Skip to main content

Vascular Stem Cell Therapy

  • Chapter
  • First Online:
Book cover Stem Cells and Cell Therapy

Part of the book series: Cell Engineering ((CEEN,volume 8))

  • 1963 Accesses

Abstract

There are numerous diseases associated with a malfunction of the endothelium, including ischemic injuries that follow thrombotic events, visual loss due to a defective cornea endothelium, and endothelial cell (EC) dysfunction in patients with diabetes. Some of these diseases are susceptible of cell therapies that aim to replace the defective endothelium. Thus, there is a need for a robust, clinically suitable source of autologous ECs. In principle, ECs can be obtained from a variety of autologous tissues, including small diameter veins and the microvasculature of tissues such as skin and adipose. However, the clinical use of mature ECs is limited by site morbidity and low cell proliferation potential. These limitations have motivated the search for other sources of ECs with more proliferative and vasculogenic activities such as those derived from embryonic stem cell (ESCs) and induced pluripotent stem cells (iPSCs). However, ethical considerations along with a poor understanding of the mechanisms controlling the differentiation of embryonic stem cells are hurdles that need to be overcome before these cells can be used in a clinical setting. Alternatively, the existence of postnatal endothelial progenitor cells (EPCs) in circulation represents a promising opportunity to non-invasively obtain large quantities of autologous ECs. However, the process for obtaining EPC-derived ECs has not been straightforward in part due to a lack of consensus regarding EPC definition, origin, and function of these cells. As a result, the term EPCs has been used to define two distinct subpopulations of cells, one with hematopoietic (early EPCs) and the other with endothelial (late EPCs) characteristics. Despite the often-confusing terminology, the functional distinction between these two very different types of EPCs is increasingly better understood. In particular, the ability of late EPCs to generate large amount of endothelial colony-forming cells (ECFCs) is now well recognized. Blood-derived ECFCs represent a robust population of cells with endothelial phenotype and ability to function as bona fide ECs both in vitro and in vivo, and thus, they constitute a promising source of cells for future vascular cell therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aasen T, Raya A, Barrero MJ, Garreta E, Consiglio A, Gonzalez F, Vassena R, Bilic J, Pekarik V, Tiscornia G et al (2008) Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26(11):1276–1284

    Article  PubMed  CAS  Google Scholar 

  • Aird WC (2007) Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 100(2):158–173

    Article  PubMed  CAS  Google Scholar 

  • Aoi T, Yae K, Nakagawa M, Ichisaka T, Okita K, Takahashi K, Chiba T, Yamanaka S (2008) Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 321(5889):699–702

    Article  PubMed  CAS  Google Scholar 

  • Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302):964–967

    Article  PubMed  CAS  Google Scholar 

  • Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner JM (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85(3):221–228

    Article  PubMed  CAS  Google Scholar 

  • Au P, Daheron LM, Duda DG, Cohen KS, Tyrrell JA, Lanning RM, Fukumura D, Scadden DT, Jain RK (2008) Differential in vivo potential of endothelial progenitor cells from human umbilical cord blood and adult peripheral blood to form functional long-lasting vessels. Blood 111(3):1302–1305

    Article  PubMed  CAS  Google Scholar 

  • Bagot CN, Arya R (2008) Virchow and his triad: a question of attribution. Br J Haematol 143(2):180–190

    Article  PubMed  Google Scholar 

  • Barrilleaux B, Knoepfler PS (2011) Inducing iPSCs to escape the dish. Cell Stem Cell 9(2):103–111

    Article  PubMed  CAS  Google Scholar 

  • Bergan JJ, Veith FJ, Bernhard VM, Yao JS, Flinn WR, Gupta SK, Scher LA, Samson RH, Towne JB (1982) Randomization of autogenous vein and polytetrafluorethylene grafts in femoral-distal reconstruction. Surgery 92(6):921–930

    PubMed  CAS  Google Scholar 

  • Blancas AA, Shih AJ, Lauer NE, McCloskey KE (2011) Endothelial cells from embryonic stem cells in a chemically defined medium. Stem Cells Dev 20(12):2153–2161

    Article  PubMed  CAS  Google Scholar 

  • Cao R, Bråkenhielm E, Pawliuk R, Wariaro D, Post MJ, Wahlberg E, Leboulch P, Cao Y (2003) Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat Med 9(5):604–613

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet P (2000) VEGF gene therapy: stimulating angiogenesis or angioma-genesis? Nat Med 6(10):1102–1103

    Article  PubMed  CAS  Google Scholar 

  • Chaudhury H, Raborna E, Goldiea LC, Hirschi KK (2012) Stem cell-derived vascular endothelial cells and their potential application in regenerative medicine. Cells Tissues Organs 195:41–47

    Article  PubMed  CAS  Google Scholar 

  • Cho SW, Moon SH, Lee SH, Kang SW, Kim J, Lim JM, Kim HS, Kim BS, Chung HM (2007) Improvement of postnatal neovascularization by human embryonic stem cell derived endothelial-like cell transplantation in a mouse model of hindlimb ischemia. Circulation 116(21):2409–2419

    Article  PubMed  CAS  Google Scholar 

  • Dahl SLM, Kypson AP, Lawson JH, Blum JL, Strader JT, Li Y, Manson RJ, Tente WE, DiBernardo L, Hensley MT et al (2011) Readily available tissue-engineered vascular grafts. Sci Transl Med 3(68):68ra9

    Article  PubMed  CAS  Google Scholar 

  • Davison PM, Bensch K, Karasek MA (1980) Isolation and growth of endothelial cells from the microvessels of the newborn human foreskin in cell culture. J Invest Dermatol 75(4):316–321

    Article  PubMed  CAS  Google Scholar 

  • De Bie C (2007) Genzyme: 15 years of cell and gene therapy research. Regen Med 2(1):95–97

    Article  PubMed  Google Scholar 

  • Descamps B, Emanueli C (2012) Vascular differentiation from embryonic stem cells: novel technologies and therapeutic promises. Vascul Pharmacol 56(5–6):267–279

    Article  PubMed  CAS  Google Scholar 

  • Eberli D, Atala A (2006) Tissue engineering using adult stem cells. Methods Enzymol 420:287–302

    Article  PubMed  CAS  Google Scholar 

  • Fadini GP, Baesso I, Albiero M, Sartore S, Agostini C, Avogaro A (2008) Technical notes on endothelial progenitor cells: ways to escape from the knowledge plateau. Atherosclerosis 197(2):496–503

    Article  PubMed  CAS  Google Scholar 

  • Fadini GP, Losordo D, Dimmeler S (2012) Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use. Circ Res 110(4):624–637

    Article  PubMed  CAS  Google Scholar 

  • Furie B, Furie BC (2008) Mechanisms of thrombus formation. N Engl J Med 359(9):938–949

    Article  PubMed  CAS  Google Scholar 

  • Gehling UM, Ergün S, Schumacher U, Wagener C, Pantel K, Otte M, Schuch G, Schafhausen P, Mende T, Kilic N et al (2000) In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood 95(10):3106–3112

    PubMed  CAS  Google Scholar 

  • Gerecht-Nir S, Ziskind A, Cohen S, Itskovitz-Eldor J (2003) Human embryonic stem cells as an in vitro model for human vascular development and the induction of vascular differentiation. Lab Invest 83:1811–1820

    Article  PubMed  Google Scholar 

  • Gimbrone MA, Cotran RS, Folkman J (1974) Human vascular endothelial cells in culture. Growth and DNA synthesis. J Cell Biol 60(3):673–684

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez F, Boue S, Izpisua Belmonte JC (2011) Methods for making induced pluripotent stem cells: reprogramming a la carte. Nat Rev Genet 12(4):231–242

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb D, Kunal T, Emani S, Aikawa E, Brown DW, Powell AJ, Nedder A, Engelmayr GC, Melero-Martin JM, Sacks MS et al (2010) In vivo monitoring of function of autologous engineered pulmonary valve. J Thorac Cardiovasc Surg 139(3):723–731

    Article  PubMed  Google Scholar 

  • Gulati R, Jevremovic D, Peterson TE, Chatterjee S, Shah V, Vile RG, Simari RD (2003) Diverse origin and function of cells with endothelial phenotype obtained from adult human blood. Circ Res 93(11):1023–1025

    Article  PubMed  CAS  Google Scholar 

  • Han Z, Vandevoort CA, Latham KE (2007) Therapeutic cloning: status and prospects. Curr Opin Mol Ther 9(4):392–397

    PubMed  Google Scholar 

  • Hanna J, Markoulaki S, Schorderet P, Carey BW, Beard C, Wernig M, Creyghton MP, Steine EJ, Cassady JP, Foreman R et al (2008) Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell 133(2):250–264

    Article  PubMed  CAS  Google Scholar 

  • Hill JM, Zalos G, Halcox JPJ, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348(7):593–600

    Article  PubMed  Google Scholar 

  • Hirashima M, Kataoka H, Nishikawa S, Matsuyoshi N, Nishikawa S-I (1999) Maturation of embryonic stem cells into endothelial cells in an in vitro model of vasculogenesis. Blood 93:1253–1263

    PubMed  CAS  Google Scholar 

  • Hur J, Yoon C-H, Kim H-S, Choi J-H, Kang H-J, Hwang K-K, Oh B-H, Lee M-M, Park Y-B (2004) Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol 24(2):288–293

    Article  PubMed  CAS  Google Scholar 

  • Ingram DA, Mead LE, Tanaka H, Meade V, Fenoglio A, Mortell K, Pollok K, Ferkowicz MJ, Gilley D, Yoder MC (2004) Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104(9):2752–2760

    Article  PubMed  CAS  Google Scholar 

  • Isner JM (2002) Myocardial gene therapy. Nature 415(6868):234–239

    Article  PubMed  CAS  Google Scholar 

  • Isner JM, Asahara T (1999) Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J Clin Invest 103(9):1231–1236

    Article  PubMed  CAS  Google Scholar 

  • Jain RK, Au P, Tam J, Duda DG, Fukumura D (2005) Engineering vascularized tissue. Nat Biotechnol 23(7):821–823

    Article  PubMed  CAS  Google Scholar 

  • James D, Nam HS, Seandel M, Nolan D, Janovitz T, Tomishima M, Studer L, Lee G, Lyden D, Benezra R et al (2010) Expansion and maintenance of human embryonic stem cell-derived endothelial cells by TGFbeta inhibition is Id1 dependent. Nat Biotechnol 28(2):161–166

    Article  PubMed  CAS  Google Scholar 

  • Joo HJ, Kim H, Park SW, Cho HJ, Kim HS, Lim DS, Chung HM, Kim I, Han YM, Koh GY (2011) Angiopoietin-1 promotes endothelial differentiation from embryonic stem cells and induced pluripotent stem cells. Blood 118(8):2094–2104

    Article  PubMed  CAS  Google Scholar 

  • Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, Li T, Isner JM, Asahara T (2000) Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci U S A 97(7):3422–3427

    Article  PubMed  CAS  Google Scholar 

  • Kane NM, Xiao Q, Baker AH, Luo Z, Xu Q, Emanueli C (2011) Pluripotent stem cell differentiation into vascular cells: a novel technology with promises for vascular re(generation). Pharmacol Ther 129(1):29–49

    Article  PubMed  CAS  Google Scholar 

  • Kattman SJ, Huber TL, Keller GM (2006) Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev Cell 11(5):723–732

    Article  PubMed  CAS  Google Scholar 

  • Kaushal S, Amiel GE, Guleserian KJ, Shapira OM, Perry T, Sutherland FW, Rabkin E, Moran AM, Schoen FJ, Atala A et al (2001) Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat Med 7(9):1035–1040

    Article  PubMed  CAS  Google Scholar 

  • Kennedy LJ Jr, Weissman IL (1971) Dual origin of intimal cells in cardiac-allograft arteriosclerosis. N Engl J Med 285(16):884–887

    Article  PubMed  Google Scholar 

  • Kern PA, Knedler A, Eckel RH (1983) Isolation and culture of microvascular endothelium from human adipose tissue. J Clin Invest 71(6):1822–1829

    Article  PubMed  CAS  Google Scholar 

  • Khurana R, Simons M (2003) Insights from angiogenesis trials using fibroblast growth factor for advanced arteriosclerotic disease. Trends Cardiovasc Med 13(3):116–122

    Article  PubMed  CAS  Google Scholar 

  • Langer RS, Vacanti JP (1999) Tissue engineering: the challenges ahead. Sci Am 280(4):86–89

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Cusick RA, Browne F, Ho Kim T, Ma PX, Utsunomiya H, Langer R, Vacanti JP (2002) Local delivery of basic fibroblast growth factor increases both angiogenesis and engraftment of hepatocytes in tissue-engineered polymer devices. Transplantation 73(10):1589–1593

    Article  PubMed  CAS  Google Scholar 

  • Levenberg S, Golub JS, Amit M, Itskovitz-Eldor J, Langer R (2002) Endothelial cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A 99(7):4391–4396

    Article  PubMed  CAS  Google Scholar 

  • Li X, Tjwa M, Moons L, Fons P, Noel A, Ny A, Zhou JM, Lennartsson J, Li H, Luttun A et al (2005) Revascularization of ischemic tissues by PDGF-CC via effects on endothelial cells and their progenitors. J Clin Invest 115(1):118–127

    PubMed  CAS  Google Scholar 

  • Lin Y, Weisdorf DJ, Solovey A, Hebbel RP (2000) Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 105(1):71–77

    Article  PubMed  CAS  Google Scholar 

  • Lin T, Ambasudhan R, Yuan X, Li W, Hilcove S, Abujarour R, Lin X, Hahm HS, Hao E, Hayek A et al (2009) A chemical platform for improved induction of human iPSCs. Nat Methods 6(11):805–808

    Article  PubMed  CAS  Google Scholar 

  • Lin R-Z, Dreyzin A, Aamodt K, Dudley AC, Melero-Martin JM (2011) Functional endothelial progenitor cells from cryopreserved umbilical cord blood. Cell Transplant 20:515–522

    Article  PubMed  Google Scholar 

  • Lin R-Z, Moreno-Luna R, Zhou B, Pu WT, Melero-Martin JM (2012) Equal modulation of endothelial cell function by four distinct tissue-specific mesenchymal stem cells. Angiogenesis 15(3):443–455

    Article  PubMed  Google Scholar 

  • Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, Ferguson TB, Ford E, Furie K, Gillespie C et al (2010) Executive summary: heart disease and stroke statistics – 2010 update: a report from the American Heart Association. Circulation 121(7):948–954

    Article  PubMed  Google Scholar 

  • MacNeil S (2007) Progress and opportunities for tissue-engineered skin. Nature 445(7130):874–880

    Article  PubMed  CAS  Google Scholar 

  • Melero-Martin JM, Khan ZA, Picard A, Wu X, Paruchuri S, Bischoff J (2007) In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood 109(11):4761–4768

    Article  PubMed  CAS  Google Scholar 

  • Melero-Martin JM, Kang S-Y, Khan ZA, Yuan L, Oettgen P, Bischoff J (2008) Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circ Res 103(2):194–202

    Article  PubMed  CAS  Google Scholar 

  • Mund JA, Estes ML, Yoder MC, Ingram DA Jr, Case J (2012) Flow cytometric identification and functional characterization of immature and mature circulating endothelial cells. Arterioscler Thromb Vasc Biol 32(4):1045–1053

    Article  PubMed  CAS  Google Scholar 

  • Murasawa S, Asahara T (2005) Endothelial progenitor cells for vasculogenesis. Physiology (Bethesda) 20:36–42

    Article  CAS  Google Scholar 

  • Nachman RL, Jaffe EA (2004) Endothelial cell culture: beginnings of modern vascular biology. J Clin Invest 114(8):1037–1040

    PubMed  CAS  Google Scholar 

  • Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R, Langer R (1999) Functional arteries grown in vitro. Science 284(5413):489–493

    Article  PubMed  CAS  Google Scholar 

  • Nör JE, Peters MC, Christensen JB, Sutorik MM, Linn S, Khan MK, Addison CL, Mooney DJ, Polverini PJ (2001) Engineering and characterization of functional human microvessels in immunodeficient mice. Lab Invest 81(4):453–463

    Article  PubMed  Google Scholar 

  • Park S-W, Koh YJ, Jeon J, Cho Y-H, Jang M-J, Kang Y, Kim M-J, Choi C, Cho YS, Chung H-M et al (2010) Efficient differentiation of human pluripotent stem cells into functional CD34+ progenitor cells by combined modulation of the MEK/ERK and BMP4 signaling pathways. Blood 116(25):5762–5772

    Article  PubMed  CAS  Google Scholar 

  • Prater DN, Case J, Ingram DA, Yoder MC (2007) Working hypothesis to redefine endothelial progenitor cells. Leukemia 21(6):1141–1149

    Article  PubMed  CAS  Google Scholar 

  • Rafii S, Lyden D (2003) Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med 9(6):702–712

    Article  PubMed  CAS  Google Scholar 

  • Rehman J, Li J, Orschell CM, March KL (2003) Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107(8):1164–1169

    Article  PubMed  Google Scholar 

  • Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 18(4):399–404

    Article  PubMed  CAS  Google Scholar 

  • Richardson MR, Yoder MC (2011) Endothelial progenitor cells: quo vadis? J Mol Cell Cardiol 50(2):266–272

    Article  PubMed  CAS  Google Scholar 

  • Rosenzweig A (2003) Endothelial progenitor cells. N Engl J Med 348(7):581–582

    Article  PubMed  Google Scholar 

  • Rufaihah AJ, Huang NF, Jame S, Lee JC, Nguyen HN, Byers B, De A, Okogbaa J, Rollins M, Reijo-Pera R et al (2011) Endothelial cells derived from human iPSCS increase capillary density and improve perfusion in a mouse model of peripheral arterial disease. Arterioscler Thromb Vasc Biol 31(11):e72–e79

    Article  PubMed  CAS  Google Scholar 

  • Sacks MS, Schoen FJ, Mayer JE (2009) Bioengineering challenges for heart valve tissue engineering. Annu Rev Biomed Eng 11:289–313

    Article  PubMed  CAS  Google Scholar 

  • Schechner JS, Nath AK, Zheng L, Kluger MS, Hughes CC, Sierra-Honigmann MR, Lorber MI, Tellides G, Kashgarian M, Bothwell AL et al (2000) In vivo formation of complex microvessels lined by human endothelial cells in an immunodeficient mouse. Proc Natl Acad Sci U S A 97(16):9191–9196

    Article  PubMed  CAS  Google Scholar 

  • Seifalian AM, Tiwari A, Hamilton G, Salacinski HJ (2002) Improving the clinical patency of prosthetic vascular and coronary bypass grafts: the role of seeding and tissue engineering. Artif Organs 26(4):307–320

    Article  PubMed  Google Scholar 

  • Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A, Fujita Y, Kothari S, Mohle R, Sauvage LR et al (1998) Evidence for circulating bone marrow-derived endothelial cells. Blood 92(2):362–367

    PubMed  CAS  Google Scholar 

  • Sone M, Itoh H, Yamahara K, Yamashita JK, Yurugi-Kobayashi T, Nonoguchi A, Suzuki Y, Chao TH, Sawada N, Fukunaga Y et al (2007) Pathway for differentiation of human embryonic stem cells to vascular cell components and their potential for vascular regeneration. Arterioscler Thromb Vasc Biol 27(10):2127–2134

    Article  PubMed  CAS  Google Scholar 

  • Staerk J, Dawlaty MM, Gao Q, Maetzel D, Hanna J, Sommer CA, Mostoslavsky G, Jaenisch R (2010) Reprogramming of human peripheral blood cells to induced pluripotent stem cells. Cell Stem Cell 7(1):20–24

    Article  PubMed  CAS  Google Scholar 

  • Stroncek JD, Grant BS, Brown MA, Povsic TJ, Truskey GA, Reichert WM (2009) Comparison of endothelial cell phenotypic markers of late-outgrowth endothelial progenitor cells isolated from patients with coronary artery disease and healthy volunteers. Tissue Eng Part A 15(11):3473–3486

    Article  PubMed  CAS  Google Scholar 

  • Stroncek JD, Ren LC, Klitzman B, Reichert WM (2011) Patient-derived endothelial progenitor cells improve vascular graft patency in a rodent model. Acta Biomater 8(1):201–208

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M, Isner JM, Asahara T (1999) Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5(4):434–438

    Article  PubMed  CAS  Google Scholar 

  • Tatsumi R, Suzuki Y, Sumi T, Sone M, Suemori H, Nakatsuji N (2011) Simple and highly efficient method for production of endothelial cells from human embryonic stem cells. Cell Transplant 20(9):1423–1430

    Article  PubMed  Google Scholar 

  • Taura D, Sone M, Homma K, Oyamada N, Takahashi K, Tamura N, Yamanaka S, Nakao K (2009) Induction and isolation of vascular cells from human induced pluripotent stem cells – brief report. Arterioscler Thromb Vasc Biol 29(7):1100–1103

    Article  PubMed  CAS  Google Scholar 

  • Terry MA (2003) Deep lamellar endothelial keratoplasty (DLEK): pursuing the ideal goals of endothelial replacement. Eye (Lond) 17(8):982–988

    Article  CAS  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  PubMed  CAS  Google Scholar 

  • Unger C, Skottman H, Blomberg P, Dilber MS, Hovatta O (2008) Good manufacturing practice and clinical-grade human embryonic stem cell lines. Hum Mol Genet 17(R1):R48–R53

    Article  PubMed  CAS  Google Scholar 

  • Urbich C, Heeschen C, Aicher A, Dernbach E, Zeiher AM, Dimmeler S (2003) Relevance of monocytic features for neovascularization capacity of circulating endothelial progenitor cells. Circulation 108(20):2511–2516

    Article  PubMed  Google Scholar 

  • Veith FJ, Moss CM, Sprayregen S, Montefusco C (1979) Preoperative saphenous venography in arterial reconstructive surgery of the lower extremity. Surgery 85(3):253–256

    PubMed  CAS  Google Scholar 

  • Wang R, Clark R, Bautch VL (1992) Embryonic stem cell-derived cystic embryoid bodies form vascular channels: an in vitro model of blood vessel development. Development 114(2):303–316

    PubMed  CAS  Google Scholar 

  • Wang ZZ, Au P, Chen T, Shao Y, Daheron LM, Bai H, Arzigian M, Fukumura D, Jain RK, Scadden DT (2007) Endothelial cells derived from human embryonic stem cells form durable blood vessels in vivo. Nat Biotechnol 25(3):317–318

    Article  PubMed  CAS  Google Scholar 

  • Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A et al (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7(5):618–630

    Article  PubMed  CAS  Google Scholar 

  • Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A, Böhm M, Nickenig G (2005) Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 353(10):999–1007

    Article  PubMed  CAS  Google Scholar 

  • Wilmut I, Beaujean N, de Sousa PA, Dinnyes A, King TJ, Paterson LA, Wells DN, Young LE (2002) Somatic cell nuclear transfer. Nature 419(6907):583–586

    Article  PubMed  CAS  Google Scholar 

  • Wu SM, Hochedlinger K (2011) Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nat Cell Biol 13(5):497–505

    Article  PubMed  CAS  Google Scholar 

  • Yamahara K, Sone M, Itoh H, Yamashita JK, Yurugi-Kobayashi T, Homma K, Chao TH, Miyashita K, Park K, Oyamada N et al (2008) Augmentation of neovascularization [corrected] in hindlimb ischemia by combined transplantation of human embryonic stem cells-derived endothelial and mural cells. PLoS One 3(2):e1666

    Article  PubMed  CAS  Google Scholar 

  • Yamashita J, Itoh H, Hirashima M, Ogawa M, Nishikawa S, Yurugi T, Naito M, Nakao K, Nishikawa S-I (2000) Flk1-positive cells derived from embryonic stem cells serve as vascular progenitor. Nature 408:92–96

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Chang E, Cherry AM, Bangs CD, Oei Y, Bodnar A, Bronstein A, Chiu CP, Herron GS (1999) Human endothelial cell life extension by telomerase expression. J Biol Chem 274(37):26141–26148

    Article  PubMed  CAS  Google Scholar 

  • Yao S, Chen S, Clark J, Hao E, Beattie GM, Hayek A, Ding S (2006) Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proc Natl Acad Sci U S A 103(18):6907–6912

    Article  PubMed  CAS  Google Scholar 

  • Yoder MC (2009) Defining human endothelial progenitor cells. J Thromb Haemost 7(Suppl 1):49–52

    Article  PubMed  CAS  Google Scholar 

  • Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F, Krasich R, Temm CJ, Prchal JT, Ingram DA (2007) Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109(5):1801–1809

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, Trauger S, Bien G, Yao S, Zhu Y et al (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4(5):381–384

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan M. Melero-Martin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lin, RZ., Moreno-Luna, R., Melero-Martin, J.M. (2014). Vascular Stem Cell Therapy. In: Al-Rubeai, M., Naciri, M. (eds) Stem Cells and Cell Therapy. Cell Engineering, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7196-3_3

Download citation

Publish with us

Policies and ethics