Advertisement

Determination of the Safe Working Zone of a Parallel Manipulator

  • Rangaprasad Arun Srivatsan
  • Sandipan BandyopadhyayEmail author
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 15)

Abstract

This paper formalises the concept of safe working zone (SWZ) of a parallel manipulator, which is a subspace of the workspace that is free of singularities as well as issues of joint limits and link interference. It presents further a generic scheme to identify such a space, and specialises the same for the case of a convex SWZ around a chosen point of interest. The theoretical developments are illustrated via an application on a three-degree-of-freedom spatial parallel manipulator, namely, MaPaMan-I.

Keywords

Parallel mechanisms  Workspace  Singularities  Link interference  Joint limits  

References

  1. 1.
    Bandyopadhyay, S., Ghosal, A.: Analytical determination of principal twists in serial, parallel and hybrid manipulators using dual number algebra. Mech. Mach. Theory 39(12), 1289–1305 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bohigas, O., Zlatanov, D., Ros, L., Manubens, M., Porta, J.: Numerical computation of manipulator singularities. In: Proceedings of the 2012 ICRA, IEEE Computer Society Press St. Paul, USA, 1351–1358 (2012)Google Scholar
  3. 3.
    Bonev, I.A., Gosselin, C.M.: Singularity loci of planar parallel manipulators with revolute joints. In: Proceedings of the 2nd Workshop on Computational Kinematics, Seoul, pp. 291–299 May 2001Google Scholar
  4. 4.
    Cao, Y., Huang, Z., Zhang, Q., Zhou, H., Ding: Orientation-workspace analysis of the Stewart–Gough manipulator. In: Proceedings of the ASME DETC 2005/MECH-84556, California, Sept 2005Google Scholar
  5. 5.
    Chablat, D., Wenger, P.: Moveability and collision analysis for fully-parallel manipulators. 12th CISM-IFTOMM Symposium, pp. 1–8 (1998)Google Scholar
  6. 6.
    Huag, E., Luh, C.M., Adkins, F.A., Wang, J.Y.: Numerical algorithms for mapping boundaries of manipulator workspaces. J. Mech. Des. 118(2), 228–234 (1996)CrossRefGoogle Scholar
  7. 7.
    Hudgens, J., Arai, T.: Planning link-interference-free trajectories for a parallel link manipulator. In: Proceedings of the IECON ’93, Hawaii, vol. 3, pp. 1506–1511, Nov 1993Google Scholar
  8. 8.
    Jiang, Q., Gosselin, C.M.: The maximal singularity-free workspace of the Gough–Stewart platform for a given orientation. J. Mech. Des. 130(11), 112–303 (2008)Google Scholar
  9. 9.
    Liu, X.J., Wang, J.S., Gao, F.: On the optimum design of planar 3-dof parallel manipulators with respect to the workspace. In: Proceedings of the 2000 ICRA, San Francisco, vol. 4, pp. 4122–4127 April 2000Google Scholar
  10. 10.
    Merlet, J.P.: Designing a parallel manipulator for a specific workspace. Int. J. Robot. Res. 16(4), 545–556 (1997)CrossRefGoogle Scholar
  11. 11.
    Pernkopf, F., Husty, M.L.: Workspace analysis of Stewart-Gough-type parallel manipulators. J. Mech. Eng. Sci. 220(7), 1019–1032 (2006)CrossRefGoogle Scholar
  12. 12.
    Srivatsan, R.A., Bandyopadhyay, S.: On the position kinematic analysis of MaPaMan: A reconfigurable three-degrees-of-freedom spatial parallel manipulator. Mech. Mach. Theory 62(4), 150–165 (2013)CrossRefGoogle Scholar
  13. 13.
    Yang, Y., O’Brien, J.: A geometric approach for the design of singularity-free parallel robots. In: Proceedings of the 2009 ICRA, Kobe, pp. 1801–1806 (2009)Google Scholar
  14. 14.
    Zlatanov, D., Bonev, I.A., Gosselin, C.M.: Constraint singularities of parallel mechanisms. In: Proceedings of the 2002 ICRA, Washington DC, pp. 496–502 (2002)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Rangaprasad Arun Srivatsan
    • 1
  • Sandipan Bandyopadhyay
    • 1
    Email author
  1. 1.Department of Engineering DesignIndian Institute of Technology MadrasMadrasIndia

Personalised recommendations