Singularity Locus for the Endpoint Map of Serial Manipulators with Revolute Joints

  • Ciprian S. BorceaEmail author
  • Ileana Streinu
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 15)


We present a theoretical and algorithmic method for describing the singularity locus for the endpoint map of any serial manipulator with revolute joints. As a surface of revolution around the first joint, the singularity locus is determined by its intersection with a fixed plane through the first joint. The resulting plane curve is part of an algebraic curve called the singularity curve. Its degree can be computed from the specialized case of all pairs of consecutive joints coplanar, when the singularity curve is a union of circles, counted with multiplicity two. Knowledge of the degree and a simple iterative procedure for obtaining sample points on the singularity curve lead to the precise equation of the curve.


Serial manipulator Revolute joints Endpoint map singularity 


  1. 1.
    Abdel-Malek, K., Adkins, F., Yeh, H.J., Haug, E.: On the determination of boundaries to manipulator workspaces. Robot. Comput. Integr. Manuf. 13(1), 63–72 (1997)CrossRefGoogle Scholar
  2. 2.
    Abdel-Malek, K., Yeh, H.J., Khairallah, N.: Workspace, void, and volume determination of the general 5dof manipulator. Mech. Struct. Mach. TEXTIT27, pp. 91–117 (1999)Google Scholar
  3. 3.
    Abdel-Malek, K., Yeh, H.J., Othman, S.: Interior and exterior boundaries to the workspace of mechanical manipulators. Robot. Comput. Integr. Manufact. 16, 365–376 (2000)CrossRefGoogle Scholar
  4. 4.
    Angeles, J.: Fundamentals of Robotic Mechanical Systems: Theory, Methods and Algorithms. Mechanical Engineering Series. Springer Verlag, New York (2007)Google Scholar
  5. 5.
    Borcea, C.S., Streinu, I.: Singularities of hinge structures. Tech. rep. (2008). ArXiv:0812.1373Google Scholar
  6. 6.
    Borcea, C.S., Streinu, I.: Extremal configurations of manipulators with revolute joints. In: Dai, J.S., Zoppi, M., Kong X. (eds.) Reconfigurable Mechanisms and Robots,Proceedings ASME/IFToMM International Conference (ReMAR’09) (2009)Google Scholar
  7. 7.
    Borcea, C.S., Streinu, I.: Exact workspace boundary by extremal reaches. In: Proceedings 27th Symposium on Computational Geometry (SoCG’11), pp. 481–490 (2011)Google Scholar
  8. 8.
    Borcea, C.S., Streinu, I.: Positional workspace boundary for serial manipulators with revolute joints. In: Lenarcic, J., Husty, M.L. (eds.) Latest Advances in Robot Kinematics (ARK’12), pp. 325–332. Springer Verlag, Netherlands (2012)Google Scholar
  9. 9.
    Burdick, J.W.: A classification of 3R regional manipulator singularities and geometries. Mech. Mach. Theory 30(1), 71–89 (1995)CrossRefGoogle Scholar
  10. 10.
    Burdick, J.W.: A recursive method for finding revolute-jointed manipulator singularities. Trans.ASME. J. Mech. Des. 117, 55–63 (1995)CrossRefGoogle Scholar
  11. 11.
    Ceccarelli, M.: A formulation for the workspace boundary of general n-revolute manipulators. Mech. Mach. Theory 31(5), 637–646 (1996)CrossRefGoogle Scholar
  12. 12.
    Ceccarelli, M., Lanni, C.: A multi-objective optimum design of general 3R manipulators for prescribed workspace limits. Mech. Mach. Theory 39(2), 119–132 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Fulton, W.: Intersection Theory, 2nd edn. Springer Verlag, Berlin (1998)Google Scholar
  14. 14.
    Haug, E., Luh, C.M., Adkins, F., Wang, J.Y.: Numerical algorithms for mapping boundaries of manipulator workspaces. J. Mech. Des. 118(2), 228–234 (1996)CrossRefGoogle Scholar
  15. 15.
    Kohli, D., Spanos, J.: Workspace analysis of mechanical manipulators using polynomial discriminants. J. Mech. Transm. Autom. Des. 107(2), 209–215 (1985)CrossRefGoogle Scholar
  16. 16.
    Kumar, A., Waldron, K.J.: The workspaces of a mechanical manipulator. J. Mech. Des. 103(3), 665–672 (1981)CrossRefGoogle Scholar
  17. 17.
    Ottaviano, E., Husty, M.L., Ceccarelli, M.: Identification of the workspace boundary of a general 3R manipulator. J. Mech. Des. 128(1), 236–242 (2006)CrossRefGoogle Scholar
  18. 18.
    Rastegar, J., Fardanesh, B.: Manipulation workspace analysis using the Monte Carlo method. Mech. Mach. Theory 25(2), 233–239 (1990)CrossRefGoogle Scholar
  19. 19.
    Selfridge, R.G.: The reachable workarea of a manipulator. Mech. Mach. Theory 18(2), 131–137 (1983)CrossRefGoogle Scholar
  20. 20.
    Siciliano, B., Khatib, O. (eds.): Handbook of Robotics. Springer Verlag, Berlin (2008)Google Scholar
  21. 21.
    Zein, M., Wenger, P., Chablat, D.: An exhaustive study of the workspace topologies of all 3R orthogonal manipulators with geometric simplifications. Mech. Mach. Theory 41(8), 971–986 (2006)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of MathematicsRider UniversityLawrencevilleUSA
  2. 2.Department of Computer ScienceSmith CollegeNorthamptonUSA

Personalised recommendations