Skip to main content

Solar Thermal Power Generation and Industrial Process Heat

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Energy ((LNEN,volume 18))

Abstract

High temperature heat production requires a concentrator, an absorber and a heat transfer fluid, with the addition of an engine if electricity is to be generated. Reflector materials need to retain high specular reflectance under often harsh conditions. Specialised high-temperature selective multiple cermet layer coatings prepared by physical vapour deposition are necessary for operating temperatures above 400 °C (Kennedy and Price 2006). Selective coatings for medium-temperature applications such as metal-dielectric cermet composites of metal particles in a ceramic matrix are not stable at high operating temperatures.

In time, manufacturing will to a great extent follow the sun

C.G. Abbot (1928)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdel-Salam HEA, Probert SD, Norton B (1986) Predicted performance of coffered solar ponds in the U.K and Egypt. Physio Chemical Hydrodynamics 7(4):217–233

    Google Scholar 

  • Adams W (1878) Solar heat: a substitute for fuel in tropical countries. Education Society’s Press, Bombay

    Google Scholar 

  • Akbarzadeh A, MacDonald RWG (1982) Introduction of a passive method for salt replenishment in the operation of solar ponds. Solar Energy 29:71–76

    Article  Google Scholar 

  • Akbarzadeh A, MacDonald RWG, Wang YF (1983) Reduction of surface mixing in solar ponds by floating rings. Solar Energy 31:377–380

    Article  Google Scholar 

  • Anderson CG (1958) Some limnological features of a shallow saline meromictic lake. Limnol Oceanogr 3:259–269

    Article  Google Scholar 

  • Assaf G (1976) The Dead Sea: a scheme for a Solar Lake. Solar Energy 1:293–299

    Article  Google Scholar 

  • Bachmann RW, Goldman CR (1965) Hypolimnetic heating in Castle Lake, California. Limnol Oceanogr 10:233–239

    Article  Google Scholar 

  • Bernardes MA, dos S, Valle RM, Cortez MFB (1999) Numerical analysis of natural laminar convection in a radial solar heater. Int J Therm Sci 38:42–50

    Article  Google Scholar 

  • Bitnar B, Dunseh W, Mayor JC, Sigg H, Tschudi HR (2002)

    Google Scholar 

  • Bryant RS, Bowser RP, Wittenberg LJ (1979) Construction and initial operation of the Miamisburg salt­gradient solar pond, Sun 2. In: Proceedings of the ISES silver jubilee congress, vol 2. Atlanta, pp 1005–1009

    Google Scholar 

  • Burch J, Thomas K (1998) An overview of water disinfection in developing countries and the potential for solar thermal water pasteurisation. National Renewable Energy Laboratory, Golden

    Book  Google Scholar 

  • Cabanyes I (1903) Proyecto de Motor solar, La Energia Eléctrica – Revista General de Electricidad y sus Aplicaciones 8:61–65

    Google Scholar 

  • Chandak A, Dubey D (2005) Innovative solar concentrator for industrial heating applications. International congress on renewable energy, Pune

    Google Scholar 

  • Chen G (2001) Phonon heat conduction in low dimensional structures. Recent trends in thermoelectric materials research III. Academic, San Diego

    Google Scholar 

  • Chergui T, Larbi S, Bouhdjar A, Gahgah M (2008) Performances analysis of a solar chimney power plant in South Algeria. In: Proceedings of the world renewable energy congress

    Google Scholar 

  • Chiritescu C, Cahil DG, Ngayeu M, Johnson D, Bodapati A, Kebhiski P, Zschack P (2007) Ultralow thermal conductivity in disordered WSe2 crystals layered. Science 315:351–353

    Article  Google Scholar 

  • Church WC (1907) The life of John Ericsson. C Scribner’s Sons, New York

    Google Scholar 

  • Crevier D, Moshref A (1981) The floating solar pond. ISES-AS conference, Philadelphia, pp 801–807

    Google Scholar 

  • Dincer I, Rosen MA (1998) A worldwide perspective on energy, environment and sustainable development. Int J Energ Res 18:1305–1321

    Article  Google Scholar 

  • Duff WS, Hodgeson DA (2007) A simple high efficiency solar water purification system. Solar Energy 79:25–32

    Article  Google Scholar 

  • Elata C, Levien O (1966) Hydraulics of the solar ponds of the eleventh international congress international association for hydraulic research, Leningrad, pp 1–14

    Google Scholar 

  • Eneas A (1901) Solar generator. US patent 670,917, 26 Mar 1901

    Google Scholar 

  • Ericsson J (1868) The use of solar heat as a mechanical motor power. In the report of the centennial celebrations of the University of Lund, Lund

    Google Scholar 

  • Ericsson J (1884) The sun motor and the sun’s temperature. Nature 29:217–218

    Article  Google Scholar 

  • Feachem RG, Garelick DJ, Mara DD (1983) Sanitation and disease: health aspects of excreta and wastewater management. Wiley, New York

    Google Scholar 

  • Fleming JC, Liu SY, El-Kady I, Biswal R, Hu KM (2002) Nature 417:52–55

    Article  Google Scholar 

  • Fluri TP, Pretorius JP, Van Dyk C, Backstrom TW, Kröger DG, Van Zijl GPAC (2009) Cost analysis of solar chimney power plants. Solar Energy 83:246–256

    Article  Google Scholar 

  • Foster R, Ghassemi M, Alma Cota A (2010) Solar energy: renewable energy and the environment. CRC Press, Boca Raton

    Google Scholar 

  • Gadhia D, Gadhia S (2006) Parabolic solar concentrators for cooking, food processing and other applications. International solar cooking conference, Granada

    Google Scholar 

  • Goldsmid HJ (1960) Application of thermo electricity. Wiley, London

    Google Scholar 

  • Günther H (1931) In Hundert Jahren – Die künftige Energieversorgung der Welt, Gesellschaft der Naturfreunde. Kosmos, Stuttgart

    Google Scholar 

  • Haaf W (1984) Solar towers: part II: preliminary test results from the Manzanares pilot plant. Solar Energy 2:141–161

    Google Scholar 

  • Haaf W, Friedrich K, Mayr G, Schlaich J (1983) Solar chimneys, part I: principle and construction of the pilot plant in Manzanares. Solar Energy 2:3–20

    Google Scholar 

  • Huder PP, Sonnefeld P (1974) Hot brines on Los Roques, Venezuela. Science 185:440–442

    Article  Google Scholar 

  • Kalogirou S (2004) Solar thermal collectors and applications. Prog Energy Combust Sci 30:231–295

    Article  Google Scholar 

  • Kedare SB (2005) Solar concentrator for industrial process heat. International congress on renewable energy, Pune

    Google Scholar 

  • Kennedy CE, Price H (2006) Progress in development of high-temperature solar-selective coating. In: Proceedings of the 2005 international solar energy conference (ISEC2005), 6–12 Aug 2005, Orlando, Paper no ISEC2005-76039, pp 749–755. American Society of Mechanical Engineers (ASME), New York, NREL report: CP-520-36997

    Google Scholar 

  • Kooi CF (1979) The steady-state salt gradient solar pond. Solar Energy 23(3):7–45

    Google Scholar 

  • Kraemer D, Poudd B, Feng H-P, Caylor JC, Yu B, Yan YM, Wang X, Wang D, Muto A, McEnaney K, Chiesa M, Ren Z, Chen G (2011) Higher-performance flat-panel solar thermoelectric generators with high concentration. Nat Mater 10:532–538

    Article  Google Scholar 

  • Larbi S, Bouhdjar A, Chergui T (2010) Performance analysis of a solar chimney power plant in the southwestern region of Algeria. Renew Sustain Energy Rev 14:470–477

    Article  Google Scholar 

  • Lytvynenko YM, Schur DV (1999) Utilisation of the concentrated solar energy for process of deformation of sheet metal. Renew Energy 16:753–756

    Article  Google Scholar 

  • Maia CB, Ferreira AG, Valle RM, Cortez MFB (2009) Theoretical evaluation of the influence of geometric parameters and materials on the behaviour of the air flow in a solar chimney. Comput Fluids 38:625–636

    Article  Google Scholar 

  • Melack JM, Kilham P (1972) Lake Mahega: a mesotropic sulfate chloride lake in Western Uganda. Afr J Trop Hydrobiol Fish 2:141–150

    Google Scholar 

  • Morti A, Luque A (2003) Next generation photovoltaics; high efficiency through full spectrum utilization. Institute of Physics, Bristol

    Book  Google Scholar 

  • Mouchout A (1869) Le chaleur solarise et les applications industrielles, 1st edn, Paris

    Google Scholar 

  • Mullick SC, Kandpal TC, Kumar S (1991) Thermal test procedure for a parabolic concentrator solar cooker. Solar Energy 46:139–144

    Article  Google Scholar 

  • Neumann O, Urban AS, Day J, Lal S, Nordlander P, Halas NJ (2013) Solar vapor generation enabled by nanoparticles. AesNano 7:42–49

    Google Scholar 

  • Nielsen CE (1975) Salt-gradient solar ponds for solar energy utilization. Environ Conserv 2:289–292

    Article  Google Scholar 

  • Nielsen CE (1976) Experience with a prototype solar-pond for space heating, sharing the Sun solar technology in the seventies. Joint conference of the ISES-AS, and the Solar Energy Society of Canada, Winnipeg, pp 169–182

    Google Scholar 

  • Nielsen CE (1979) Control of gradient zone boundaries, Sun 2. In: Proceedings of the ISES Congress, vol 2. Atlanta, pp 1010–1014

    Google Scholar 

  • Nielsen CE, Rabl A (1976) Salt requirement and stability of solar ponds, shading the Sun: solar technology in the seventies. Joint conference of the ISES-AS and Solar Energy Society of Canada, Winnipeg, 5 Aug 1976, pp 183–187

    Google Scholar 

  • Onwubiko C (1984) Effect of evaporation on the characteristic performance of the salt -gradient solar pond. Solar engineering – 1984. In: Proceedings of the ASME Solar Energy Division, sixth annual conference, Las Vegas, pp 6–11

    Google Scholar 

  • Pasumarthi N, Sherif SA (1998) Experimental and theoretical performance of a demonstration solar chimney model, Part 1: Mathematical model developments. Int J Energy Res 22:277–288

    Article  Google Scholar 

  • Poppe WI, Woomer NM (1985) Algae management practices for solar salt ponds; practical approaches. In: Progress in solar energy, American Solar Energy Society Meeting, Boulder, 6:439–442

    Google Scholar 

  • Por FD (1968) Solar lake on the shores of the Red Sea. Nature 218:860–861

    Article  Google Scholar 

  • Pretorius JP, Kröger DG, Buys JD, Von Backström TW (2004) Solar tower power plant performance characteristics. In: Proceedings of the ISES EuroSun 2004 international sonnenforum

    Google Scholar 

  • Pretorius JP, Kröger DG (2006a) Solar chimney power plant performance. J Solar Energy 128:302–311

    Article  Google Scholar 

  • Pretorius JP, Kröger DG (2006b) Critical evaluation of solar chimney power performance. Solar Energy 80:535–544

    Article  Google Scholar 

  • Pujol R, Moià A, Martinex V (2011) Concentrador solar lineal con reflector estacionario y foco móvil. Era Solar 165:24–30

    Google Scholar 

  • Rabl A, Neilsen CE (1975) Solar ponds for space heating. Solar Energy 17:1–12

    Article  Google Scholar 

  • Rodat S, Abanades S, Sans J-L, Flamant G (2009) Hydrogen production from solar thermal dissociation of natural gas: development of a 10 kW solar chemical reactor prototype. Solar Energy 83:1599–1610

    Article  Google Scholar 

  • Satish CJ, Gurmukh DM (1980) Laboratory demonstration of self-creation, self-maintenance and self-correction of saturated solar ponds. IECEC’80 energy to the 21st century. Proceedings of the15th inter-society energy conversion engineering conference, vol 2. Seattle, pp 1448–1452

    Google Scholar 

  • Schladow SG (1984) The upper mixed zone of a salt-gradient solar pond: its dynamics, prediction and control. Solar Energy 33:417–426

    Article  Google Scholar 

  • Schlaich J (1995) The solar chimney: electricity from the Sun, Axel Menges edition, Stuttgart

    Google Scholar 

  • Schlaich J, Bergermann R, Schiel W, Weinrebe G (2003a) Design of commercial solar tower systems-utilization of solar induced convective flows for power generation. In: Proceedings of the international solar energy conference

    Google Scholar 

  • Schlaich J, Bergermann R, Schiel W, Weinrebe G (2003b) Sustainable electricity generation with solar updraft towers. Struct Eng Int 3:222–229

    Google Scholar 

  • Schweiger H et al (2000) The potential of solar heat in industrial processes: a state of the art review for Spain and Portugal. In: Proceedings of the Eurosun, Copenhagen

    Google Scholar 

  • Shaffer HL (1978) Viscosity-stabilized solar ponds mankind’s future source of energy. Proceedings congress, New Delhi

    Google Scholar 

  • Shuman F (1911) Power from the Sun; a pioneer solar power plant. Scientific American, September

    Google Scholar 

  • Shuman F, Boys CY (1917) Solar boiler. US patent 1,240,890, 25 Sept 1917

    Google Scholar 

  • Seinfeld A (2005) Solar thermochemical production of hydrogen – a review. Solar Energy 78:603–615

    Article  Google Scholar 

  • Tabor H (1980) Non-convecting solar ponds. Solar energy. Proc Roy Soc A295: 422–433

    Google Scholar 

  • Tabor H (1981) Review article: solar ponds. Solar Energy 27(3):181–194

    Article  MathSciNet  Google Scholar 

  • Tabor H, Matz R (1964) A status Re ort on a solar-pond project. Solar Energy 9:177–182

    Article  Google Scholar 

  • Tellier C (1889) Elevation des eaux par la chaleur atmospherique, Paris

    Google Scholar 

  • Vitner A, Reisfeld R, Sarig S (1984) Self-generation of a laboratory-scale saturated solar pond. Solar Energy 32:671–675

    Article  Google Scholar 

  • Weinberger H (1964) The physics of the solar pond. Solar Energy 8:45–56

    Article  Google Scholar 

  • WHO (2007) Combating waterborne disease at the household level. World Health Organisation, Geneva

    Google Scholar 

  • Wilkins E, El-Genk M, El-Husseini K, Thakur D (1982) An evaluation of the gel pond performance. ASME, 82-WA/Sol-29

    Google Scholar 

  • Wilson AT, Wellman HW (1962) Lake Vanda: an Antarctic lake. Nature 196:1171–1173

    Article  Google Scholar 

  • Wittenberg LJ, Harris MJ (1980) Management of a large operational solar pond. IECEC’80, Energy to the 21st century. Proceeding of the 15th inter-society energy conversion engineering conference, vol 2. Seattle, pp 1435–1437

    Google Scholar 

  • Zangrando F (1980) A simple method to establish salt-gradient solar ponds. Solar Energy 25:467–470

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Norton, B. (2014). Solar Thermal Power Generation and Industrial Process Heat. In: Harnessing Solar Heat. Lecture Notes in Energy, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7275-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7275-5_7

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7274-8

  • Online ISBN: 978-94-007-7275-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics