Skip to main content

The Solar Energy Resource

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Energy ((LNEN,volume 18))

Abstract

The earth rotates at an axial tilt in an elliptical orbit around the sun producing the annual variation of intensity outside the earth’s atmosphere (Lunde 1980) shown in Fig. 2.1. Beneath the atmosphere solar energy varies temporally and geographically in its

The sun shone, having no alternative, on the nothing new

Samuel Beckett, Routledge, London (1938)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Angstrom A (1924) Solar and terrestrial radiation. Q J Roy Meteorol Soc 150:121–126

    Google Scholar 

  • Bendt P, Collares-Pereira M, Rabl A (1981) The frequency distribution of daily insolation values. Solar Energy 27:1–5

    Article  Google Scholar 

  • Burek SAM, Norton B, Probert SD (1988) Analytical and experimental methods for shadow-band correction factors for solarimeters on inclined planes under isotropically-diffuse and overcast skies. Solar Energy 40(2):151–160

    Article  Google Scholar 

  • Clark DR, Klein SA, Beckman WA (1983) Algorithm for evaluating the hourly radiation utilizability function ASME. J Solar Energy Eng 105:281–287

    Article  Google Scholar 

  • Collares-Pereira M, Rabl A (1979) Simple procedure for predicting long term average performance of non-concentrating and of concentrating solar collectors. Solar Energy 23:235–253

    Article  Google Scholar 

  • Dave JV (1977) Validity of the isotropic-distribution approximation in solar energy estimations. Solar Energy 19:331–333

    Article  Google Scholar 

  • Drummond AJ (1956) On the measurement of sky radiation. Arch Met Geophys Bioklim B7:413–436

    Article  Google Scholar 

  • Erbs DG, Klein SA, Duffie JA (1982) Estimation of the diffuse radiation fraction for hourly, daily and monthly – average global radiation. Solar Energy 28:293–302

    Article  Google Scholar 

  • Evans DL, Rule TT, Wood BD (1982) A new look at long term collector performance and utilizability. Solar Energy 28:13–23

    Article  Google Scholar 

  • George R, Maxwell E (1999) High-resolution ways of solar collector performance using a climatological solar radiation model. In: Proceedings of the annual conference of the American Solar Energy Society, Portland

    Google Scholar 

  • Gordon JM, Hochman M (1984) On correlations between beam and global radiation. Solar Energy 32:329–336

    Article  Google Scholar 

  • Hay JE (1979) Study of shortwave radiation on non-horizontal surfaces. Canadian Climate Center. Report 79–12, AES, Downview

    Google Scholar 

  • Hogan WD, Loxsom FM (1981) Preliminary validation of models predicting insolation on tilted surfaces. In: Proceedings of the annual meeting of the American section of the international solar energy society

    Google Scholar 

  • Hollands KGT, Huget RG (1983) A probability density function for the clearness index, with applications. Solar Energy 30:195–209

    Article  Google Scholar 

  • Hottel HC (1976) A simple model for estimating the transmittance of direct solar radiation through clear solar atmospheres. Solar Energy 18

    Google Scholar 

  • Ineichen P, Gremaud JM, Guisan O, Mermoud A (1983) Study of the corrective factor involved when measuring the diffuse solar radiation by use of the ring method. Solar Energy 31:113–117

    Article  Google Scholar 

  • Iqbal M (1983) An Introduction to solar radiation. Academic, Toronto

    Google Scholar 

  • Kittler R (1986) Luminance model of homogeneous skies for design and energy performance predictions. In: Proceeding of the 2nd international daylighting conference, Long Beach

    Google Scholar 

  • Klein SA (1978) Calculation of flat-plate collector utilizability. Solar Energy 21:393–402

    Article  Google Scholar 

  • Klucher TM (1979) Evaluation of models to predict insolation on tilted surfaces. Solar Energy 111–114

    Google Scholar 

  • Landsberg HE (1981) The urban climate. Academic, New York

    Google Scholar 

  • LeBaron BA, Peterson WA, Dirmhirn I (1980) Corrections for diffuse irradiance with shadowbands. Solar Energy 25:1–13

    Article  Google Scholar 

  • Littlefair PJ (1985) The luminous efficacy of daylight, a review. Light Res Technol 17:162–182

    Article  Google Scholar 

  • Liu BYH, Jordan RC (1960) The interrelationship and characteristic distribution of direct, diffuse and total solar radiation. Solar Energy 4:1–19

    Article  Google Scholar 

  • Liu BYH, Jordan RC (1962) Daily insolation on surfaces tilted towards the equator. Trans ASHRAE 526–541

    Google Scholar 

  • Liu BYH, Jordan RC (1963) A rational procedure for predicting the long-term average performance of flat-plate solar energy collectors. Solar Energy 7:53–74

    Article  Google Scholar 

  • Liu BYH, Jordan RE (1965) Performance and evaluation of concentrating collectors for power generation trans. ASME Journal of Engineering for Power 87:1–7

    Article  Google Scholar 

  • Lloyd PB (1984) Solar energy for engineers. Helios 22: Solar energy unit, University College, Cardiff

    Google Scholar 

  • Lunde PJ (1980) Solar thermal engineering. Wiley, New York

    Google Scholar 

  • Ma CCY, Iqbal M (1983) Statistical comparison of models for estimating solar radiation on inclined surfaces. Solar Energy 31:31–317

    Article  Google Scholar 

  • Marion W, Wilcox S (1994) Solar radiation data manual for flat plate and concentrating collectors. Report NREL/TP-463-5607, National Renewable Energy Laboratory, Golden

    Google Scholar 

  • Maxwell E, George R, Wilcox S (1998) A climatological solar radiation model. In: Proceedings of the annual conference of the American solar energy society, Albuquerque

    Google Scholar 

  • Mujahid A, Turner WD (1980) Diffuse sky measurements and determination of corrected shadow band multiplication factors. ASME annual winter meeting, paper no 80-WA/Sol-26

    Google Scholar 

  • Norton B, Abu-Ebeid M (1989) Estimation of mean monthly daily total insolation from mean monthly daily ambient temperature. Ambient Energy 10:151–162

    Article  Google Scholar 

  • Page JK (1961) The estimation of monthly mean values for daily total short wave radiation on vertical and inclined surfaces from sunshine hours for latitudes 40°N to 40°S. In: Proceedings of the UN conference on new sources of energy, Rome, pp 378–390

    Google Scholar 

  • Painter HE (1981) The shade ring correction factor for diffuse irradiance measurements. Solar Energy 26:361–363

    Article  Google Scholar 

  • Perez R, Scott JT, Stewart R (1983) An anisotropic model for diffuse radiation incident of hopes of different orientations and possible applications to CPCs. Prog Solar Energy 6:883–888

    Google Scholar 

  • Perez R, Stewart R, Arbogast C, Seals R, Scott J (1986) An anisotropic hourly diffuse radiation model for sloping surfaces: description, performance validation, site dependency evaluation. Solar Energy 36:481–497

    Article  Google Scholar 

  • Perez R, Ineichen P, Seals R, Zelenka A (1990a) Making full use of the clearness index for parameterising hourly insolation conditions. Solar Energy 45:111–114

    Article  Google Scholar 

  • Perez R, Ineichen P, Seals R, Michalsky J, Stewart R (1990b) Modeling daylight availability and irradiance components from direct and global irradiance. Solar Energy 44:271–289

    Article  Google Scholar 

  • Perez R, Seals R, Zelenka A, Ineichen P (1990c) Climatic evaluation of models that predict hourly direct irradiance from hourly global irradiance; prospects for performance improvements. Solar Energy 44:99–108

    Article  Google Scholar 

  • Perez R, Seals R, Michealsky J (1993) An all-weather model for sky luminance distribution – a preliminary configuration and validation. Solar Energy 50:235–245

    Article  Google Scholar 

  • Perez R, Ineichen P, Moore K, Kmiecik M, Chain C, George R, Vignola F (2002) A new operational satellite-to-irradiance model. Solar Energy 75:307–317

    Article  Google Scholar 

  • Prescott JA (1940) Evaporation from water surface in relation to solar radiation. Trans Roy Soc 54:114–118

    Google Scholar 

  • Rawlins F, Readings CJ (1986) The shade ring correction for measurements of diffuse irradiance under clear skies. Solar Energy 37:407–416

    Article  Google Scholar 

  • Reddy TA, Kumar S, Saunier GY (1985) Review of solar radiation analysis techniques for predicting long-term thermal collector performance – applicability to Bangkok data. Renew Energy Review J 7:56–80

    Google Scholar 

  • Reddy SJ (1987) The estimation of global solar radiation and evaporation through precipitation. Solar Energy 38:97–104

    Article  Google Scholar 

  • Robinson N, Stoch L (1964) Sky radiation measurements and correction. J Appl Meteorol 3:179–181

    Article  Google Scholar 

  • Robledo L, Soler A (2001) On the luminous efficiency of diffuse solar radiation. Energy Convers Manage 42:1181–1190

    Article  Google Scholar 

  • Sharp K (1981) Sun angles and shading analysis for surfaces at any tilt or azimuth. In: Proceedings of the 1981 annual meeting, AS/ISES

    Google Scholar 

  • Sharp K (1982) Calculation of monthly average insolation on a shaded surface at any tilt and azimuth. Solar Energy 28:531–538

    Article  Google Scholar 

  • Spencer DW, Oettinger BS, Stewart R (1982) Diffuse band correction factors for short time intervals. Progress in solar energy. In: Proceedings annual general meeting of the American Solar Energy Society, pp 1253–1257

    Google Scholar 

  • Steven MD, Unsworth MH (1980) Shade-ring corrections for pyranometer measurements of diffuse solar radiation from cloudless skies. Quart J Royal Meteorol Soc 106:865–872

    Article  Google Scholar 

  • Stine WB, Harrigan RW (1985) Solar energy fundamentals and design. Wiley, New York

    Google Scholar 

  • Temps RC, Coulson KL (1977) Solar radiation incident upon slopes of different orientations. Solar Energy 19:179–184

    Article  Google Scholar 

  • Theilacker JC, Klein SA (1980) Improvements in the utilizability relationships. American Section of the international solar energy society. Proceedings, Phoenix, pp 271–275

    Google Scholar 

  • Trewarthu GT, Horn LH (1980) An introduction to climate, 5th edn. McGrew-Hill, New York

    Google Scholar 

  • Van den Brink GJ (1982) Climatology of solar irradiance on inclined surfaces IV- part II. Validation of calculation models, Royal Dutch Meteorological Institute (KNMI). Final report: EEC contract no ESF-006-80 NL (B)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Norton, B. (2014). The Solar Energy Resource. In: Harnessing Solar Heat. Lecture Notes in Energy, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7275-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7275-5_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7274-8

  • Online ISBN: 978-94-007-7275-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics