Certified Calibration of a Cable-Driven Robot Using Interval Contractor Programming

  • Julien Alexandre dit SandrettoEmail author
  • Gilles Trombettoni
  • David Daney
  • Gilles Chabert
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 15)


In this paper, an interval based approach is proposed to rigorously identify the model parameters of a parallel cable-driven robot. The studied manipulator follows a parallel architecture having 8 cables to control the 6 DOFs of its mobile platform. This robot is complex to model, mainly due to the cable behavior. To simplify it, some hypotheses on cable properties (no mass and no elasticity) are done.An interval approach can take into account the maximal error between this model and the real one. This allows us to work with a simplified although guaranteed interval model. In addition, a specific interval operator makes it possible to manage outliers. A complete experiment validates our method for robot parameter certified identification and leads to interesting observations.


Cable-driven robots Calibration Interval analysis 



This work was supported in part by the French National Research Agency (ANR) under grant 2009-SEGI-018 (CoGiRo ANR project) and in part by the Région Languedoc-Roussillon under grant 115217.


  1. 1.
    Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.F.: Revising hull and box consistency. In: Proceedings of ICLP, pp. 230–244 (1999)Google Scholar
  2. 2.
    Borgstrom, P., Jordan, B., Borgstrom, B., Stealey, M., Sukhatme, G., Batalin, M., Kaiser, W.: Nims-pl: a cable-driven robot with self-calibration capabilities. IEEE Trans. Robotics 25(5), 1005–1015 (2009)CrossRefGoogle Scholar
  3. 3.
    Bouchard, S.: Geometrie des robots paralleles entraines par des cables. Ph.D. thesis, Universite Laval, Quebec (2008)Google Scholar
  4. 4.
    Chabert, G., Jaulin, L.: Contractor programming. Artif. Intell. 173, 1079–1100 (2009)Google Scholar
  5. 5.
    Daney, D., Andreff, N., Chabert, G., Papegay, Y.: Interval method for calibration of parallel robots: vision based experiments. Mech. Mach. Theor 41, 929–944 (2006)CrossRefzbMATHGoogle Scholar
  6. 6.
    Hansen, E.R.: Global Optimization Using Interval Analysis. Marcel Dekker Inc., New York (2003)Google Scholar
  7. 7.
    Irvine, H.M., Caughey, T.K.: The linear theory of free vibrations of a suspended cable. Proc. Royal Soc. London, Ser. A, Math. Phys. Sci. 341(1626), 299–315 (1974)Google Scholar
  8. 8.
    Jaulin, L.: Robust set-membership state estimation; application to underwater robotics. Automatica 45(1), 202–206 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis. Springer, London (2001)Google Scholar
  10. 10.
    Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)Google Scholar
  11. 11.
    Sandretto, J.A.D., Daney, D., Gouttefarde, M.: Calibration of a fully-constrained parallel cable-driven robot. In: RoManSy, Paris (2012)Google Scholar
  12. 12.
    Sandretto, J.A.D., Trombettoni, G., Daney, D.: Confirmation of hypothesis on cable properties for cable-driven robots. In: Eucomes, Santander (2012)Google Scholar
  13. 13.
    Wampler, C., Arai, T.: Calibration of robots having kinematic closed loops using nonlinear least-squares estimation. In: Proceedings of the IFToMM-jc International Symposium Theory Machine Mechanics pp. 153–158 (1992)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Julien Alexandre dit Sandretto
    • 1
    Email author
  • Gilles Trombettoni
    • 2
  • David Daney
    • 1
  • Gilles Chabert
    • 3
  1. 1.Coprin INRIAValbonneFrance
  2. 2.LIRMMUniversity Montpellier 2MontpellierFrance
  3. 3.LINAEcole des Mines de NantesNantesFrance

Personalised recommendations