Skip to main content

Solving the Forward Kinematics of Cable-Driven Parallel Robots with Neural Networks and Interval Arithmetic

  • Conference paper
  • First Online:
Computational Kinematics

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 15))

Abstract

This paper investigates a new approach for solving the forward kinematics of cable-driven parallel robots. This approach combines an interval algorithm with neural networks to provide a fast but accurate initial guess. The neural networks increase the computation speed by a factor of 200 or more, while the interval algorithm provides guaranteed convergence and a definite solution to any chosen degree of accuracy. Iterative techniques are faster still, but the proposed algorithm is considered real-time feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bergmeir, C., Benítez, J.M.: Neural networks in R using the Stuttgart neural network simulator: RSNNS. J. Stat. Softw. 46(7), 1–26 (2012). http://www.jstatsoft.org/v46/i07/

  2. Berti, A., Merlet, J.P., Carricato, M.: Solving the direct geometrico-static problem of 3–3 cable-driven parallel robots by interval analysis: preliminary results. In: Bruckmann, T., Pott, A. (eds.) Cable-Driven Parallel Robots. vol. 12, pp. 251–268. Springer, Heidelberg (2013)

    Google Scholar 

  3. Bosscher, P., Williams II, R.L.: Cable-suspended robotic contour crafting system. Autom. Constr. 17(1), 45–55 (2007)

    Article  Google Scholar 

  4. Carricato, M., Abbasnejad, G.: Direct geometrico-static analysis of under-constrained cable-driven parallel robots with 4 cables. In: Bruckmann, T., Pott, A. (eds.) Cable-Driven Parallel Robots. vol.12, pp. 269–285 (2013)

    Google Scholar 

  5. Ghasemi, A., Eghtesad, M., Farid, M.: Neural network solution for forward kinematics problem of cable robots. J. Intell. Rob. Syst. 60(2), 201–215 (2010)

    Article  MATH  Google Scholar 

  6. Goualard, F.: Fast and correct SIMD algorithms for interval arithmetic. In: Proceedings of PARA ’08, Lecture Notes in Computer Science. Springer, Trondheim (2010)

    Google Scholar 

  7. Husty, M.L.: An algorithm for solving the direct kinematic of stewart-gough-type platforms. Mech. Mach. Theory 31(4), 365–380 (1996)

    Article  Google Scholar 

  8. Khalilpour, S., Loloei, A., Taghirad, H., Masouleh, M.: Feasible kinematic sensitivity in cable robots based on interval analysis. In: Bruckmann, T., Pott, A. (eds.) Cable-Driven Parallel Robots, vol. 12, pp. 233–249. Springer, Heidelberg (2013)

    Google Scholar 

  9. Merlet, J.P.: Solving the forward kinematics of a gough-type parallel manipulator with interval analysis. Int. J. Robot. Res. 23(3), 221–235 (2004)

    Article  Google Scholar 

  10. Pott, A.: An algorithm for real-time forward kinematics of cable-driven parallel robots. International symposium on advances in robot kinematics, Springer (2010)

    Google Scholar 

  11. Shary, S.: Interval Gauss-Seidel method for generalized solution sets to interval linear systems. Reliable Comput. 7, 141–155 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Won Jeong, J., Hyun Kim, S., Keun Kwak, Y.: Kinematics and workspace analysis of a parallel wire mechanism for measuring a robot pose. Mech. Mach. Theory 34(6), 825–841 (1999)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Fraunhofer-Gesellschaft Internal Programs under Grant No. WISA 823 244. Furthermore, the research leading to these results received founding for the European Community’s Seventh Framework Program under Grant agreement number NMP2-SL-2011-285404-CableBot.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Schmidt, V., Müller, B., Pott, A. (2014). Solving the Forward Kinematics of Cable-Driven Parallel Robots with Neural Networks and Interval Arithmetic. In: Thomas, F., Perez Gracia, A. (eds) Computational Kinematics. Mechanisms and Machine Science, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7214-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7214-4_12

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7213-7

  • Online ISBN: 978-94-007-7214-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics