Advertisement

Three Types of Parallel 6R Linkages

  • Zijia LiEmail author
  • Josef Schicho
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 15)

Abstract

In this paper, we consider a special kind of overconstrained 6R closed linkages which we call parallel 6R linkages. These are linkages with the property that they have three pairs of parallel joint-axes. We prove that there are three types of parallel 6R linkage. The first type is new, the other two also appear in a recent classification of linkages with angle equalities. We give constructions for each of the three types.

Keywords

Dual quaternions Overconstrained 6R linkages Translation property Angle-symmetric 6R linkages 

Notes

Acknowledgments

The research was supported by the Austrian Science Fund (FWF): W1214-N15, project DK9.

References

  1. 1.
    Baker, J.E.: An analysis of the Bricard linkages. Mech. Mach. Theory 15(4), 267–286 (1980)CrossRefGoogle Scholar
  2. 2.
    Baker, J.E.: Overconstrained six-bars with parallel adjacent joint-axes. Mech. Mach. Theory 38(2), 103–117 (2003)CrossRefzbMATHGoogle Scholar
  3. 3.
    Denavit, J., Hartenberg, R.S.: A kinematic notation for lower-pair mechanisms based on matrices. Trans. ASME J. Appl. Mech 23, 215–221 (1955)MathSciNetGoogle Scholar
  4. 4.
    Dietmaier, P.: Einfach übergeschlossene Mechanismen mit Drehgelenken. Habilitation thesis, Graz University of Technology (1995)Google Scholar
  5. 5.
    Goldberg, M.: New five-bar and six-bar linkages in three dimensions. Trans. ASME 65, 649–656 (1943)Google Scholar
  6. 6.
    Hegedüs, G., Schicho, J., Schröcker, H.P.: Bond theory and closed 5R linkages. In: Lenarčič, J., Husty, M. (eds.) Latest Advances in Robot Kinematics, pp. 221–228. Springer, Dordrecht (2012)Google Scholar
  7. 7.
    Hegedüs, G., Schicho, J., Schröcker, H.P.: Construction of overconstrained linkages by factorization of rational motions. In: Lenarčič, J., Husty, M. (eds.) Latest Advances in Robot Kinematics, pp. 213–220. Springer, Dordrecht (2012)Google Scholar
  8. 8.
    Hegedüs, G., Schicho, J., Schröcker H.P.: Factorization of rational curves in the study quadric and revolute linkages. ArXiv e-prints (2012)Google Scholar
  9. 9.
    Hegedüs, G., Schicho, J., Schröcker, H.P.: The theory of bonds: a new method for the analysis of linkages. ArXiv e-prints (2012)Google Scholar
  10. 10.
    Li, Z., Schicho, J.: Classification of angle-symmetric 6R linkages. ArXiv e-prints (2013)Google Scholar
  11. 11.
    Sarrus, P.: Note sur la transformation des mouvements rectilignes alternatifs, en mouvements circulaires: et rèciproquement. Comptes Rendus des Séances de l’Académie des Sciences de Paris 36, 1036–1038 (1853)Google Scholar
  12. 12.
    Waldron, K.J.: Overconstrained linkages. Environ. Plan. B-Plan. Des. 6, 393–402 (1979)CrossRefGoogle Scholar
  13. 13.
    Wohlhart, K.: Merging two general Goldberg 5R linkages to obtain a new 6R space mechanism. Mech. Mach. Theory 26, 659–668 (1991)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Johann Radon Institute for Computational and Applied MathematicsAustrian Academy of Sciences (RICAM)LinzAustria

Personalised recommendations