Skip to main content

GP63 Function in the Interaction of Trypanosomatids with the Invertebrate Host: Facts and Prospects

  • Chapter
  • First Online:
Proteins and Proteomics of Leishmania and Trypanosoma

Part of the book series: Subcellular Biochemistry ((SCBI,volume 74))

Abstract

The GP63 of the protozoan parasite Leishmania is a highly abundant zinc metallopeptidase, mainly glycosylphosphatidylinositol-anchored to the parasite surface, which contributes to a myriad of well-established functions for Leishmania in the interaction with the mammalian host. However, the role of GP63 in the Leishmania-insect vector interplay is still a matter of controversy. Data from GP63 homologues in insect and plant trypanosomatids strongly suggest a participation of GP63 in this interface, either through nutrient acquisition or through binding to the insect gut receptors. GP63 has also been described in the developmental forms of Trypanosoma cruzi, Trypanosoma brucei and Trypanosoma rangeli that deal with the vector. Here, the available data from GP63 will be analyzed from the perspective of the interaction of trypanosomatids with the invertebrate host.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

EC:

Enzyme class

EDTA:

Ethylenediaminetetraacetic acid

EGTA:

Ethylene glycol tetraacetic acid

GIPLs:

Glycoinositolphospholipids

GPI:

Glycosylphosphatidylinositol

GPI-PLC:

Glycosylphosphatidylinositol-phospholipase C

HIV:

Human immunodeficiency virus

LPG:

Lipophosphoglycan

MSP:

Major surface peptidase

PARP:

Procyclic acidic repetitive protein

PSP:

Promastigote surface peptidase

VSG:

Glycosylphosphatidylinositol-anchored variant surface protein

References

  • Almeida FV, Branquinha MH, Giovanni-De-Simone S et al (2003) Extracellular metalloproteinase activity in Phytomonas françai. Parasitol Res 89:320–322

    PubMed  Google Scholar 

  • Alvarez VE, Niemirowicz GT, Cazzulo JJ (2012) The peptidases of Trypanosoma cruzi: digestive enzymes, virulence factors, and mediators of autophagy andprogrammed cell death. Biochim Biophys Acta 1824:195–206

    Article  PubMed  CAS  Google Scholar 

  • Bangs JD, Ransom DM, McDowell MA et al (1997) Expression of bloodstream variant surface glycoproteins in procyclic stage Trypanosoma brucei: role of GPI anchors in secretion. EMBO J 16:4285–4294

    Article  PubMed  CAS  Google Scholar 

  • Bangs JD, Ransom DM, Nimicket (2001) In vitro cytocidal effects on Trypanosoma brucei and inhibition of Leishmania major GP63 by peptidomimetric metalloprotease inhibitors. Mol Biochem Parasitol 114:111–117

    Article  PubMed  CAS  Google Scholar 

  • Basombrío MA, Gómez L, Padilla AM et al (2002) Targeted deletion of the gp72 gene decreases the infectivity of Trypanosoma cruzi from mice and insect vectors. J Parasitol 88:489–493

    PubMed  Google Scholar 

  • Bass KE, Wang CC (1991) The in vitro differentiation of pleomorphic Trypanosoma brucei from bloodstream into procyclic form requires neither intermediary nor short-stumpy stage. Mol Biochem Parasitol 44:261–270

    Article  PubMed  CAS  Google Scholar 

  • Bonaldo MC, d’Escoffier LN, Salles JM (1991) Characterization and expression of proteases during Trypanosoma cruzi metacyclogenesis. Exp Parasitol 73:44–51

    Article  PubMed  CAS  Google Scholar 

  • Bouvier J, Etges RJ, Bordier C (1985) Identification and purification of membrane and soluble forms of the major surface protein of Leishmania promastigotes. J Biol Chem 260:15504–15509

    PubMed  CAS  Google Scholar 

  • Bouvier J, Schneider P, Etges R et al (1990) Peptide substrate specificity of the membrane bound metalloprotease of Leishmania. Biochemistry 29:10113–10119

    Article  PubMed  CAS  Google Scholar 

  • Branquinha MH, Vermelho AB, Goldenberg S et al (1996) Ubiquity of cysteine and metalloproteinase in a wide range of trypanosomatids. J Eukaryot Microbiol 43:131–135

    Article  PubMed  CAS  Google Scholar 

  • Camargo EP (1999) Phytomonas and other trypanosomatid parasites of plants and fruit. Adv Parasitol 42:29–112

    Article  PubMed  CAS  Google Scholar 

  • Chicharro C, Alvar J (2003) Lower trypanosomatids in HIV/AIDS patients. Ann Trop Med Parasitol 97:75–78

    Article  PubMed  Google Scholar 

  • Corrêa-da-Silva MS, Fampa P, Lessa LP et al (2006) Colonization of Aedes aegypti midgut by the endosymbiont-bearing trypanosomatid Blastocrithidia culicis. Parasitol Res 99:384–391

    Article  PubMed  Google Scholar 

  • Cuevas IC, Cazzulo JJ, Sanchez DO (2003) Gp63 homologues in Trypanosoma cruzi: surface antigens with metalloprotease activity and a possible role in host cell infection. Infect Immun 71:5739–5749

    Article  PubMed  CAS  Google Scholar 

  • d’Avila-Levy CM, Souza RF, Gomes RC (2003) A metalloproteinase extracellularly released by Crithidia deanei. Can J Microbiol 49:625–632

    Article  PubMed  Google Scholar 

  • d’Avila-Levy CM, Araújo FM, Vermelho AB (2005) Proteolytic expression in Blastocrithidia culicis: influence of the endosymbiont and similarities with virulence factors of pathogenic trypanosomatids. Parasitology 130:413–420

    Article  PubMed  Google Scholar 

  • d’Avila-Levy CM, Dias FA, Nogueira de Melo AC (2006a) Insights into the role of gp63-like proteins in insect trypanosomatids. FEMS Microbiol Lett 254:149–156

    Article  Google Scholar 

  • d’Avila-Levy CM, Santos LO, Marinho FA (2006b) Gp63-like molecules in Phytomonas serpens: possible role on the insect interaction. Curr Microbiol 52:439–444

    Article  PubMed  Google Scholar 

  • d’Avila-Levy CM, Santos LO, Marinho FA (2008) Crithidia deanei: influence of parasite gp63 homologue on the interaction of endosymbiont-harboring and aposymbiotic strains with Aedes aegypti midgut. Exp Parasitol 118:345–353

    Article  PubMed  Google Scholar 

  • d’avila-Levy CM, Santos ALS, Cuervo P et al (2012) Applications of zymography (substrate-SDS-PAGE) for peptidase screening in a post-genomic era. In: Magdeldin S (Org) Gel electrophoresis – advanced techniques, 1ed. In Tech, Rijeka

    Google Scholar 

  • de Assis RR, Ibraim IC, Nogueira PM (2012) Glycoconjugates in new world species of leishmania: polymorphisms in lipophosphoglycan and glyco inositol phospholipids and interaction with hosts. Biochim Biophys Acta 1820:1354–1365

    Article  PubMed  Google Scholar 

  • De Jesus AR, Cooper R, Espinosa M et al (1993) Gene deletion suggests a role for Trypanosoma cruzi surface glycoprotein gp72 in the insect and mammalian stages of the life cycle. J Cell Sci 106:1023–1033

    PubMed  Google Scholar 

  • de Sousa KP, Atouguia J, Silva MS (2010) Partial biochemical characterization of a metalloproteinase from the bloodstream forms of Trypanosoma brucei brucei parasites. Protein J 29:283–289

    Article  PubMed  Google Scholar 

  • Dias FA, Santos ALS, Lery LM (2012) Evidence that a laminin-like insect protein mediates early events in the interaction of a phytoparasite with its Vector’s salivary gland. PLoS One 7(10):e48170

    Article  Google Scholar 

  • Elias CGR, Pereira FM, Silva BA et al (2006) Leishmanolysin (gp63 metallopeptidase)-like activity extracellularly released by Herpetomonas samuelpessoai. Parasitology 132:37–47

    Article  PubMed  CAS  Google Scholar 

  • El-Sayed NM, Donelson JE (1997) African trypanosomes have differentially expressed genes encoding homologues of the leishmania GP63 surface protease. J Biol Chem 272:26742–26748

    Article  PubMed  CAS  Google Scholar 

  • Elwasila M (1988) Leishmania tarentolae Wenyon, 1921 from the gecko Tarentola annularis in the Sudan. Parasitol Res 74:591–592

    Article  PubMed  CAS  Google Scholar 

  • Ennes-Vidal V, Menna-Barreto RF, Santos ALS et al (2011) MDL28170, A calpain inhibitor, affects Trypanosoma cruzi Metacyclogenesis, ultrastructure and attachment to Rhodnius prolixus Midgut. PLoS One 6:e18371

    Article  PubMed  CAS  Google Scholar 

  • Etges R (1992) Identification of a surface metalloproteinase on 13 species of Leishmania isolated from humans, Crithidia fasciculata, and Herpetomonas samuelpessoai. Acta Trop 50:205–217

    Article  PubMed  CAS  Google Scholar 

  • Etges RJ, Bouvier J, Bordier C (1986) The major surface protein of Leishmania promastigotes is a protease. J Biol Chem 261:9099–9101

    Google Scholar 

  • Ferreira KA, Ruiz JC, Dias FC et al (2010) Genome survey sequence analysis and identification of homologs of major surface protease (gp63) genes in Trypanosoma rangeli. Vector Borne Zoonotic Dis 10:847–853

    Article  PubMed  Google Scholar 

  • Fong D, Chang KP (1982) Surface antigenic change during differentiation of a parasitic protozoan, Leishmania mexicana: identification by monoclonal antibodies. Proc Natl Acad Sci USA 79:7366–7370

    Article  PubMed  CAS  Google Scholar 

  • Grandgenett PM, Coughlin BC, Kirchhoff LV (2000) Differential expression of GP63 genes in Trypanosoma cruzi. Mol Biochem Parasitol 110:409–415

    Article  PubMed  CAS  Google Scholar 

  • Grandgenett PM, Otsu K, Wilson HR et al (2007) A function for a specific zinc metalloprotease of African trypanosomes. PLoS Pathog 3:1432–1445

    Article  PubMed  CAS  Google Scholar 

  • Gruszynski AE, van Deursen FJ, Albareda MC et al (2006) Regulation of surface coat exchange by differentiating African trypanosomes. Mol Biochem Parasitol 147:211–223

    Article  PubMed  CAS  Google Scholar 

  • Hajmová M, Chang KP, Kolli B et al (2004) Down-regulation of gp63 in Leishmania amazonensis reduces its early development in Lutzomyia longipalpis. Microb Infect 6:646–649

    Article  Google Scholar 

  • Inverso JA, Medina-Acosta E, O’connor J et al (1993) Crithida fasciculata contains a transcribed leishmanial surfasse peptidase (gp63) gene homologue. Mol Biochem Parasitol 57:47–54

    Article  PubMed  CAS  Google Scholar 

  • Jaffe CL, Dwyer DM (2003) Extracellular release of the surface metalloprotease, gp63, from Leishmania and insect trypanosomatids. Parasitol Res 91:229–237

    Article  PubMed  Google Scholar 

  • Joshi PB, Kelly BL, Kamhawi S et al (2002) Targeted gene deletion in Leishmania major identifies leishmanolysin (GP63) as a virulence factor. Mol Biochem Parasitol 120:33–40

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni MM, Olson CL, Engman DM et al (2009) Trypanosoma cruzi GP63 proteins undergo stage-specific differential posttranslational modification and are important for host cell infection. Infect Immun 77:2193–2200

    Article  PubMed  CAS  Google Scholar 

  • LaCount DJ, Gruszynski AE, Grandgenett PM et al (2003) Expression and function of the Trypanosoma brucei major surface protease (Gp63) genes. J Biol Chem 278:24658–24664

    Article  PubMed  CAS  Google Scholar 

  • Lepay DA, Nogueira N, Cohn Z (1983) Surface antigens of Leishmania donovani promastigotes. J Exp Med 157:1562–1572

    Article  PubMed  CAS  Google Scholar 

  • Lowndes CM, Bonaldo MC, Thomaz N et al (1996) Heterogeneity of metalloprotease expression in Trypanosoma cruzi. Parasitol 112:393–399

    Article  CAS  Google Scholar 

  • Ma L, Chen K, Meng Q et al (2011) An evolutionary analysis of trypanosomatid GP63 proteases. Parasitol Res 109:1075–1084

    Article  PubMed  Google Scholar 

  • MacGregor P, Matthews KR (2010) New discoveries in the transmission biology of sleeping sickness parasites: applying the basics. J Mol Med 88:865–871

    Article  PubMed  Google Scholar 

  • Matteoli FP, d’Avila-Levy CM, Santos LO (2009) Roles of the endosymbiont and leishmanolysin-like molecules expressed by Crithidia deanei in the interaction with mammalian fibroblasts. Exp Parasitol 121:246–253

    Article  PubMed  CAS  Google Scholar 

  • McGwire BS, Chang KP (1996) Posttranslational regulation of a leishmania HEXXH metalloprotease (gp63). The effects of site specific mutagenesis of catalytic, zinc binding, N-glycosylation, and glycosyl phosphatidylinositol addition sites on N-terminal end cleavage, intracellular stability, and extracellular exit. J Biol Chem 271:7903–7909

    Article  PubMed  CAS  Google Scholar 

  • Nogueira de Melo AC, Giovanni-De-Simone S, Branquinha MH et al (2001) Crithidia guilhermei: purification and partial characterization of a 62-kDa extracellular metalloproteinase. Exp Parasitol 97:1–8

    Article  PubMed  CAS  Google Scholar 

  • Nogueira de Melo AC, d’Avila-Levy CM, Dias FA (2006) Peptidases and gp63-like proteins in Herpetomonas megaseliae: possible involvement in the adhesion to the invertebrate host. Int J Parasitol 36:415–422

    Article  PubMed  CAS  Google Scholar 

  • Nogueira NF, Gonzalez MS, Gomes JE et al (2007) Trypanosoma cruzi: involvement of glycoinositol phospholipids in the attachment to the luminal midgut surface of Rhodnius prolixus. Exp Parasitol 116:120–128

    Article  PubMed  CAS  Google Scholar 

  • Olivier M, Atayde VD, Isnard A et al (2012) Leishmania virulence factors: focus on the metalloprotease GP63. Microbes Infect 14:1377–1389

    Article  PubMed  CAS  Google Scholar 

  • Pereira FM, Bernardo PS, Dias Junior PF et al (2009) Differential influence of gp63-like molecules in three distinct Leptomonas species on the adhesion to insect cells. Parasitol Res 104:347–353

    Article  PubMed  CAS  Google Scholar 

  • Pereira FM, Santos-Mallet JR, Branquinha MH et al (2010a) Influence of leishmanolysin-like molecules of Herpetomonas samuelpessoai on the interaction with macrophages. Microbes Infect 12:1061–1070

    Article  PubMed  CAS  Google Scholar 

  • Pereira FM, Dias FA, Elias CG et al (2010b) Leishmanolysin-like molecules in Herpetomonas samuelpessoai mediate hydrolysis of protein substrates and interaction with insect. Protist 161:589–602

    Article  PubMed  CAS  Google Scholar 

  • Rawlings ND, Barret AJ, Baterman A (2012) MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 40:D343–D350

    Article  PubMed  CAS  Google Scholar 

  • Raymond F, Boisvert S, Roy G et al (2012) Genome sequencing of the lizard parasite Leishmania tarentolae reveals loss of genes associated to the intracellular stage of human pathogenic species. Nucleic Acids Res 40:1131–1147

    Article  PubMed  CAS  Google Scholar 

  • Santos ALS, Rodrigues ML, Alviano CS et al (2003) Herpetomonas samuelpessoai: dimethylsulfoxide-induced differentiation is influenced by proteinase expression. Curr Microbiol 46:11–17

    Article  Google Scholar 

  • Santos ALS, Abreu CM, Alviano CS et al (2005) Use of proteolytic enzymes as an additional tool for trypanosomatid identification. Parasitology 130:79–88

    Article  PubMed  CAS  Google Scholar 

  • Santos ALS, Branquinha MH, d’Avila-Levy CM (2006) The ubiquitous gp63-like metalloprotease from lower trypanosomatids: in the search for a function. An Acad Bras Cienc 78:687–714

    Article  PubMed  CAS  Google Scholar 

  • Santos ALS, d’Avila-Levy CM, Elias CG (2007) Phytomonas serpens: immunological similarities with the human trypanosomatid pathogens. Microbes Infect 9:915–921

    Article  PubMed  CAS  Google Scholar 

  • Schneider P, Glaser TA (1993) Characterization of a surface metalloprotease from Herpetomonas samuelpessoai and comparison with Leishmania major promastigote surface protease. Mol Biochem Parasitol 58:277–282

    Article  PubMed  CAS  Google Scholar 

  • Soteriadou KP, Remounds MS, Katsikas MC et al (1992) The Ser-Arg-Tyr-Asp region of the major surface glycoprotein of Leishmania mimics the Arg-Gly-Asp-Ser cell attachment region of fibronectin. J Biol Chem 267:13980–13985

    PubMed  CAS  Google Scholar 

  • Teixeira MM, Borghesan TC, Ferreira RC et al (2011) Phylogenetic validation of the genera Angomonas and Strigomonas of trypanosomatids harboring bacterial endosymbionts with the description of new species of trypanosomatids and of proteobacterialsymbionts. Protist 162:503–524

    Article  PubMed  Google Scholar 

  • Uehara LA, Moreira OC, Oliveira AC et al (2012) Cruzipain promotes Trypanosoma cruzi adhesion to Rhodniusprolixus midgut. PLoS Negl Trop Dis 6:e1958

    Article  PubMed  CAS  Google Scholar 

  • Vermelho AB, Almeida FV, Bronzato LS et al (2003) Extracellular metalloproteinases in Phytomonas serpens. Can J Microbiol 49:221–224

    Article  PubMed  CAS  Google Scholar 

  • Vickerman K (1965) Polymorphism and mitochondrial activity in sleeping sickness trypanosomes. Nature 208:762–766

    Article  PubMed  CAS  Google Scholar 

  • Weinman D, Cheong WH (1978) Herpetomonas, with bacterium-like inclusions, in Malaysian Aedes aegypti and Aedes albopictus. J Protozool 25:167–169

    Article  Google Scholar 

  • Wilson V, Southern B (1979) Lizard leishmania. In: Lumsden W, Evans D (eds) Biology of kinetoplastida. Academic, New York

    Google Scholar 

  • Yao C (2010) Major surface protease of trypanosomatids: one size fits all? Infect Immun 78:22–31

    Article  PubMed  CAS  Google Scholar 

  • Yao C, Donelson JE, Wilson ME (2003) The major surface protease (MSP or GP63) of Leishmania sp. biosynthesis, regulation of expression and function. Mol Biochem Parasitol 132:1–16

    Article  PubMed  CAS  Google Scholar 

  • Ziegelbauer K, Stahl B, Karas M et al (1993) Proteolytic release of cell surface proteins during differentiation of Trypanosoma brucei. Biochemistry 32:3737–3742

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

 This study was supported by grants from the following Brazilian Agencies: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (MCT/CNPq), Fundação de Amparo à Pesquisa no Estado do Rio de Janeiro (FAPERJ) and Fundação Oswaldo Cruz (FIOCRUZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia M. d’Avila-Levy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

d’Avila-Levy, C.M., Altoé, E.C.F., Uehara, L.A., Branquinha, M.H., Santos, A.L.S. (2014). GP63 Function in the Interaction of Trypanosomatids with the Invertebrate Host: Facts and Prospects. In: Santos, A., Branquinha, M., d’Avila-Levy, C., Kneipp, L., Sodré, C. (eds) Proteins and Proteomics of Leishmania and Trypanosoma. Subcellular Biochemistry, vol 74. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7305-9_11

Download citation

Publish with us

Policies and ethics