Advertisement

The 3-RPS Manipulator Can Have Non-Singular Assembly-Mode Changes

  • Manfred Husty
  • Josef Schadlbauer
  • Stéphane Caro
  • Philippe WengerEmail author
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 15)

Abstract

Recently a complete kinematic description of the \(3\)-RPS parallel manipulator was obtained using algebraic constraint equations. It turned out that the workspace decomposes into two components describing two kinematically different operation modes and that self-motions of this manipulator in both operation are possible. In this paper for the first time it is shown that this manipulator has the property of non singular assembly mode change.

Keywords

3-RPS-manipulator Singularities Assembly mode change 

References

  1. 1.
    Innocenti, C., Parenti-Castelli, V.: Singularity-free evolution from one configuration to another in serial and fully-parallel manipulators. J. Mech. Des. 120, 73–79 (1998)CrossRefGoogle Scholar
  2. 2.
    McAree, P.R., Daniel, R.W.: An explanation of never-special assembly changing motions for 33 parallel manipulators. Int. J. Rob. Res. 186, 556–574 (1999)Google Scholar
  3. 3.
    Zein, M., Wenger, P., Chablat, D.: Non-singular assembly-mode changing motions for 3-rpr parallel manipulators. Mech. Mach. Theory 434, 391–524 (2008)Google Scholar
  4. 4.
    Husty, M.L.: Non-singular assembly mode change in 3-RPR-parallel manipulators. In: Kecskeméthy, A., Müller, A. (eds.) Computational Kinematics, pp. 51–60. Springer, Berlin (2009)Google Scholar
  5. 5.
    Hunt, K.H.: Structural kinematics of in-parallel-actuated robot-arms. Trans. ASME J. Mech. Transm. Autom. Des. 105, 705–712 (1983)CrossRefGoogle Scholar
  6. 6.
    Tsai, L.-W.: Robot Analysis. Wiley, New York (1999)Google Scholar
  7. 7.
    Gallardo, J., Orozco, H., Rico, J., Aguilar, C., Perez, L.: Acceleration analysis of 3-RPS parallel manipulators by means of screw theory. In: Ryu, J.-H. (ed.) Parallel Manipulators, New Developments. I-Tech Education and Publishing, Vienna (2008)Google Scholar
  8. 8.
    Huang, Z., Wang, J., Fang, Y.: Analysis of instantaneous motions of deficient-rank 3-RPS parallel manipulators. Mech. Mach. Theory 37, 229–240 (2002)CrossRefzbMATHGoogle Scholar
  9. 9.
    Basu, D., Ghosal, A.: Singularity analysis of platform-type multi-loop spatial mechanisms. Mech. Mach. Theory 32, 375–389 (2002)CrossRefGoogle Scholar
  10. 10.
    Schadlbauer, J., Husty, M.-L.: A complete analysis of the 3-RPS manipulator. In: Bandyopadhyay, S., Kumar, G.S., Ramu, P. (eds.) Machines and Mechanisms, pp. 410–419. Narosa Publishing House, New Delhi (2011)Google Scholar
  11. 11.
    Schadlbauer, J., Husty, M., Wenger, P., Caro, S.: Self-motions of 3-RPS manipulators. Front. Mech. Eng. 8(1), 62–69 (2013)Google Scholar
  12. 12.
    Husty, M.L., Pfurner, M., Schröcker, H.-P., Brunnthaler, K.: Algebraic methods in mechanism analysis and synthesis. Robotica 25(6), 661–675 (2007)Google Scholar
  13. 13.
    Urizar, M., Husty, M.-L.: Assembly mode change of spherical 3-RPR parallel manipulator. Proceedings of MUSME 2011, 1–16 (2011)Google Scholar
  14. 14.
    Urizar, M., Husty, M.: Assembly mode change of spherical 3-RPR parallel manipulator. Mech. Based Des. Struct. Mach. 40, 487–505 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Manfred Husty
    • 1
  • Josef Schadlbauer
    • 1
  • Stéphane Caro
    • 2
  • Philippe Wenger
    • 2
    Email author
  1. 1.Institute for Basic Sciences in Engineering, Unit for Geometry and CADUniversity of InnsbruckInnsbruckAustria
  2. 2.Institut de Recherche en Communications et Cybernétique de NantesNantesFrance

Personalised recommendations