Skip to main content

Highlights on Trypanosomatid Aminoacyl-tRNA Synthesis

  • Chapter
  • First Online:
Book cover Proteins and Proteomics of Leishmania and Trypanosoma

Part of the book series: Subcellular Biochemistry ((SCBI,volume 74))

  • 2139 Accesses

Abstract

Aminoacyl-tRNA synthetases aaRSs are responsible for the aminoacylation of tRNAs in the first step of protein synthesis. They comprise a group of enzymes that catalyze the formation of each possible aminoacyl-tRNA necessary for messenger RNA decoding in a cell. These enzymes have been divided into two classes according to structural features of their active sites and, although each class shares a common active site core, they present an assorted array of appended domains that makes them sufficiently diverse among the different living organisms. Here we will explore what is known about the diversity encountered among trypanosomatids’ aaRSs that has helped us not only to understand better the biology of these parasites but can be used rationally for the design of drugs against these protozoa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A:

Adenine

aa-AMP:

aaRS, 4, 5 aminoacyl-adenylate complexed with aminoacyl-tRNA synthetase

aaRS:

Aminoacyl-tRNA synthetase

aa-tRNA:

Aminoacyl-tRNA

AC1:

Anticodon binding motif

AC2:

Anticodon binding motif

AIDQ:

TrpRS and TyrRS motif present in the catalytic site (alanine, isoleucine, aspartate, glutamine)

AlaRS:

Alanyl-tRNA synthetase

AMP:

Adenosine-5′-monophosphate

Arg:

Arginine

ArgRS:

Arginyl-tRNA synthetase

Asn:

Asparagine

AsnRS:

Asparaginyl-tRNA synthetase

Asp:

Aspartate

AspRS:

Aspartyl-tRNA synthetase

ATP:

Adenosine-5′-triphosphate

AUA:

Isoleucine codon

AUG:

Methionine codon

C:

Cytosine

CPK:

Coloring convention designed by Robert Corey and Linus Pauling, and improved by Walter Koltun.

Cys:

Cysteine

CysRS:

Cysteinyl-tRNA synthetase

E:

Glutamate

E. coli:

Escherichia coli

eEFSec:

Selenocysteine elongation factor

EMAP II-like domain:

Endothelial monocyte-activating polypeptide II-like domain

ESE:

Eukaryotic specific extension present in Tryptophanyl-tRNA synthetases

fmet:

Formylmethionine

FTHF:

N10-formyltetrahydrofolate

G:

Guanine

GatCAB:

tRNA dependent amidotransferase of Archaea, bacteria and eukaryotic organelles

GatDE:

Archaeal specific tRNA dependent amidotransferase

GatFAB:

Yeast specific tRNA dependent amidotransferase

GLDQ:

Trypanosomatid TyrRS motif present in the catalytic site (glycine, leucine, aspartate, glutamine)

Gln:

Glutamine

GlnRS:

Glutaminyl-tRNA synthetase

Glu:

Glutamate

GluRS:

Glutamyl-tRNA synthetase

Gly:

Glycine

GlyRS:

Glycyl-tRNA synthetase

GTP:

Guanosine-5′-triphosphate

GXDQ:

TrpRS motif present in bacteria (glycine, any amino acid, aspartate, glutamine)

H:

Histidine

HAM:

Histidyl-adenosinemonophosphate

HARS1:

Human histidyl-tRNA synthetase 1

HARS2:

Human histidyl-tRNA synthetase 2

HIAQ:

Motif present in the active site of the trypanosomal tyrosyl-tRNA synthetase in place of motif

HIGH:

(Histidine, isoleucine, alanine, glutamine)

HIGH:

Motif presents in the active site of aaRS class I (histidine, isoleucine, glycine, histidine)

His:

Histidine

HisRS:

Histidyl-tRNA synthetase

Ile:

Isoleucyl

IleRS:

Isoleucyl-tRNA synthetase

Kcat :

Catalytic constant

Ki :

Dissociation constant for inhibitor binding

KISKS:

Motif present in the active site of trypanosomatid methyl-tRNA synthetase (lysine, isoleucine, serine, lysine, serine)

Km :

Michaelis Menten constant

KMSKS:

Motif present in the active site of aminoacyl-tRNA synthetases class I (lysine, methionine, serine, lysine, serine)

L30:

Ribosomal protein

Leu:

Leucine

LeuRS:

Leucyl-tRNA synthetase

Lys:

Lysine

LysRS:

Lysyl-tRNA synthetase

MAMP:

Methionyl adenylate

Met:

Methionine

MetRS:

Methionyl-tRNA synthetase

Mg+2 :

Magnesium ion

mRNA:

Messenger ribonucleic acid

MTF:

Methionyl-tRNA formyltransferase

PDB:

Protein data bank

Phe:

Phenylalanine

PheRS:

Phenylalanyl-tRNA synthetase

PLP:

Pyridoxal phosphate

PPi :

Pyrophosphate

Pro:

Proline

ProRS:

Prolyl-tRNA synthetase

PSTK:

O-phosphoseryl-tRNA kinase

Pyl:

Pyrrolysine

PylRS:

Pyrrolysyl-tRNA synthetase

SBP2:

SECIS binding protein

SCF:

Stem contact fold

Sec:

Selenocysteine

SECIS:

22, 23, 26, 27, 31, 40

Sel1:

Kinetoplastid specific selenoprotein

selA:

Selenocysteine synthase (bacterial)

SelK:

Selenoprotein K

SelT:

Selenoprotein T

SelTryp:

Kinetoplastid specific selenoprotein

Sep:

Phosphoserine

SepRS:

Phosphoseryl-tRNA synthetase

SepSecS:

O-phospho-L-seryl-tRNASec: L-selenocysteinyl-tRNA synthase

Ser:

Serine

SerRS:

Seryl-tRNA synthetase

SPS2:

Selenophosphate synthase

ThrRS:

Threonyl-tRNA synthetase

Tpr:

Tryptophan

tRNA:

Transfer ribonucleic acid

tRNAfMet :

Formylmethionine tRNA isoacceptor

tRNAMet-e :

Methionine elongator tRNA isoacceptor

tRNAmet-i :

Methionine initiator tRNA isoacceptor

TrpRS:

Tryptophanyl-tRNA synthetase

Tyr:

Tyrosine

TyrRS:

Tyrosine tRNA-synthetase

U:

Uracyl

UAA:

Termination codon (uracyl, adenine, adenine)

UAG:

Termination codon (uracyl, adenine, guanine)

UGA:

Termination codon (uracyl, guanine, adenine)

V:

Valine

Val:

Valine

ValRS:

Valy-tRNA synthetase

W:

Tryptophan

WHEP:

Helix-turn-helix domain found in some aminoacyl-tRNA synthetasese

Ψ:

Pseudouridine

References

  • Achsel T, Gross HJ (1993) Identity determinants of human tRNA(Ser): sequence elements necessary for serylation and maturation of a tRNA with a long extra arm. EMBO J 12:3333–3338

    PubMed  CAS  Google Scholar 

  • Ambrogelly A, Korencic D, Ibba M (2002) Functional annotation of class I lysyl-tRNA synthetase phylogeny indicates a limited role for gene transfer. J Bacteriol 184:4594–4600

    PubMed  CAS  Google Scholar 

  • Arnez JG, Moras D (1997) Structural and functional considerations of the aminoacylation reaction. Trends Biochem Sci 22:211–216

    PubMed  CAS  Google Scholar 

  • Arnez JG, Moras D (2009) Encyclopedia of life sciences. Doi: 10.1038/npg.els.0000613

  • Becker HD, Reinbolt J, Kreutzer R et al (1997) Existence of two distinct aspartyl-tRNA synthetases in Thermus thermophilus. Structural and biochemical properties of the two enzymes. Biochemistry 36:8785–8797

    PubMed  CAS  Google Scholar 

  • Belrhali H, Yaremchuk A, Tukalo M et al (1994) Crystal structures at 2.5 angstrom resolution of seryl-tRNA synthetase complexed with two analogs of seryl adenylate. Science 263:1432–1436

    PubMed  CAS  Google Scholar 

  • Bernard D, Akochy PM, Beaulieu D, Lapointe J, Roy PH (2006) Two residues in the anticodon recognition domain of the aspartyl-tRNA synthetase from Pseudomonas aeruginosa are individually implicated in the recognition of tRNAAsn. J Bacteriol 188:269–274

    PubMed  CAS  Google Scholar 

  • Berry MJ, Banu L, Harney JW, Larsen PR (1993) Functional characterization of the eukaryotic SECIS elements which direct selenocysteine insertion at UGA codons. EMBO J 12:3315–3322

    PubMed  CAS  Google Scholar 

  • Bilokapic S, Korencic D, Söll D et al (2004) The unusual methanogenic seryl-tRNA synthetase recognizes tRNASer species from all three kingdoms of life. Eur J Biochem 271:694–702

    Google Scholar 

  • Bilokapic S, Maier T, Ahel D et al (2006) Structure of the unusual seryl-tRNA synthetase reveals a distinct zinc-dependent mode of substrate recognition. EMBO J 25:2498–2509

    Google Scholar 

  • Biou V, Yaremchuk A, Tukalo M, Cusack S (1994) The 2.9 A crystal structure of T. Thermophilus seryl-tRNA synthetase complexed with tRNA(Ser). Science 263:1404–1410

    PubMed  CAS  Google Scholar 

  • Böck A, Forchhammer K, Heider J et al (1991) Selenocysteine: the 21st amino acid. Mol Microbiol 5:515–520

    PubMed  Google Scholar 

  • Böck A, Thanbichler M, Rother M et al (2005) Selenocysteine. In: Ibba M, Francklyn C, Cusak S (eds) The Aminoacyl-tRNA Synthetases. Landes Bioscience, Georgetown, pp 320–327

    Google Scholar 

  • Bonnefond L, Giegé R, Rudinger-Thirion J (2005) Evolution of the tRNA(Tyr)/TyrRS aminoacylation systems. Biochimie 87:873–883. doi:10.1016/j.biochi.2005.03.008

    PubMed  CAS  Google Scholar 

  • Bruske EI, Sendfeld F, Schneider A (2009) Thiolated tRNAs of Trypanosoma brucei are imported into mitochondria and dethiolated after import. J Biol Chem 284:36491–36499. doi:10.1074/jbc.M109.064527

    PubMed  CAS  Google Scholar 

  • Caban K, Copeland PR (2012) Selenocysteine insertion sequence (SECIS)-binding protein 2 alters conformational dynamics of residues involved in tRNA accommodation in 80 S ribosomes. J Biol Chem 287:10664–10673. doi:10.1074/jbc.M111.320929

    PubMed  CAS  Google Scholar 

  • Carlson BA, Xu XM, Kryukov GV, Rao M, Berry MJ, Gladyshev VN, Hatfield DL (2004) Identification and characterization of phosphoseryl-tRNA[Ser]Sec kinase. Proc Natl Acad Sci U S A 101:12848–12853

    PubMed  CAS  Google Scholar 

  • Carter CW, Duax WL (2002) Did tRNA synthetase classes arise on opposite strands of the same gene? Mol Cell 10:705–708

    PubMed  CAS  Google Scholar 

  • Cassago A, Rodrigues EM, Prieto EL et al (2006) Identification of Leishmania selenoproteins and SECIS element. Mol Biochem Parasitol 149:128–134. doi:10.1016/j.molbiopara.2006.05.002

    PubMed  CAS  Google Scholar 

  • Cavarelli J, Rees B, Thierry JC, Moras D (1993) Yeast aspartyl-tRNA synthetase: a structural view of the aminoacylation reaction. Biochimie 75:1117–1123

    PubMed  CAS  Google Scholar 

  • Cavarelli J, Eriani G, Rees B et al (1994) The active site of yeast aspartyl-tRNA synthetase: structural and functional aspects of the aminoacylation reaction. EMBO J 13:327–337

    PubMed  CAS  Google Scholar 

  • Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605

    PubMed  CAS  Google Scholar 

  • Charrière F, Helgadóttir S, Horn EK et al (2006) Dual targeting of a single tRNA(Trp) requires two different tryptophanyl-tRNA synthetases in Trypanosoma brucei. Proc Natl Acad Sci U S A 103:6847–6852. doi:10.1073/pnas.0602362103

    PubMed  Google Scholar 

  • Charrière F, O’Donoghue P, Helgadóttir S et al (2009) Dual targeting of a tRNAAsp requires two different aspartyl-tRNA synthetases in Trypanosoma brucei. J Biol Chem 284:16210–16217. doi:10.1074/jbc.M109.005348

    PubMed  Google Scholar 

  • Chavatte L, Brown BA, Driscoll DM (2005) Ribosomal protein L30 is a component of the UGA-selenocysteine recoding machinery in eukaryotes. Nat Struct Mol Biol 12:408–416. doi:10.1038/nsmb922

    PubMed  CAS  Google Scholar 

  • Cobucci-Ponzano B, Rossi M, Moracci M (2012) Translational recoding in archaea. Extremophiles 16:793–803. doi:10.1007/s00792-012-0482-8

    PubMed  CAS  Google Scholar 

  • Copeland PR, Fletcher JE, Carlson BA et al (2000) A novel RNA binding protein, SBP2, is required for the translation of mammalian selenoprotein mRNAs. EMBO J 19:306–314. doi:10.1093/emboj/19.2.306

    PubMed  CAS  Google Scholar 

  • Costa FC, Oliva MAV, de Jesus TCL et al (2011) Oxidative stress protection of Trypanosomes requires selenophosphate synthase. Mol Biochem Parasitol 180:47–50. doi:10.1016/j.molbiopara.2011.04.007

    PubMed  CAS  Google Scholar 

  • Crain PF, Alfonzo JD, Rozenski J et al (2002) Modification of the universally unmodified uridine-33 in a mitochondria-imported edited tRNA and the role of the anticodon arm structure on editing efficiency. RNA 8:752–761

    PubMed  CAS  Google Scholar 

  • Crick FHC (1968) The origin of the genetic code. J Mol Biol 38:367–379

    PubMed  CAS  Google Scholar 

  • Curnow AW, Hong K, Yuan R et al (1997) Glu-tRNAGln amidotransferase: a novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation. Proc Natl Acad Sci U S A 94:11819–11826

    PubMed  CAS  Google Scholar 

  • Cusack S (1995) Eleven down and nine to go. Nat Struct Biol 2:824–831

    PubMed  CAS  Google Scholar 

  • Cusack S (1997) Aminoacyl-tRNA synthetases. Curr Opin Struct Biol 7:881–889

    PubMed  CAS  Google Scholar 

  • Cusack S, Berthet-Colominas C, Härtlein M, Nassar N, Leberman R (1990) A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 A. Nature 347:249–255

    PubMed  CAS  Google Scholar 

  • Cusack S, Yaremchuk A, Tukalo M (1996) The crystal structure of the ternary complex of T.thermophilus seryl-tRNA synthetase with tRNA(Ser) and a seryl-adenylate analogue reveals a conformational switch in the active site. EMBO J 15:2834–2842

    Google Scholar 

  • Delarue M, Poterszman A, Nikonov S et al (1994) Crystal structure of a prokaryotic aspartyl tRNA-synthetase. EMBO J 13:3219–3229

    PubMed  CAS  Google Scholar 

  • Deniziak MA, Barciszewski J (2001) Methionyl-tRNA synthetase. Acta Biochim Pol 48:337–350

    PubMed  CAS  Google Scholar 

  • Dietrich A, Giege R, Comarmond MB et al (1980) Crystallographic studies on the aspartyl-tRNA synthetase-tRNAAsp system from yeast. The crystalline aminoacyl-tRNA synthetase. J Mol Biol 138:129–135

    PubMed  CAS  Google Scholar 

  • Ding D, Meng Q, Gao G et al (2011) Design, synthesis, and structure-activity relationship of Trypanosoma brucei leucyl-tRNA synthetase inhibitors as antitrypanosomal agents. J Med Chem 54:1276–1287. doi:10.1021/jm101225g

    PubMed  CAS  Google Scholar 

  • Eiler S, Boeglin M, Martin F et al (1992) Crystallization of aspartyl-tRNA synthetase-tRNA(Asp) complex from Escherichia coli and first crystallographic results. J Mol Biol 224:1171–1173

    PubMed  CAS  Google Scholar 

  • Eriani G, Cavarelli J, Martin F et al (1995) The class II aminoacyl-tRNA synthetases and their active site: evolutionary conservation of an ATP binding site. J Mol Evol 40:499–508

    PubMed  CAS  Google Scholar 

  • Español Y, Thut D, Schneider A, Ribas de Pouplana L (2009) A mechanism for functional segregation of mitochondrial and cytosolic genetic codes. Proc Natl Acad Sci U S A 106:19420–19425. doi:10.1073/pnas.0909937106

    PubMed  Google Scholar 

  • Fagegaltier D, Hubert N, Yamada K et al (2000) Characterization of mSelB, a novel mammalian elongation factor for selenoprotein translation. EMBO J 19:4796–4805. doi:10.1093/emboj/19.17.4796

    PubMed  CAS  Google Scholar 

  • Farrera-Sinfreu J, Español Y, Geslain R et al (2008) Solid-phase combinatorial synthesis of a lysyl-tRNA synthetase (LysRS) inhibitory library. J Comb Chem 10:391–400. doi:10.1021/cc700157j

    PubMed  CAS  Google Scholar 

  • Feng L, Yuan J, Toogood H, Tumbula-Hansen D, Söll D (2005) Aspartyl-tRNA synthetase requires a conserved proline in the anticodon-binding loop for tRNA(Asn) recognition in vivo. J Biol Chem 280:20638–20641

    PubMed  CAS  Google Scholar 

  • Fidalgo LM, Gille L (2011) Mitochondria and trypanosomatids: targets and drugs. Pharm Res 28:2758–2770. doi:10.1007/s11095-011-0586-3

    PubMed  CAS  Google Scholar 

  • Frechin M, Senger B, Brayé M et al (2009) Yeast mitochondrial Gln-tRNA(Gln) is generated by a GatFAB-mediated transamidation pathway involving Arc1p-controlled subcellular sorting of cytosolic GluRS. Genes Dev 23:1119–1130. doi:10.1101/gad.518109

    PubMed  CAS  Google Scholar 

  • Freist W, Verhey JF, Rühlmann A et al (1999) Histidyl-tRNA synthetase. Biol Chem 380:623–646. doi:10.1515/BC.1999.079

    PubMed  CAS  Google Scholar 

  • Fuller AT, Mellows G, Woolford M et al (1971) Pseudomonic acid: an antibiotic produced by Pseudomonas fluorescens. Nature 234:416–417

    PubMed  CAS  Google Scholar 

  • Gampel A, Tzagoloff A (1989) Homology of aspartyl- and lysyl-tRNA synthetases. Proc Natl Acad Sci U S A 86:6023–6027

    PubMed  CAS  Google Scholar 

  • García LT, Leite NR, Alfonzo JD, Thiemann OH (2007) Effects of Trypanosoma brucei tryptophanyl-tRNA synthetases silencing by RNA interference. Mem Inst Oswaldo Cruz 102:757–762

    PubMed  Google Scholar 

  • Gatti DL, Tzagoloff A (1991) Structure and evolution of a group of related aminoacyl-tRNA synthetases. J Mol Biol 218:557–568

    PubMed  CAS  Google Scholar 

  • Geslain R, Aeby E, Guitart T et al (2006) Trypanosoma seryl-tRNA synthetase is a metazoan-like enzyme with high affinity for tRNASec. J Biol Chem 281:38217–38225. doi:10.1074/jbc.M607862200

    PubMed  CAS  Google Scholar 

  • Ghosh A, Vishveshwara S (2008) Variations in clique and community patterns in protein structures during allosteric communication: investigation of dynamically equilibrated structures of methionyl tRNA synthetase complexes. Biochemistry 47:11398–11407. doi:10.1021/bi8007559

    PubMed  CAS  Google Scholar 

  • Gowri VS, Ghosh I, Sharma A, Madhubala R (2012) Unusual domain architecture of aminoacyl tRNA synthetases and their paralogs from Leishmania major. BMC Genomics 13:621. doi:10.1186/1471-2164-13-621

    PubMed  CAS  Google Scholar 

  • Hancock K, Hajduk SL (1990) The mitochondrial tRNAs of Trypanosoma brucei are nuclear encoded. J Biol Chem 265:19208–19215

    PubMed  CAS  Google Scholar 

  • Hao B, Gong W, Ferguson TK et al (2002) A new UAG-encoded residue in the structure of a methanogen methyltransferase. Science 296:1462–1466. doi:10.1126/science.1069556

    PubMed  CAS  Google Scholar 

  • Heckl M, Busch K, Gross HJ (1998) Minimal tRNA(Ser) and tRNA(Sec) substrates for human seryl-tRNA synthetase: contribution of tRNA domains to serylation and tertiary structure. FEBS Lett 427:315–319

    PubMed  CAS  Google Scholar 

  • Herring S, Ambrogelly A, Polycarpo CR, Söll D (2007) Recognition of pyrrolysine tRNA by the Desulfitobacterium hafniense pyrrolysyl-tRNA synthetase. Nucleic Acids Res 35:1270–1278

    PubMed  CAS  Google Scholar 

  • Himeno H, Yoshida S, Soma A, Nishikawa K (1997) Only one nucleotide insertion to the long variable arm confers an efficient serine acceptor activity upon Saccharomyces cerevisiae tRNA(Leu) in vitro. J Mol Biol 268:704–711

    PubMed  CAS  Google Scholar 

  • Hughes J, Mellows G (1980) Interaction of pseudomonic acid A with Escherichia coli B isoleucyl-tRNA synthetase. Biochem J 191:209–219

    PubMed  CAS  Google Scholar 

  • Hurdle JG, O’Neill AJ, Chopra I (2005) Prospects for aminoacyl-tRNA synthetase inhibitors as new antimicrobial agents. Antimicrob Agents Chemother 49:4821–4833. doi:10.1128/AAC.49.12.4821-4833.2005

    PubMed  CAS  Google Scholar 

  • Ibba M, Soll D (1999) Quality control mechanisms during translation. Science 286:1893–1897

    PubMed  CAS  Google Scholar 

  • Ibba M, Morgan S, Curnow AW et al (1997) A euryarchaeal lysyl-tRNA synthetase: resemblance to class I synthetases. Science 278:1119–1122

    PubMed  CAS  Google Scholar 

  • Istvan ES, Dharia NV, Bopp SE et al (2011) Validation of isoleucine utilization targets in Plasmodium falciparum. Proc Natl Acad Sci U S A 108:1627–1632. doi:10.1073/pnas.1011560108

    PubMed  CAS  Google Scholar 

  • Jayakumar PC, Musande VV, Shouche YS et al (2004) The Selenophosphate synthetase gene from Leishmania major. DNA Seq 15:66–70

    Google Scholar 

  • Kaiser JT, Gromadski K, Rother M, Engelhardt H, Rodnina MV, Wahl MC (2005) Structural and functional investigation of a putative archaeal selenocysteine synthase. Biochemistry 44:13315–13327

    PubMed  CAS  Google Scholar 

  • Kinzy SA, Caban K, Copeland PR (2005) Characterization of the SECIS binding protein 2 complex required for the co-translational insertion of selenocysteine in mammals. Nucleic Acids Res 33:5172–5180. doi:10.1093/nar/gki826

    PubMed  CAS  Google Scholar 

  • Kise Y, Lee SW, Park SG et al (2004) A short peptide insertion crucial for angiostatic activity of human tryptophanyl-tRNA synthetase. Nat Struct Mol Biol 11:149–156. doi:10.1038/nsmb722

    PubMed  CAS  Google Scholar 

  • Kisselev LL, Favorova OO, Nurbekov MK et al (1981) Bovine tryptophanyl-tRNA synthetase. A zinc metalloenzyme. Eur J Biochem 120:511–517

    PubMed  CAS  Google Scholar 

  • Klipcan L, Safro M (2004) Amino acid biogenesis, evolution of the genetic code and aminoacyl-tRNA synthetases. J Theor Biol 228:389–396. doi:10.1016/j.jtbi.2004.01.014

    PubMed  CAS  Google Scholar 

  • Koh CY, Kim JE, Shibata S et al (2012) Distinct States of Methionyl-tRNA synthetase indicate inhibitor binding by conformational selection. Structure 20:1681–1691. doi:10.1016/j.str.2012.07.011

    PubMed  CAS  Google Scholar 

  • Kolev NG, Franklin JB, Carmi S et al (2010) The transcriptome of the human pathogen Trypanosoma brucei at single-nucleotide resolution. PLoS Pathog 6:e1001090. doi:10.1371/journal.ppat.1001090

    PubMed  Google Scholar 

  • Lapointe J, Duplain L, Proulx M (1986) A single glutamyl-tRNA synthetase aminoacylates tRNAGlu and tRNAGln in Bacillus subtilis and efficiently misacylates Escherichia coli tRNAGln1 in vitro. J Bacteriol 165:88–93

    PubMed  CAS  Google Scholar 

  • Larson ET, Kim JE, Castaneda LJ et al (2011a) The double-length tyrosyl-tRNA synthetase from the eukaryote Leishmania major forms an intrinsically asymmetric pseudo-dimer. J Mol Biol 409:159–176. doi:10.1016/j.jmb.2011.03.026

    PubMed  CAS  Google Scholar 

  • Larson ET, Kim JE, Zucker FH et al (2011b) Structure of Leishmania major methionyl-tRNA synthetase in complex with intermediate products methionyladenylate and pyrophosphate. Biochimie 93:570–582. doi:10.1016/j.biochi.2010.11.015

    PubMed  CAS  Google Scholar 

  • Leberman R, Härtlein M, Cusack S (1991) Escherichia coli seryl-tRNA synthetase: the structure of a class 2 aminoacyl-tRNA synthetase. Biochim Biophys Acta 1089:287–298

    PubMed  CAS  Google Scholar 

  • Lobanov AV, Gromer S, Salinas G, Gladyshev VN (2006) Selenium metabolism in Trypanosoma: characterization of selenoproteomes and identification of a Kinetoplastida-specific selenoprotein. Nucleic Acids Res 34:4012–4024. doi:10.1093/nar/gkl541

    PubMed  CAS  Google Scholar 

  • Lobanov AV, Hatfield DL, Gladyshev VN (2009) Eukaryotic selenoproteins and selenoproteomes. Biochim Biophys Acta 1790:1424–1428. doi:10.1016/j.bbagen.2009.05.014

    PubMed  CAS  Google Scholar 

  • Loftfield RB, Vanderjagt D (1972) The frequency of errors in protein biosynthesis. Biochem J 128:1353–1356

    PubMed  CAS  Google Scholar 

  • Lorber B, Giege R, Ebel JP et al (1983) Crystallization of a tRNA. aminoacyl-tRNA synthetase complex. Characterization and first crystallographic data. J Biol Chem 258:8429–8435

    PubMed  CAS  Google Scholar 

  • Lozupone CA, Knight RD, Landweber LF (2001) The molecular basis of nuclear genetic code change in ciliates. Curr Biol 11:65–74

    PubMed  CAS  Google Scholar 

  • Martin NC (2002) Location alters tRNA identity: Trypanosoma brucei’s cytosolic elongator tRNAMet is both the initiator and elongator in mitochondria. Proc Natl Acad Sci U S A 99:1110–1112. doi:10.1073/pnas.042011199

    PubMed  CAS  Google Scholar 

  • Mechulam Y, Meinnel T, Blanquet S (1995) A family of RNA-binding enzymes: the aminoacyl-tRNA synthetases. Subcell Biochem 24:323–376

    PubMed  CAS  Google Scholar 

  • Merritt EA, Arakaki TL, Gillespie JR et al (2010) Crystal structures of trypanosomal histidyl-tRNA synthetase illuminate differences between eukaryotic and prokaryotic homologs. J Mol Biol 397:481–494. doi:10.1016/j.jmb.2010.01.051

    PubMed  CAS  Google Scholar 

  • Merritt EA, Arakaki TL, Gillespie R et al (2011) Crystal structures of three protozoan homologs of tryptophanyl-tRNA synthetase. Mol Biochem Parasitol 177:20–28. doi:10.1016/j.molbiopara.2011.01.003

    PubMed  CAS  Google Scholar 

  • Metzger AU, Heckl M, Willbold D, Breitschopf K, RajBhandary UL, Rösch P, Gross HJ (1997) Structural studies on tRNA acceptor stem microhelices: exchange of the discriminator base A73 for G in human tRNALeu switches the acceptor specificity from leucine to serine possibly by decreasing the stability of the terminal G1–C72 base pair. Nucleic Acids Res 25:4551–4556

    PubMed  CAS  Google Scholar 

  • Morphy R, Rankovic Z (2005) Designed multiple ligands. An emerging drug discovery paradigm. J Med Chem 48:6523–6543. doi:10.1021/jm058225d

    PubMed  CAS  Google Scholar 

  • Nabholz CE, Hauser R, Schneider A (1997) Leishmania tarentolae contains distinct cytosolic and mitochondrial glutaminyl-tRNA synthetase activities. Proc Natl Acad Sci U S A 94:7903–7908

    PubMed  CAS  Google Scholar 

  • Nakama T, Nureki O, Yokoyama S (2001) Structural basis for the recognition of isoleucyl-adenylate and an antibiotic, mupirocin, by isoleucyl-tRNA synthetase. J Biol Chem 276:47387–47393. doi:10.1074/jbc.M109089200

    PubMed  CAS  Google Scholar 

  • Nilsson D, Gunasekera K, Mani J et al (2010) Spliced leader trapping reveals widespread alternative splicing patterns in the highly dynamic transcriptome of Trypanosoma brucei. PLoS Pathog 6:e1001037. doi:10.1371/journal.ppat.1001037

    PubMed  Google Scholar 

  • Normanly J, Ollick T, Abelson J (1992) Eight base changes are sufficient to convert a leucine-inserting tRNA into a serine-inserting tRNA. Proc Natl Acad Sci U S A 89:5680–5684

    PubMed  CAS  Google Scholar 

  • O’Donoghue P, Sethi A, Woese CR, Luthey-Schulten ZA (2005) The evolutionary history of Cys-tRNACys formation. Proc Natl Acad Sci U S A 102:19003–19008. doi:10.1073/pnas.0509617102

    PubMed  Google Scholar 

  • Otani A, Slike BM, Dorrell MI et al (2011) Dissociating quaternary structure regulates cell-signaling functions of a secreted human tRNA synthetase. J Biol Chem 286:11563–11568. doi:10.1074/jbc.C110.213876

    Google Scholar 

  • Paul M, Schimmel P (2013) Essential nontranslational functions of tRNA synthetases. Nat Chem Biol 9:145–153. doi:10.1038/nchembio.1158

    CAS  Google Scholar 

  • Perona JJ, Hou Y-M (2007) Indirect readout of tRNA for aminoacylation. Biochemistry 46:10419–10432. doi:10.1021/bi7014647

    PubMed  CAS  Google Scholar 

  • Perona JJ, Rould MA, Steitz TA (1993) Structural basis for transfer RNA aminoacylation by Escherichia coli glutaminyl-tRNA synthetase. Biochemistry 32:8758–8771

    PubMed  CAS  Google Scholar 

  • Perona JJ, Hadd A (2012) Structural diversity and protein engineering of the aminoacyl-tRNA synthetases. Biochemistry 51:8705–8729. doi:10.1021/bi301180x

    Google Scholar 

  • Polycarpo C, Ambrogelly A, Bérubé A et al (2004) An aminoacyl-tRNA synthetase that specifically activates pyrrolysine. Proc Natl Acad Sci U S A 101:12450–12454. doi:10.1073/pnas.0405362101

    PubMed  CAS  Google Scholar 

  • Pujol C, Bailly M, Kern D, Maréchal-Drouard L, Becker H, Duchêne AM (2008) Dual-targeted tRNA-dependent amidotransferase ensures both mitochondrial and chloroplastic Gln-tRNAGln synthesis in plants. Proc Natl Acad Sci U S A 105:6481–6485. doi:10.1073/pnas.0712299105

    PubMed  CAS  Google Scholar 

  • Rettig J, Wang Y, Schneider A, Ochsenreiter T (2012) Dual targeting of isoleucyl-tRNA synthetase in Trypanosoma brucei is mediated through alternative trans-splicing. Nucleic Acids Res 40:1299–1306. doi:10.1093/nar/gkr794

    PubMed  CAS  Google Scholar 

  • Rinehart J, Horn EK, Wei D et al (2004) Non-canonical eukaryotic glutaminyl- and glutamyl-tRNA synthetases form mitochondrial aminoacyl-tRNA in Trypanosoma brucei. J Biol Chem 279:1161–1166. doi:10.1074/jbc.M310100200

    PubMed  CAS  Google Scholar 

  • Rould MA, Perona JJ, Soll D, Steitz TA (1989) Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP at 2.8 A resolution. Science 246:1135–1142

    PubMed  CAS  Google Scholar 

  • Roy H, Becker HD, Reinbolt J, Kern D (2003) When contemporary aminoacyl-tRNA synthetases invent their cognate amino acid metabolism. Proc Natl Acad Sci U S A 100:9837–9842

    PubMed  CAS  Google Scholar 

  • Ruff M, Krishnaswamy S, Boeglin M et al (1991) Class II aminoacyl transfer RNA synthetases: crystal structure of yeast aspartyl-tRNA synthetase complexed with tRNA(Asp). Science 252:1682–1689

    PubMed  CAS  Google Scholar 

  • Sánchez-Silva R, Villalobo E, Morin L, Torres A (2003) A new noncanonical nuclear genetic code: translation of UAA into glutamate. Curr Biol 13:442–447

    PubMed  Google Scholar 

  • Sauerwald A, Zhu W, Major TA et al (2005) RNA-dependent cysteine biosynthesis in archaea. Science 307:1969–1972. doi:10.1126/science.1108329

    PubMed  CAS  Google Scholar 

  • Schmitt E, Moulinier L, Fujiwara S et al (1998) Crystal structure of aspartyl-tRNA synthetase from Pyrococcus kodakaraensis KOD: archaeon specificity and catalytic mechanism of adenylate formation. EMBO J 17:5227–5237. doi:10.1093/emboj/17.17.5227

    PubMed  CAS  Google Scholar 

  • Schneider A, Maréchal-Drouard L (2000) Mitochondrial tRNA import: are there distinct mechanisms? Trends Cell Biol 10:509–513

    PubMed  CAS  Google Scholar 

  • Sculaccio SA, Rodrigues EM, Cordeiro AT et al (2008) Selenocysteine incorporation in kinetoplastid: selenophosphate synthetase (SELD) from Leishmania major and Trypanosoma brucei. Mol Biochem Parasitol 162:165–171. doi:10.1016/j.molbiopara.2008.08.009

    PubMed  CAS  Google Scholar 

  • Sekine S-I, Shichiri M, Bernier S et al (2006) Structural bases of transfer RNA-dependent amino acid recognition and activation by glutamyl-tRNA synthetase. Structure 14:1791–1799. doi:10.1016/j.str.2006.10.005

    PubMed  CAS  Google Scholar 

  • Shen N, Guo L, Yang B et al (2006) Structure of human tryptophanyl-tRNA synthetase in complex with tRNATrp reveals the molecular basis of tRNA recognition and specificity. Nucleic Acids Res 34:3246–3258. doi:10.1093/nar/gkl441

    PubMed  CAS  Google Scholar 

  • Sheppard K, Yuan J, Hohn MJ et al (2008) From one amino acid to another: tRNA-dependent amino acid biosynthesis. Nucleic Acids Res 36:1813–1825. doi:10.1093/nar/gkn015

    PubMed  CAS  Google Scholar 

  • Shibata S, Gillespie JR, Kelley AM et al (2011) Selective inhibitors of methionyl-tRNA synthetase have potent activity against Trypanosoma brucei infection in mice. Antimicrob Agents Chemother 55:1982–1989. doi:10.1128/AAC.01796-10

    PubMed  CAS  Google Scholar 

  • Siegel TN, Hekstra DR, Wang X et al (2010) Genome-wide analysis of mRNA abundance in two life-cycle stages of Trypanosoma brucei and identification of splicing and polyadenylation sites. Nucleic Acids Res 38:4946–4957. doi:10.1093/nar/gkq237

    PubMed  CAS  Google Scholar 

  • Simpson AM, Suyama Y, Dewes H et al (1989) Kinetoplastid mitochondria contain functional tRNAs which are encoded in nuclear DNA and also contain small minicircle and maxicircle transcripts of unknown function. Nucleic Acids Res 17:5427–5445

    PubMed  CAS  Google Scholar 

  • Sprinzl M, Cramer F (1973) Accepting site for aminoacylation of tRNAphe from yeast. Nat New Biol 245:3–5

    PubMed  CAS  Google Scholar 

  • Squires JE, Berry MJ (2008) Eukaryotic selenoprotein synthesis: mechanistic insight incorporating new factors and new functions for old factors. IUBMB Life 60:232–235. doi:10.1002/iub.38

    PubMed  CAS  Google Scholar 

  • Tan THP, Bochud-Allemann N, Horn EK, Schneider A (2002) Eukaryotic-type elongator tRNAMet of Trypanosoma brucei becomes formylated after import into mitochondria. Proc Natl Acad Sci U S A 99:1152–1157. doi:10.1073/pnas.022522299

    PubMed  CAS  Google Scholar 

  • Tsunoda M, Kusakabe Y, Tanaka N et al (2007) Structural basis for recognition of cognate tRNA by tyrosyl-tRNA synthetase from three kingdoms. Nucleic Acids Res 35:4289–4300. doi:10.1093/nar/gkm417

    PubMed  CAS  Google Scholar 

  • Tumbula DL, Becker HD, Chang WZ, Söll D (2000) Domain-specific recruitment of amide amino acids for protein synthesis. Nature 407:106–110

    PubMed  CAS  Google Scholar 

  • Vondenhoff GHM, Van Aerschot A (2011) Aminoacyl-tRNA synthetase inhibitors as potential antibiotics. Eur J Med Chem 46:5227–5236. doi:10.1016/j.ejmech.2011.08.049

    PubMed  CAS  Google Scholar 

  • Wakasugi K, Schimmel P (1999) Highly differentiated motifs responsible for two cytokine activities of a split human tRNA synthetase. J Biol Chem 274:23155–23159

    Google Scholar 

  • Woese CR, Olsen GJ, Ibba M, Soll D (2000) Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol Mol Biol Rev 64:202–236

    PubMed  CAS  Google Scholar 

  • Wu XQ, Gross HJ (1993) The long extra arms of human tRNA((Ser)Sec) and tRNA(Ser) function as major identify elements for serylation in an orientation-dependent, but not sequence-specific manner. Nucleic Acids Res 21:5589–5594

    PubMed  CAS  Google Scholar 

  • Xu F, Chen X, Xin L et al (2001) Species-specific differences in the operational RNA code for aminoacylation of tRNA(Trp). Nucleic Acids Res 29:4125–4133

    PubMed  CAS  Google Scholar 

  • Xu XM, Carlson BA, Irons R, Mix H, Zhong N, Gladyshev VN, Hatfield DL (2007) Selenophosphate synthetase 2 is essential for selenoprotein biosynthesis. Biochem J 404:115–120

    PubMed  CAS  Google Scholar 

  • Yaremchuk A, Kriklivyi I, Tukalo M, Cusack S (2002) Class I tyrosyl-tRNA synthetase has a class II mode of cognate tRNA recognition. EMBO J 21:3829–3840. doi:10.1093/emboj/cdf373

    PubMed  CAS  Google Scholar 

  • Yoshizawa S, Böck A (2009) The many levels of control on bacterial selenoprotein synthesis. Biochim Biophys Acta 1790:1404–1414. doi:10.1016/j.bbagen.2009.03.010

    PubMed  CAS  Google Scholar 

  • Yuan J, Palioura S, Salazar JC et al (2006) RNA-dependent conversion of phosphoserine forms selenocysteine in eukaryotes and archaea. Proc Natl Acad Sci U S A 103:18923–18927

    PubMed  CAS  Google Scholar 

  • Yuan J, O’Donoghue P, Ambrogelly A et al (2010) Distinct genetic code expansion strategies for selenocysteine and pyrrolysine are reflected in different aminoacyl-tRNA formation systems. FEBS Lett 584:342–349. doi:10.1016/j.febslet.2009.11.005

    PubMed  CAS  Google Scholar 

  • Zhao Y, Wang Q, Meng Q et al (2012) Identification of Trypanosoma brucei leucyl-tRNA synthetase inhibitors by pharmacophore- and docking-based virtual screening and synthesis. Bioorg Med Chem 20:1240–1250. doi:10.1016/j.bmc.2011.12.035

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

 This work was supported by grants from FAPERJ, CNPq and WHO-TDR. I thank Dr. André Santos for inviting me to write this chapter and me deeply grateful to Dr. Shipra Srihari for editing the English. I also would like to express my gratitude to the invaluable contribution of the reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Polycarpo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Polycarpo, C. (2014). Highlights on Trypanosomatid Aminoacyl-tRNA Synthesis. In: Santos, A., Branquinha, M., d’Avila-Levy, C., Kneipp, L., Sodré, C. (eds) Proteins and Proteomics of Leishmania and Trypanosoma. Subcellular Biochemistry, vol 74. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7305-9_12

Download citation

Publish with us

Policies and ethics