmer E, Hemphill A, Müller N et al (1997) The Trypanosoma brucei autoantigen I/6 is an internally repetitive cytoskeletal protein. Eur J Cell Biol 72:378–384

    PubMed  CAS  Google Scholar 

  • El-Sayed NM, Myler PJ, Bartholomeu DC et al (2005) The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 309:409–415

    Article  PubMed  CAS  Google Scholar 

  • Ennes-Vidal V, Menna-Barreto RF, Santos ALS et al (2010) Effects of the calpain inhibitor MDL28170 on the clinically relevant forms of Trypanosoma cruzi in vitro. J Antimicrob Chemother 65:1395–1398

    Article  PubMed  CAS  Google Scholar 

  • Ennes-Vidal V, Menna-Barreto RF, Santos ALS et al (2011) MDL28170, A calpain inhibitor, affects Trypanosoma cruzi metacyclogenesis, ultrastructure and attachment to rhodnius prolixus midgut. PLoS One 6:e18371

    Article  PubMed  CAS  Google Scholar 

  • Ersfeld K, Barraclough H, Gull K (2005) Evolutionary relationships and protein domain architecture in an expanded calpain superfamily in kinetoplastid parasites. J Mol Evol 61:742–757

    Article  PubMed  CAS  Google Scholar 

  • Fang J, Beattie DS (2003) Alternative oxidase present in procyclic Trypanosoma brucei may act to lower the mitochondrial production of superoxide. Arch Biochem Biophys 414:294–302

    Article  PubMed  CAS  Google Scholar 

  • Ferella M, Nilsson D, Darban H et al (2008) Proteomics in Trypanosoma cruzi-localization of novel proteins to various organelles. Proteomics 8:2735–2749

    Article  PubMed  CAS  Google Scholar 

  • Fernandes MC, da Silva EN, Pinto AV et al (2012) A novel triazolic naphthofuranquinone induces autophagy in reservosomes and impairment of mitosis in Trypanosoma cruzi. Parasitology 139:26–36

    Article  PubMed  CAS  Google Scholar 

  • Goll DE, Thompson VF, Li H et al (2003) The calpain system. Physiol Rev 83:731–801

    PubMed  CAS  Google Scholar 

  • Gonçalves RLS, Menna-Barreto RFS, Polycarpo CR et al (2011) A comparative assessment of mitochondrial function in epimastigotes and bloodstream trypomastigotes of Trypanosoma cruzi. J Bioenerg Biomembr 43:651–661

    Article  PubMed  Google Scholar 

  • Gonzales-Perdomo M, Romero P, Goldenberg S (1988) Cyclic AMP and adenylate cyclase activators stimulate Trypanosoma cruzi differentiation. Exp Parasitol 66:205–212

    Article  PubMed  CAS  Google Scholar 

  • Holetz FB, Alves LR, Probst CM et al (2010) Protein and mRNA content of TcDHH1-containing mRNPs in Trypanosoma cruzi. FEBS J 277:3415–3426

    Article  PubMed  CAS  Google Scholar 

  • Irigoín F, Cibils L, Comini MA et al (2008) Insights into the redox biology of Trypanosoma cruzi: trypanothione metabolism and oxidant detoxification. Free Radic Biol Med 45:733–742

    Article  PubMed  Google Scholar 

  • Jannin J, Villa L (2007) An overview of Chagas disease treatment. Mem Inst Oswaldo Cruz 102(suppl 1):95–97

    Article  PubMed  Google Scholar 

  • Kawano DF, Silva VB, Jorge DM et al (2011) Search for a platelet-activating factor receptor in the Trypanosoma cruzi proteome: a potential target for Chagas disease chemotherapy. Mem Inst Oswaldo Cruz 106:957–967

    PubMed  CAS  Google Scholar 

  • Kikuchi SA, Sodré CL, Kalume DE et al (2010) Proteomic analysis of two Trypanosoma cruzi zymodeme 3 strains. Exp Parasitol 126:540–551

    Article  PubMed  CAS  Google Scholar 

  • Kubata BK, Duszenko M, Kabututu Z et al (2000) Identification of a novel prostaglandin F synthase in Trypanosoma brucei. J Exp Med 192:1327–1337

    Article  PubMed  CAS  Google Scholar 

  • Kubata BK, Kabututu Z, Nozaki T et al (2002) A key role for old yellow enzyme in the metabolism of drugs by Trypanosoma cruzi. J Exp Med 196:1241–1251

    Article  PubMed  CAS  Google Scholar 

  • Magalhães AD, Charneau S, Paba J et al (2008) Trypanosoma cruzi alkaline 2-DE: optimization and application to comparative proteome analysis of flagellate life stages. Proteome Sci 6:24

    Article  PubMed  Google Scholar 

  • Marchini FK, de Godoy LM, Rampazzo RC et al (2011) Profiling the Trypanosoma cruzi phosphoproteome. PLoS One 6:e25381

    Article  PubMed  CAS  Google Scholar 

  • Marin-Neto JA, Rassi A Jr, Avezum A Jr et al (2009) The BENEFIT trial: testing the hypothesis that trypanocidal therapy is beneficial for patients with chronic Chagas heart disease. Mem Inst Oswaldo Cruz 104:319–324, Suppl. I

    Article  PubMed  CAS  Google Scholar 

  • Menna-Barreto RFS, Henriques-Pons A, Pinto AV et al (2005) Effect of a β-lapachone-derived naphthoimidazole on Trypanosoma cruzi: identification of target organelles. J Antimicrob Chemother 56:1034–1041

    Article  PubMed  CAS  Google Scholar 

  • Menna-Barreto RFS, Corrêa JR, Pinto AV et al (2007) Mitochondrial disruption and DNA fragmentation in Trypanosoma cruzi induced by naphthoimidazoles synthesized from beta-lapachone. Parasitol Res 101:895–905

    Article  PubMed  CAS  Google Scholar 

  • Menna-Barreto RFS, Laranja GAT, Silva MCC et al (2008) Anti-Trypanosoma cruzi activity of Pterodon Pubescens seed oil: Geranylgeraniol as the major bioactive component. Parasitol Res 103:111–117

    Article  PubMed  CAS  Google Scholar 

  • Menna-Barreto RF, Corrêa JR, Cascabulho CM et al (2009a) Naphthoimidazoles promote different death phenotypes in Trypanosoma cruzi. Parasitology 136:499–510

    Article  PubMed  CAS  Google Scholar 

  • Menna-Barreto RFS, Goncalves RL, Costa EM et al (2009b) The effects on Trypanosoma cruzi of novel synthetic naphthoquinones are mediated by mitochondrial dysfunction. Free Radic Biol Med 47:644–653

    Article  PubMed  CAS  Google Scholar 

  • Menna-Barreto RFS, Salomão K, Dantas AP et al (2009c) Different cell death pathways induced by drugs in Trypanosoma cruzi: an ultrastructural study. Micron 40:157–168

    Article  PubMed  CAS  Google Scholar 

  • Menna-Barreto RF, Beghini DG, Ferreira AT et al (2010) A proteomic analysis of the mechanism of action of naphthoimidazoles in Trypanosoma cruzi epimastigotes in vitro. J Proteomics 73:2306–2315

    Article  PubMed  CAS  Google Scholar 

  • Miller RL, Sabourin CL, Krenitsky TA (1987) Trypanosoma cruzi adenine nucleoside phosphorylase. Purification and substrate specificity. Biochem Pharmacol 36:553–560

    Article  PubMed  CAS  Google Scholar 

  • Murta SMF, Krieger MA, Montenegro LR et al (2006) Deletion of copies of the gene encoding old yellow enzyme (TcOYE), a NAD(P)H flavin oxidoreductase, associates with in vitro induced benznidazole resistance in Trypanosoma cruzi. Mol Biochem Parasitol 146:151–162

    Article  PubMed  CAS  Google Scholar 

  • Nakayasu ES, Gaynor MR, Sobreira TJ et al (2009) Phosphoproteomic analysis of the human pathogen Trypanosoma cruzi at the epimastigote stage. Proteomics 9:3489–3506

    Article  PubMed  CAS  Google Scholar 

  • Nakayasu ES, Sobreira TJ, Torres R Jr et al (2012) Improved proteomic approach for the discovery of potential vaccine targets in Trypanosoma cruzi. J Proteome Res 11:237–246

    Article  PubMed  CAS  Google Scholar 

  • Nwaka S, Hudson A (2006) Innovative lead discovery strategies for tropical diseases. Nat Rev Drug Discov 5:941–955

    Article  PubMed  CAS  Google Scholar 

  • Paba J, Santana JM, Teixeira AR et al (2004) Proteomic analysis of the human pathogen Trypanosoma cruzi. Proteomics 4:1052–1059

    Article  PubMed  CAS  Google Scholar 

  • Parodi-Talice A, Durán R, Arrambide N et al (2004) Proteome analysis of the causative agent of Chagas’ disease: Trypanosoma cruzi. Int J Parasitol 34:881–886

    Article  PubMed  CAS  Google Scholar 

  • Parodi-Talice A, Monteiro-Goes V, Arrambide N et al (2007) Proteomic analysis of metacyclic trypomastigotes undergoing Trypanosoma cruzi metacyclogenesis. J Mass Spectrom 42:1422–1432

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Morales D, Lanz-Mendoza H, Hurtado G et al (2012) Proteomic analysis of Trypanosoma cruzi epimastigotes subjected to heat shock. J Biomed Biotechnol 2012:902803

    Article  PubMed  Google Scholar 

  • Piacenza L, Alvarez MN, Peluffo G et al (2009) Fighting the oxidative assault: the Trypanosoma cruzi journey to infection. Curr Opin Microbiol 12:415–421

    Article  PubMed  CAS  Google Scholar 

  • Rassi A Jr, Rassi A, Marin-Neto JA (2009) Chagas heart disease: pathophysiologic mechanisms, prognostic factors and risk stratification. Mem Inst Oswaldo Cruz 104:152–158, Suppl. I

    Article  PubMed  Google Scholar 

  • Rocha MO, Teixeira MM, Ribeiro AL (2007) An update on the management of Chagas cardiomyopathy. Expert Rev Anti Infect Ther 5:727–743

    Article  PubMed  Google Scholar 

  • Rocha GM, Teixeira DE, Miranda K et al (2010) Structural changes of the paraflagellar rod during flagellar beating in Trypanosoma cruzi. PLoS One 5:e11407

    Article  PubMed  Google Scholar 

  • Rodrigues CO, Catisti R, Uyemura SA et al (2001) The sterol composition of Trypanosoma cruzi changes after growth in different culture media and results in different sensitivity to digitonin-permeabilization. J Eukaryot Microbiol 48:588–594

    Article  PubMed  CAS  Google Scholar 

  • Rohloff P, Docampo R (2008) A contractile vacuole complex is involved in osmoregulation in Trypanosoma cruzi. Exp Parasitol 118:17–24

    Article  PubMed  CAS  Google Scholar 

  • Romanha AJ, DeCastro SL, Soeiro MNC et al (2010) In vitro and in vivo experimental models to drug screening and development for Chagas disease. Mem Inst Oswaldo Cruz 105:233–238

    Article  PubMed  CAS  Google Scholar 

  • Salomão K, de Souza EM, Henriques-Pons A et al (2011) Brazilian green propolis: effects In vitro and In vivo on Trypanosoma cruzi. Evid Based Complement Alternat Med 2011:185918

    Article  PubMed  Google Scholar 

  • Sant’Anna C, Nakayasu ES, Pereira MG et al (2009) Subcellular proteomics of Trypanosoma cruzi reservosomes. Proteomics 9:1782–1794

    Article  PubMed  Google Scholar 

  • Santa-Rita RM, Barbosa HS, Meirelles MN et al (2000) Effect of the alkyl-lysophospholipids on the proliferation and differentiation of Trypanosoma cruzi. Acta Trop 75:219–228

    Article  PubMed  CAS  Google Scholar 

  • Santa-Rita RM, Lira R, Barbosa HS et al (2005) Anti-proliferative synergy of lysophospholipid analogues and ketoconazole against Trypanosoma cruzi (kinetoplastida: Trypanosomatidae): cellular and ultrastructural analysis. J Antimicrob Chemother 55:780–784

    Article  PubMed  CAS  Google Scholar 

  • Santa-Rita RM, Barbosa HS, DeCastro SL (2006) Ultrastructural analysis of edelfosine-treated trypomastigotes and amastigotes of Trypanosoma cruzi. Parasitol Res 100:187–190

    Article  PubMed  CAS  Google Scholar 

  • Schmunis GA (2007) Epidemiology of Chagas’ disease in non endemic countries: the role of international migration. Mem Inst Oswaldo Cruz 102:75–85

    Article  PubMed  Google Scholar 

  • Shapiro TA, Englund PT (1995) The structure and replication of kinetoplast DNA. Annu Rev Microbiol 49:117–143

    Article  PubMed  CAS  Google Scholar 

  • Silber AM, Colli W, Ulrich H et al (2005) Amino acid metabolic routes in Trypanosoma cruzi: possible therapeutic targets against Chagas disease. Curr Drug Targets Infect Disord 5:53–64

    Article  PubMed  CAS  Google Scholar 

  • Silva CF, Batista MM, De Souza EM et al (2007) Cellular effects of reversed amidines on Trypanosoma cruzi. Antimicrob Agents Chemother 51:3803–3809

    Article  PubMed  CAS  Google Scholar 

  • Silva RG, Vetticatt MJ, Merino EF et al (2011) Transition-state analysis of Trypanosoma cruzi uridine phosphorylase-catalyzed arsenolysis of uridine. J Am Chem Soc 133:9923–9931

    Article  PubMed  CAS  Google Scholar 

  • Sodré CL, Chapeaurouge AD, Kalume DE et al (2009) Proteomic map of Trypanosoma cruzi CL brener: the reference strain of the genome project. Arch Microbiol 191:177–184

    Article  PubMed  Google Scholar 

  • Soeiro MNC, DeCastro SL (2011) Screening of potential anti-Trypanosoma cruzi candidates: in vitro and in vivo studies. Open Med Chem J 5:21–30

    Article  CAS  Google Scholar 

  • Soeiro MNC, Daliry A, Silva CF et al (2010) Electron microscopy approaches for the investigation of the cellular targets of trypanocidal agents in Trypanosoma cruzi. In: Méndez-Vilas A, Díaz J (eds) Microscopy: science, technology, vol 4, Applications and education - microscopy book series. Formatex Research Center, Badajoz, pp 191–203, 1

    Google Scholar 

  • Sosa-Estani S, Viotti R, Segura EL (2009) Therapy, diagnosis and prognosis of chronic Chagas disease: insight gained in Argentina. Mem Inst Oswaldo Cruz 104(Suppl 1):167–180

    Article  PubMed  Google Scholar 

  • Stoppani AO (1999) The chemotherapy of Chagas disease. Med (B Aires) 59:147–165

    Google Scholar 

  • Teixeira DE, Benchimol M, Crepaldi PH, de Souza W (2012) Interactive multimedia to teach the life cycle of Trypanosoma cruzi, the causative agent of Chagas disease. PLoS Negl Trop Dis 6:e1749

    Article  PubMed  Google Scholar 

  • Tielens AG, Van Hellemond JJ (1998) Differences in energy metabolism between trypanosomatidae. Parasitol Today 14:265–272

    Article  PubMed  CAS  Google Scholar 

  • Trapani S, Linss J, Goldenberg S et al (2001) Crystal structure of the dimeric phosphoenolpyruvate carboxykinase (PEPCK) from Trypanosoma cruzi at 2 a resolution. J Mol Biol 313:1059–1072

    Article  PubMed  CAS  Google Scholar 

  • Ulrich PN, Jimenez V, Park M et al (2011) Identification of contractile vacuole proteins in Trypanosoma cruzi. PLoS One 6:e18013

    Article  PubMed  CAS  Google Scholar 

  • Urbina JA (2009) Ergosterol biosynthesis inhibitors for the specific treatment of Chagas’ disease: 20 years after, does the promise holds? In: International symposium on the centennial of the discovery of Chagas’ Disease, Rio de Janeiro

    Google Scholar 

  • Urbina JA, Docampo R (2003) Specific chemotherapy of Chagas disease: controversies and advances. Trends Parasitol 19:495–501

    Article  PubMed  CAS  Google Scholar 

  • Vannier-Santos MA, DeCastro SL (2009) Electron microscopy in antiparasitic chemotherapy: a (close) view to a kill. Curr Drug Targets 10:246–260

    Article  PubMed  CAS  Google Scholar 

  • Weatherly DB, Boehlke C, Tarleton RL (2009) Chromosome level assembly of the hybrid Trypanosoma cruzi genome. BMC Genomics 10:255

    Article  PubMed  Google Scholar 

  • Zingales B, Andrade SG, Briones MR et al (2009) Second satellite meeting. A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz 104:1051–1054

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Perales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Menna-Barreto, R.F.S., Perales, J. (2014). The Expected Outcome of the Trypanosoma cruzi Proteomic Map: A Review of Its Potential Biological Applications for Drug Target Discovery. In: Santos, A., Branquinha, M., d’Avila-Levy, C., Kneipp, L., Sodré, C. (eds) Proteins and Proteomics of Leishmania and Trypanosoma. Subcellular Biochemistry, vol 74. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7305-9_13

Download citation

Publish with us

Policies and ethics