Stiffness Modeling of Robotic Manipulator with Gravity Compensator

  • Alexandr KlimchikEmail author
  • Stéphane Caro
  • Yier Wu
  • Damien Chablat
  • Benoit Furet
  • Anatol Pashkevich
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 15)


The paper focuses on the stiffness modeling of robotic manipulators with gravity compensators. The main attention is paid to the development of the stiffness model of a spring-based compensator located between sequential links of a serial structure. The derived model allows us to describe the compensator as an equivalent non-linear virtual spring integrated in the corresponding actuated joint. The obtained results have been efficiently applied to the stiffness modeling of a heavy industrial robot of the Kuka family.


Stiffness modeling  Gravity compensator  Industrial robot  



The work presented in this paper was partially funded by the ANR, France (Project ANR-2010-SEGI-003-02-COROUSSO) and Project ANR ROBOTEX. The authors also thank Fabien Truchet, Guillaume Gallot, Joachim Marais and Sbastien Garnier for their great help with the experiments.


  1. 1.
    Company, O., Pierrot, F., Fauroux, J.-C.: A method for modeling analytical stiffness of a lower mobility parallel manipulator. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA 2005), pp. 3232–3237 (2005)Google Scholar
  2. 2.
    Alici, G., Shirinzadeh, B.: Enhanced stiffness modeling, identification and characterization for robot manipulators. Proc. IEEE Trans. Robot. 21, 554–564 (2005)CrossRefGoogle Scholar
  3. 3.
    Tyapin, I., Hovland, G.: Kinematic and elastostatic design optimization of the 3-DOF Gantry-Tau parallel kinamatic manipulator. Model. Ident. Control 30, 39–56 (2009)CrossRefGoogle Scholar
  4. 4.
    Yi, B.-J., Freeman, R.A.: Geometric analysis antagonistic stiffness redundantly actuated parallel mechanism. J. Rob. Syst. 10(5), 581–603 (1993)CrossRefzbMATHGoogle Scholar
  5. 5.
    Meggiolaro, M.A., Dubowsky, S., Mavroidis, C.: Geometric and elastic error calibration of a high accuracy patient positioning system. Mech. Mach. Theory 40, 415–427 (2005)CrossRefzbMATHGoogle Scholar
  6. 6.
    Kövecses, J., Angeles, J.: The stiffness matrix in elastically articulated rigid-body systems. Multibody Sys. Dyn. 18(2), 169–184 (2007)CrossRefzbMATHGoogle Scholar
  7. 7.
    Salisbury, J.: Active stiffness control of a manipulator in Cartesian coordinates. In: Proceedings of the 19th IEEE Conference on Decision and, Control, pp. 87–97 (1980)Google Scholar
  8. 8.
    Klimchik, A., Bondarenko, D., Pashkevich, A., Briot, S., Furet, B.: Compensation of tool deflection in robotic-based Milling. In: Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2012), pp. 113–122 (2012)Google Scholar
  9. 9.
    Quennouelle, C., Gosselin, C.M.: Instantaneous kinemato-static model of planar compliant parallel mechanisms. Proceedings of ASME International Design Engineering Technical Conferences, In (2008)Google Scholar
  10. 10.
    Pashkevich, A., Klimchik, A., Chablat, D., Wenger, Ph.: Accuracy improvement for stiffness modeling of parallel manipulators. In: Proceedings of 42nd CIRP Conference on Manufacturing Systems, CD-proceedings (p. 8), Grenoble (2009)Google Scholar
  11. 11.
    Takesue, N., Ikematsu, T., Murayama, H., Fujimoto, H.: Design and prototype of variable gravity compensation mechanism (VGCM). J. Robot. Mech. 23(2), 249–257 (2011)Google Scholar
  12. 12.
    De Luca, A., Flacco, F.: A PD-type regulator with exact gravity cancellation for robots with flexible joints. In: Proceedings of the 2011 IEEE International Conference on Robotics and Automation, pp. 317–323.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Alexandr Klimchik
    • 1
    Email author
  • Stéphane Caro
    • 2
  • Yier Wu
    • 1
  • Damien Chablat
    • 2
  • Benoit Furet
    • 3
  • Anatol Pashkevich
    • 1
  1. 1.Institut de Recherche en Communications et Cybernétique de NantesEcole des Mines de NantesNantesFrance
  2. 2.Institut de Recherche en Communications et Cybernétique de NantesNational Center for Scientific ResearchNantesFrance
  3. 3.Institut de Recherche en Communications et Cybernétique de NantesUniversity of NantesNantesFrance

Personalised recommendations