Advertisement

Robust Dynamic Control of an Arm of a Humanoid Using Super Twisting Algorithm and Conformal Geometric Algebra

  • O. Carbajal-EspinosaEmail author
  • L. González-Jiménez
  • A. Loukianov
  • E. Bayro-Corrochano
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 15)

Abstract

The pose tracking problem for the 5 DOF (degrees of freedom) arm of a humanoid robot is studied. The kinematic and dynamic models of the manipulator are obtained using the conformal geometric algebra framework. Then, using the obtained models, the well known super-twisting algorithm, is used to design a controller in terms of the conformal geometric algebra for the pose tracking problem. Simulation shows the performance of the proposed controller with the conformal models for the tracking an object.

Keywords

Kinematics modeling  Dynamic modeling  Super twisting algorithm  Conformal geometric algebra  Humanoid manipulator  

References

  1. 1.
    Bayro-Corrochano, E.: Computing, Geometric: For Wavelet Transforms, Robot Vision, Learning, Control and Action. Springer Verlag, London (2010)Google Scholar
  2. 2.
    González, L., Loukianov, A., Bayro-Corrochano, E.: Integral nested super-twisting algorithm for robotic manipulators. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Taipei, pp. 3580–3585 (2010)Google Scholar
  3. 3.
    Mathematical Tool to Geometric Algebra http://www.clucalc.info/
  4. 4.
    Li, H., Hestenes, D.F., Rockwood, A.: Generalized homogeneous coordinates for computational geometry. In: Somer, G. (ed.) Geometric Computing with Clifford Algebras, pp. 27–52. Springer-Verlag, Heidelberg (2001)Google Scholar
  5. 5.
    Moreno, J.A., Osorio, M.: A lyapunov approach to second-order sliding mode controllers and observers. In: Proceedings of the 47th IEEE Conference on Decision and Control, Cancún, pp. 2856–2856 (2008)Google Scholar
  6. 6.
    Spong, W.M., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control. John Wiley and Sons, New York (2005)Google Scholar
  7. 7.
    Utkin, V.I., Guldner, J., Shi, J.: Sliding Mode Control in Electromechanical Systems. Taylor and Francis, London (1999)Google Scholar
  8. 8.
    www.mathworks.com/products/matlab/Google Scholar
  9. 9.
    Zamora, J., Bayro-Corrochano, E.: Kinematics and Differential Kinematics of Binocular Heads. In: International Conference of Robotics and Automation (ICRA’06), Orlando (2006)Google Scholar
  10. 10.
    Zamora, J., Bayro-Corrochano, E.: Parallel forward Dynamics: A geometric approach. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Taipei, pp. 2377–2382 (2010)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • O. Carbajal-Espinosa
    • 1
    Email author
  • L. González-Jiménez
    • 2
  • A. Loukianov
    • 1
  • E. Bayro-Corrochano
    • 1
  1. 1.CINVESTAVDepartment of Electrical Engineering and Computer SciencesUnidad GuadalajaraMexico
  2. 2.ITESODepartment of Electronic, Systems and InformaticsTlaquepaqueMexico

Personalised recommendations