Skip to main content

Bioprocessing of Human Pluripotent Stem Cells for Cell Therapy Applications

  • Chapter
  • First Online:
Stem Cells and Cell Therapy

Part of the book series: Cell Engineering ((CEEN,volume 8))

  • 2052 Accesses

Abstract

Human pluripotent stem cells (hPSCs), with their unique characteristics for indefinite proliferation and pluripotency, are an appealing source for cell replacement therapies, tissue engineering, drug discovery and in vitro toxicology. For the clinical implementation of these cells, there is the need for translating the culture protocols developed at research laboratories into validated bioprocesses that can guarantee reproducibility, scalability, standardization, robustness and safety.

The most attractive strategy for hPSC manufacturing consists in engineering stem cell niches by identifying key factors governing hPSC cell fate and creating culturing approaches that allow for 3D cell organization in a bioreactor-based system where the key environmental conditions are finely controlled. This chapter provides an overview of current bioengineering strategies that could be used to generate large numbers of hPSCs and/or their derivatives with potential application in regenerative medicine and drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amit M, Chebath J, Margulets V, Laevsky I, Miropolsky Y, Shariki K, Peri M, Blais I, Slutsky G, Revel M, Itskovitz-Eldor J (2010) Suspension culture of undifferentiated human embryonic and induced pluripotent stem cells. Stem Cell Rev 6:248–259

    Article  PubMed  Google Scholar 

  • Araki R, Uda M, Hoki Y, Sunayama M, Nakamura M, Ando S, Sugiura M, Ideno H, Shimada A, Nifuji A, Abe M (2013) Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells. Nature. doi:10.1038/nature11807

    PubMed  Google Scholar 

  • Ao A, Hao J, Hong CC (2011) Regenerative chemical biology: current challenges and future potential. Chem Biol 18:413–424

    Article  PubMed  CAS  Google Scholar 

  • Ardehali R, Inlay MA, Ali SR, Tang C, Drukker M, Weissman IL (2011) Overexpression of BCL2 enhances survival of human embryonic stem cells during stress and obviates the requirement for serum factors. Proc Natl Acad Sci U S A 108:3282–3287

    Article  PubMed  CAS  Google Scholar 

  • Azarin SM, Palecek SP (2010) Development of scalable culture systems for human embryonic stem cells. Biochem Eng J 48:378

    Article  PubMed  CAS  Google Scholar 

  • Bai H, Chen K, Gao YX, Arzigian M, Xie YL, Malcosky C, Yang YG, Wu WS, Wang ZZ (2012) Bcl-xL enhances single-cell survival and expansion of human embryonic stem cells without affecting self-renewal. Stem Cell Res 8:26–37

    Article  PubMed  CAS  Google Scholar 

  • Bauwens CL, Peerani R, Niebruegge S, Woodhouse KA, Kumacheva E, Husain M, Zandstra PW (2008) Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories. Stem Cells 26:2300–2310

    Article  PubMed  Google Scholar 

  • Brandenberger R, Burger S, Campbell A, Fong T, Lapinskas E, Rowley JA (2012) Cell therapy bioprocessing: integrating process and product development for the next generation of biotherapeutics. BioProcess Int 10:30–37

    Google Scholar 

  • Brignier AC, Gewirtz AM (2010) Embryonic and adult stem cell therapy. J Allergy Clin Immunol 125:S336–S344

    Article  PubMed  Google Scholar 

  • Burdick JA, Vunjak-Novakovic G (2009) Engineered microenvironments for controlled stem cell differentiation. Tissue Eng Part A 15:205–219

    Article  PubMed  CAS  Google Scholar 

  • Burdick JA, Watt FM (2011) High-throughput stem-cell niches. Nat Methods 8:915–916

    Article  PubMed  CAS  Google Scholar 

  • Cameron CM, Hu WS, Kaufman DS (2006) Improved development of human embryonic stem cell-derived embryoid bodies by stirred vessel cultivation. Biotechnol Bioeng 94:938–948

    Article  PubMed  CAS  Google Scholar 

  • Chayosumrit M, Tuch B, Sidhu K (2010) Alginate microcapsule for propagation and directed differentiation of hESCs to definitive endoderm. Biomaterials 31:505–514

    Article  PubMed  CAS  Google Scholar 

  • Chen AK, Chen X, Choo AB, Reuveny S, Oh SK (2010) Expansion of human embryonic stem cells on cellulose microcarriers. Curr Protoc Stem Cell Biol. doi:10.1002/9780470151808.sc01c11s14, Chapter 1: Unit 1C 11

    PubMed  Google Scholar 

  • Chen AK, Chen X, Choo AB, Reuveny S, Oh SK (2011) Critical microcarrier properties affecting the expansion of undifferentiated human embryonic stem cells. Stem Cell Res 7:97–111

    Article  PubMed  CAS  Google Scholar 

  • Cimetta E, Figallo E, Cannizzaro C, Elvassore N, Vunjak-Novakovic G (2009) Micro-bioreactor arrays for controlling cellular environments: design principles for human embryonic stem cell applications. Methods 47:81–89

    Article  PubMed  CAS  Google Scholar 

  • Collin J, Lako M (2011) Concise review: putting a finger on stem cell biology: zinc finger nuclease-driven targeted genetic editing in human pluripotent stem cells. Stem Cells 29:1021–1033

    Article  PubMed  CAS  Google Scholar 

  • Come J, Nissan X, Aubry L, Tournois J, Girard M, Perrier AL, Peschanski M, Cailleret M (2008) Improvement of culture conditions of human embryoid bodies using a controlled perfused and dialyzed bioreactor system. Tissue Eng Part C Methods 14:289–298

    Article  PubMed  CAS  Google Scholar 

  • Crook JM, Peura TT, Kravets L, Bosman AG, Buzzard JJ, Horne R, Hentze H, Dunn NR, Zweigerdt R, Chua F, Upshall A, Colman A (2007) The generation of six clinical-grade human embryonic stem cell lines. Cell Stem Cell 1:490–494

    Article  CAS  Google Scholar 

  • Cukierman E, Pankov R, Yamada KM (2002) Cell interactions with three-dimensional matrices. Curr Opin Cell Biol 14:633–639

    Article  PubMed  CAS  Google Scholar 

  • Dang SM, Gerecht-Nir S, Chen J, Itskovitz-Eldor J, Zandstra PW (2004) Controlled, scalable embryonic stem cell differentiation culture. Stem Cells 22:275–282

    Article  PubMed  Google Scholar 

  • Delcroix GJ, Schiller PC, Benoit JP, Montero-Menei CN (2010) Adult cell therapy for brain neuronal damages and the role of tissue engineering. Biomaterials 31:2105–2120

    Article  PubMed  CAS  Google Scholar 

  • Discher DE, Mooney DJ, Zandstra PW (2009) Growth factors, matrices, and forces combine and control stem cells. Science 324:1673–1677

    Article  PubMed  CAS  Google Scholar 

  • Ezashi T, Das P, Roberts RM (2005) Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci U S A 102:4783–4788

    Article  PubMed  CAS  Google Scholar 

  • Fernandes AM, Marinho PA, Sartore RC, Paulsen BS, Mariante RM, Castilho LR, Rehen SK (2009) Successful scale-up of human embryonic stem cell production in a stirred microcarrier culture system. Braz J Med Biol Res 42:515–522

    PubMed  CAS  Google Scholar 

  • Ferreira LS, Gerecht S, Fuller J, Shieh HF, Vunjak-Novakovic G, Langer R (2007) Bioactive hydrogel scaffolds for controllable vascular differentiation of human embryonic stem cells. Biomaterials 28:2706–2717

    Article  PubMed  CAS  Google Scholar 

  • Fong WJ, Tan HL, Choo A, Oh SK (2005) Perfusion cultures of human embryonic stem cells. Bioprocess Biosyst Eng 27:381–387

    Article  PubMed  CAS  Google Scholar 

  • Forsyth NR, Musio A, Vezzoni P, Simpson AH, Noble BS, McWhir J (2006) Physiologic oxygen enhances human embryonic stem cell clonal recovery and reduces chromosomal abnormalities. Cloning Stem Cells 8:16–23

    Article  PubMed  CAS  Google Scholar 

  • Gareau T, Lara GG, Shepherd RD, Krawetz R, Rancourt DE, Rinker KD, Kallos MS (2012) Shear stress influences the pluripotency of murine embryonic stem cells in stirred suspension bioreactors. J Tissue Eng Regen Med. doi:10.1002/term.1518

    PubMed  Google Scholar 

  • Gerecht S, Burdick JA, Ferreira LS, Townsend SA, Langer R Vunjak-Novakovic G (2007) Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc Natl Acad Sci USA 104:11298–11303

    Article  PubMed  CAS  Google Scholar 

  • Gerecht-Nir S, Cohen S, Itskovitz-Eldor J (2004) Bioreactor cultivation enhances the efficiency of human embryoid body (hEB) formation and differentiation. Biotechnol Bioeng 86:493–502

    Article  PubMed  CAS  Google Scholar 

  • Heng BC, Li J, Chen AK, Reuveny S, Cool SM, Birch WR, Oh SK (2012) Translating human embryonic stem cells from 2-dimensional to 3- dimensional cultures in a defined medium on laminin- and vitronectin-coated surfaces. Stem Cells Dev 21(10):1701–1715

    Article  PubMed  CAS  Google Scholar 

  • Hentze H, Graichen R, Colman A (2007) Cell therapy and the safety of embryonic stem cell-derived grafts. Trends Biotechnol 25:24–32

    Article  PubMed  CAS  Google Scholar 

  • Hernandez RM, Orive G, Murua A, Pedraz JL (2010) Microcapsules and microcarriers for in situ cell delivery. Adv Drug Deliv Rev 62:711–730

    Article  PubMed  CAS  Google Scholar 

  • Jensen J, Hyllner J, Bjorquist P (2009) Human embryonic stem cell technologies and drug discovery. J Cell Physiol 219:513–519

    Article  PubMed  CAS  Google Scholar 

  • Jin S, Yao H, Weber JL, Melkoumian ZK, Ye K (2012) A synthetic, xeno-free peptide surface for expansion and directed differentiation of human induced pluripotent stem cells. PLoS One 7(11):e50880

    Article  PubMed  CAS  Google Scholar 

  • Jing D, Parikh A, Canty JM Jr, Tzanakakis ES (2008) Stem cells for heart cell therapies. Tissue Eng Part B Rev 14:393–406

    Article  PubMed  Google Scholar 

  • Jing D, Parikh A, Tzanakakis ES (2010) Cardiac cell generation from encapsulated embryonic stem cells in static and scalable culture systems. Cell Transplant 19:1397–1412

    Article  PubMed  Google Scholar 

  • Kehoe DE, Jing D, Lock LT, Tzanakakis EM (2009) Scalable stirred-suspension bioreactor culture of human pluripotent stem cells. Tissue Eng Part A 16:405–421

    Article  Google Scholar 

  • King JA, Miller WM (2007) Bioreactor development for stem cell expansion and controlled differentiation. Curr Opin Chem Biol 11:394–398

    Article  PubMed  CAS  Google Scholar 

  • Kirouac DC, Ito C, Csaszar E, Roch A, Yu M, Sykes EA, Bader GD, Zandstra PW (2010) Dynamic interaction networks in a hierarchically organized tissue. Mol Syst Biol 6:417

    Article  PubMed  Google Scholar 

  • Kolhar P, Kotamraju VR, Hikita ST, Clegg DO, Ruoslahti E (2010) Synthetic surfaces for human embryonic stem cell culture. J Biotechnol 146:143–146

    Article  PubMed  CAS  Google Scholar 

  • Krawetz R, Taiani JT, Liu S, Meng G, Li X, Kallos MS, Rancourt D (2010) Large-scale expansion of pluripotent human embryonic stem cells in stirred suspension bioreactors. Tissue Eng Part C Methods 16:573–582

    Article  PubMed  CAS  Google Scholar 

  • Lamba DA, McUsic A, Hirata RK, Wang PR, Russell D, Reh TA (2010) Generation, purification and transplantation of photoreceptors derived from human induced pluripotent stem cells. PLoS One 5:e8763

    Article  PubMed  Google Scholar 

  • Lecina M, Ting S, Choo A, Reuveny S, Oh S (2010) Scalable platform for human embryonic stem cell differentiation to cardiomyocytes in suspended microcarrier cultures. Tissue Eng Part C Methods 16:1609–1619

    Article  PubMed  CAS  Google Scholar 

  • Lee WY, Kim J, Gil CH, Lee JH, Song H, Kim JH, Chung HM (2011) Maintenance of human pluripotent stem cells using 4SP-hFGF2-secreting STO cells. Stem Cell Res 7:210–218

    Article  PubMed  CAS  Google Scholar 

  • Leung HW, Chen A, Choo AB, Reuveny S, Oh SK (2011) Agitation can induce differentiation of human pluripotent stem cells in microcarrier cultures. Tissue Eng Part C Methods 17:165–172

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Gautam A, Yang J, Qiu L, Melkoumian Z, Weber J, Telukuntla L, Srivastava R, Whiteley E, Brandenberger R (2013) Differentiation of oligodendrocyte progenitor cells from human embryonic stem cells on vitronectin-derived synthetic peptide acrylate surface. Stem Cells Dev 22(10):1497–1505

    Article  PubMed  CAS  Google Scholar 

  • Lim DY, Ng YH, Lee J, Mueller M, Choo AB, Wong VV (2011) Cytotoxic antibody fragments for eliminating undifferentiated human embryonic stem cells. J Biotechnol 153:77–85

    Article  PubMed  CAS  Google Scholar 

  • Lindvall O, Kokaia Z, Martinez-Serrano A (2004) Stem cell therapy for human neurodegenerative disorders – how to make it work. Nat Med 10(Suppl):S42–S50

    Article  PubMed  Google Scholar 

  • Lock LT, Tzanakakis ES (2007) Stem/progenitor cell sources of insulin-producing cells for the treatment of diabetes. Tissue Eng 13:1399–1412

    Article  PubMed  CAS  Google Scholar 

  • Lock LT, Tzanakakis ES (2009) Expansion and differentiation of human embryonic stem cells to endoderm progeny in a microcarrier stirred-suspension culture. Tissue Eng Part A 15:2051–2063

    Article  PubMed  CAS  Google Scholar 

  • Lui KO, Waldmann H, Fairchild PJ (2009) Embryonic stem cells: overcoming the immunological barriers to cell replacement therapy. Curr Stem Cell Res Ther 4:70–80

    Article  PubMed  CAS  Google Scholar 

  • Lukashev ME, Werb Z (1998) ECM signalling: orchestrating cell behaviour and misbehaviour. Trends Cell Biol 8:437–441

    Article  PubMed  CAS  Google Scholar 

  • Lund AW, Yener B, Stegemann JP, Plopper GE (2009) The natural and engineered 3D microenvironment as a regulatory cue during stem cell fate determination. Tissue Eng Part B Rev 15:371–380

    Article  PubMed  Google Scholar 

  • Maia J, Santos T, Aday S, Agasse F, Cortes L, Malva JO, Bernardino L, Ferreira L (2011) Controlling the neuronal differentiation of stem cells by the intracellular delivery of retinoic acid-loaded nanoparticles. ACS Nano 5:97–106

    Article  PubMed  CAS  Google Scholar 

  • Melkoumian Z, Weber JL, Weber DM, Fadeev AG, Zhou Y, Dolley-Sonneville P, Yang J, Qiu L, Priest CA, Shogbon C, Martin AW, Nelson J, West P, Beltzer JP, Pal S, Brandenberger R (2010) Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat Biotechnol 28:606–610

    Article  PubMed  CAS  Google Scholar 

  • Millman JR, Tan JH, Colton CK (2009) The effects of low oxygen on self-renewal and differentiation of embryonic stem cells. Curr Opin Organ Transplant 14:694–700

    Article  PubMed  Google Scholar 

  • Mohamet L, Lea ML, Ward CM (2010) Abrogation of E-cadherin-mediated cellular aggregation allows proliferation of pluripotent mouse embryonic stem cells in shake flask bioreactors. PLoS One 5:e12921

    Article  PubMed  Google Scholar 

  • Murua A, Portero A, Orive G, Hernandez RM, de Castro M, Pedraz JL (2008) Cell microencapsulation technology: towards clinical application. J Control Release 132:76–83

    Article  PubMed  CAS  Google Scholar 

  • Nie Y, Bergendahl V, Hei DJ, Jones JM, Palecek SP (2009) Scalable culture and cryopreservation of human embryonic stem cells on microcarriers. Biotechnol Prog 25:20–31

    Article  PubMed  CAS  Google Scholar 

  • Niebruegge S, Bauwens CL, Peerani R, Thavandiran N, Masse S, Sevaptisidis E, Nanthakumar K, Woodhouse K, Husain M, Kumacheva E, Zandstra PW (2009) Generation of human embryonic stem cell-derived mesoderm and cardiac cells using size-specified aggregates in an oxygen-controlled bioreactor. Biotechnol Bioeng 102:493–507

    Article  PubMed  CAS  Google Scholar 

  • Oh SK, Chen AK, Mok Y, Chen X, Lim UM, Chin A, Choo AB, Reuveny S (2009) Long-term microcarrier suspension cultures of human embryonic stem cells. Stem Cell Res 2:219–230

    Article  PubMed  CAS  Google Scholar 

  • Olmer R, Haase A, Merkert S, Cui W, Palecek J, Ran C, Kirschning A, Scheper T, Glage S, Miller K, Curnow EC, Hayes ES, Martin U (2010) Long term expansion of undifferentiated human iPS and ES cells in suspension culture using a defined medium. Stem Cell Res 5:51–64

    Article  PubMed  CAS  Google Scholar 

  • Pampaloni F, Reynaud EG, Stelzer EH (2007) The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8:839–845

    Article  PubMed  CAS  Google Scholar 

  • Phillips BW, Horne R, Lay TS, Rust WL, Teck TT, Crook JM (2008) Attachment and growth of human embryonic stem cells on microcarriers. J Biotechnol 138:24–32

    Article  PubMed  CAS  Google Scholar 

  • Placzek MR, Chung IM, Macedo HM, Ismail S, Mortera Blanco T, Lim M, Cha JM, Fauzi I, Kang Y, Yeo DC, Ma CY, Polak JM, Panoskaltsis N, Mantalaris A (2009) Stem cell bioprocessing: fundamentals and principles. J R Soc Interface 6:209–232

    Article  PubMed  CAS  Google Scholar 

  • Powers DE, Millman JR, Bonner-Weir S, Rappel MJ, Colton CK (2010) Accurate control of oxygen level in cells during culture on silicone rubber membranes with application to stem cell differentiation. Biotechnol Prog 26:805–818

    Article  PubMed  CAS  Google Scholar 

  • Purpura KA, Aubin JE, Zandstra PW (2004) Sustained in vitro expansion of bone progenitors is cell density dependent. Stem Cells 22:39–50

    Article  PubMed  CAS  Google Scholar 

  • Ramos-Mejia V, Fernandez AF, Ayllon V, Real PJ, Bueno C, Anderson P, Martin F, Fraga MF, Menendez P (2011) Maintenance of human embryonic stem cells in mesenchymal stem cell-conditioned media augments hematopoietic specification. Stem Cells Dev 21(9):1549–1558

    Article  PubMed  Google Scholar 

  • Rodin S, Domogatskaya A, Strom S, Hansson EM, Chien KR, Inzunza J, Hovatta O, Tryggvason K (2010) Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nat Biotechnol 28:611–615

    Article  PubMed  CAS  Google Scholar 

  • Saha K, Mei Y, Reisterer CM, Pyzocha NK, Yang J, Muffat J, Davies MC, Alexander MR, Langer R, Anderson DG, Jaenisch R (2011) Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions. Proc Natl Acad Sci U S A 108:18714–18719

    Article  PubMed  CAS  Google Scholar 

  • Schriebl K, Satianegara G, Hwang A, Tan HL, Fong WJ, Yang HH, Jungbauer A, Choo A (2012) Selective removal of undifferentiated human embryonic stem cells using magnetic activated cell sorting followed by a cytotoxic antibody. Tissue Eng Part A 18:899–909

    Article  PubMed  CAS  Google Scholar 

  • Selvaraj V, Plane JM, Williams AJ, Deng W (2010) Switching cell fate: the remarkable rise of induced pluripotent stem cells and lineage reprogramming technologies. Trends Biotechnol 28:214–223

    Article  PubMed  CAS  Google Scholar 

  • Serra M, Brito C, Sousa MF, Jensen J, Tostoes R, Clemente J, Strehl R, Hyllner J, Carrondo MJ, Alves PM (2010) Improving expansion of pluripotent human embryonic stem cells in perfused bioreactors through oxygen control. J Biotechnol 148:208–215

    Article  PubMed  CAS  Google Scholar 

  • Serra M, Brito C, Correia C, Alves PM (2012) Process engineering human pluripotent stem cells for clinical applications. Trends Biotechnol 30(6):350–359

    Article  PubMed  CAS  Google Scholar 

  • Serra M, Correia C, Malpique R, Brito C, Jensen J, Bjorquist P, Carrondo MJ, Alves PM (2011) Microencapsulation technology: a powerful tool for integrating expansion and cryopreservation of human embryonic stem cells. PLoS One 6:e23212

    Article  PubMed  CAS  Google Scholar 

  • Singh H, Mok P, Balakrishnan T, Rahmat SN, Zweigerdt R (2010) Up-scaling single cell-inoculated suspension culture of human embryonic stem cells. Stem Cell Res 4:165–179

    Article  PubMed  CAS  Google Scholar 

  • Siti-Ismail N, Bishop AE, Polak JM, Mantalaris A (2008) The benefit of human embryonic stem cell encapsulation for prolonged feeder-free maintenance. Biomaterials 29:3946–3952

    Article  PubMed  CAS  Google Scholar 

  • Storm MP, Orchard CB, Bone HK, Chaudhuri JB, Welham MJ (2010) Three-dimensional culture systems for the expansion of pluripotent embryonic stem cells. Biotechnol Bioeng 107:683–695

    Article  PubMed  CAS  Google Scholar 

  • Tang C, Lee AS, Volkmer JP, Sahoo D, Nag D, Mosley AR, Inlay MA, Ardehali R, Chavez SL, Pera RR, Behr B, Wu JC, Weissman IL, Drukker M (2011) An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells. Nat Biotechnol 29:829–834

    Article  PubMed  CAS  Google Scholar 

  • Taylor CJ, Bolton EM, Pocock S, Sharples LD, Pedersen RA, Bradley JA (2005) Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet 366:2019–2025

    Article  PubMed  Google Scholar 

  • Tsai RY, McKay RD (2000) Cell contact regulates fate choice by cortical stem cells. J Neurosci 20:3725–3735

    PubMed  CAS  Google Scholar 

  • Tzanakakis ES, Hess DJ, Sielaff TD, Hu WS (2000) Extracorporeal tissue engineered liver-assist devices. Annu Rev Biomed Eng 2:607–632

    Article  PubMed  CAS  Google Scholar 

  • Unger C, Skottman H, Blomberg P, Dilber MS, Hovatta O (2008) Good manufacturing practice and clinical-grade human embryonic stem cell lines. Hum Mol Genet 17:R48–R53

    Article  PubMed  CAS  Google Scholar 

  • Veraitch FS, Scott R, Wong JW, Lye GJ, Mason C (2008) The impact of manual processing on the expansion and directed differentiation of embryonic stem cells. Biotechnol Bioeng 99:1216–1229

    Article  PubMed  CAS  Google Scholar 

  • Villa-Diaz LG, Nandivada H, Ding J, Nogueira-de-Souza NC, Krebsbach PH, O'Shea KS, Lahann J, Smith GD (2010) Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nat Biotechnol 28:581–583

    Article  PubMed  CAS  Google Scholar 

  • Yirme G, Amit M, Laevsky I, Osenberg S, Itskovitz-Eldor J (2008) Establishing a dynamic process for the formation, propagation, and differentiation of human embryoid bodies. Stem Cells Dev 17:1227–1241

    Article  PubMed  CAS  Google Scholar 

  • Zhao F, Grayson WL, Ma T, Irsigler A (2009) Perfusion affects the tissue developmental patterns of human mesenchymal stem cells in 3D scaffolds. J Cell Physiol 219:421–429

    Article  PubMed  CAS  Google Scholar 

  • Zhao T, Zhang ZN, Rong Z, Xu Y (2011) Immunogenicity of induced pluripotent stem cells. Nature 474:212–215

    Article  PubMed  CAS  Google Scholar 

  • Zweigerdt R, Olmer R, Singh H, Haverich A, Martin U (2011) Scalable expansion of human pluripotent stem cells in suspension culture. Nat Protoc 6:689–700

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support received from the Portuguese Foundation for Science and Technology (PTDC/BIO/72755/2006) and from the European Commission (Cell Programming by Nanoscaled Devices, NMP4-CT-2004-500039; Clinigene Network of Excellence, LSHB-CT-2006-018933; HYPERLAB - high yield and performance stem cell lab, 223011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula M. Alves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Serra, M., Correia, C., Brito, C., Alves, P.M. (2014). Bioprocessing of Human Pluripotent Stem Cells for Cell Therapy Applications. In: Al-Rubeai, M., Naciri, M. (eds) Stem Cells and Cell Therapy. Cell Engineering, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7196-3_4

Download citation

Publish with us

Policies and ethics