A Sufficient Condition for Parameter Identifiability in Robotic Calibration

  • Thibault GayralEmail author
  • David Daney
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 15)


Calibration aims at identifying the model parameters of a robot through experimental measures. In this paper, necessary mathematical conditions for calibration are developed, considering the desired accuracy, the sensor inaccuracy of the joint coordinates, and the measurement noise. They enable to define a physically meaningful stop criterion for the identification algorithm and a numerical bound for the observability index \(O_3\), the minimum singular value of the observability matrix. With this bound, observability problems can be safely detected during calibration. Those conditions for calibration are illustrated through a simple example.


Conditions for calibration Observability Least-squares 



This work has been supported by Thales Alenia Space and the Region “Provence-Alpes-Côte-d’Azur”.


  1. 1.
    Arendt, P., Apley, D.W., Chen, W.: Quantification of model uncertainty: Calibration, model discrepancy, and identifiability. ASME J. Mech. Des. 134(100), 908 (2012)Google Scholar
  2. 2.
    Daney, D., Papegay, Y., Blaise, M.: Choosing measurement poses for robot calibration with the local convergence method and tabu search. Int. J. Robot. Res. 24(6), 501–518 (2005)CrossRefGoogle Scholar
  3. 3.
    Everett, L.J., Driels, M., Mooring, B.W.: Kinematic modelling for robot calibration. In: Robot. Auto. 4 183–189 (1987)Google Scholar
  4. 4.
    Hollerbach, J., Khalil, W., Gautier, M.: Handbook of Robotics, Chap. 14. Springer, Berlin (2008)Google Scholar
  5. 5.
    Merlet, J.P., Daney, D.: Dimensional synthesis of parallel robots with a guaranteed given accuracy over a specific workspace. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 942–947. Barcelona (2005)Google Scholar
  6. 6.
    Merlet, J.P.: Parallel Robots, 2nd edn. vol. 128. Springer, Dordrecht (2006)Google Scholar
  7. 7.
    Mooring, B.W., Padavala, S.S.: The effect of kinematic model complexity on manipulator accuracy. In: Robotics and Automation, vol. 1. (1989)Google Scholar
  8. 8.
    Mooring, B., Driels, M., Roth, Z.: Fundamentals of Manipulator Calibration. Wiley, New York (1991)Google Scholar
  9. 9.
    Sun, Y., Hollerbach, J.M.: Observability index selection for robot calibration. In: Robotics and Automation, pp. 831–836. (2008)Google Scholar
  10. 10.
  11. 11.
    Vischer, P.: Improving the accuracy of parallel robots. Ph.D. thesis, Ecole Polytechnique Fdrale de Lausanne (1996)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.INRIA Sophia Antipolis Sophia-Antipolis cedexFrance

Personalised recommendations