Skip to main content

Molecular Pathology and Diagnostics of Prostate Cancer

  • Chapter
  • First Online:
  • 2769 Accesses

Part of the book series: Cancer Growth and Progression ((CAGP,volume 16))

Abstract

Prostate cancer (PCa) is the most common malignancy among men and is the second leading cause of cancer-related deaths in the United States and Europe. The molecular alterations underlying PCa have recently been shown to be quite complex, involving many different genes, microRNA species, epigenetic and mitochondrial changes, and multiple gene translocations. Because of the highly complex molecular changes underlying this malignancy, PCa molecular diagnostics are exceptionally complex and have only recently led to useful molecular tests. Here, we will review several promising areas in the molecular diagnostics of PCa and try to indicate which ones may have clinical utility in the near future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AMACR:

Alpha-methylacyl-CoA racemase

BPH:

Benign prostatic hypertrophy

BPSA:

Benign prostate-specific antigen

COPA:

Cancer outlier profile analysis

CTC:

Circulating tumor cells

ECM:

Extracellular matrix

ELISA:

Enzyme-linked immunosorbent assay

EpCAM:

Epithelial cell adhesion molecule

ETS:

Erythroblast transformation-specific

FISH:

Fluorescent in situ hybridization

fPSA:

Free PSA

GOLPH2:

Golgi Phosphoprotein 2

GST:

Glutathione-S-transferase

GSTP1:

Glutathione-S-transferase P1

hK2:

Human glandular kallikrein 2

miRNA:

MicroRNA

MMP:

Matrix metalloproteinase

MSMB:

Microdeminoprotein-ß

PBS:

Phosphate-buffered saline

PCa:

Prostate cancer

PCA3:

Prostate cancer gene 3

PIN:

Prostatic intraepithelial neoplasia

PSA:

Prostate-specific antigen

RT-PCR:

Reverse transcription-polymerase chain reaction

SNP:

Single nucleotide polymorphism

uPA:

Urokinase plasminogen activator

uPAR:

Urokinase plasminogen activator receptor

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ (2008) Cancer statistics. CA Cancer J Clin 58:71–96

    PubMed  Google Scholar 

  2. Ferlay J, Autier P, Boniol M, Heanue M, Colombet M, Boyle P (2007) Estimates of the cancer incidence and mortality in Europe in 2006. Ann Oncol 18:581–592

    PubMed  CAS  Google Scholar 

  3. http://www.wcrf.org/cancer_facts/prostate-cancer-worldwide.php

  4. Osório-Costa F, Rocha GZ, Dias MM, Carvalheira JB (2009) Epidemiological and molecular mechanisms aspects linking obesity and cancer. Arq Bras Endocrinol Metabol 53:213–226

    PubMed  Google Scholar 

  5. Freedland SJ, Platz EA (2007) Obesity and prostate cancer: making sense out of apparently conflicting data. Epidemiol Rev 29:88–97

    PubMed  Google Scholar 

  6. Zheng W, Lee SA (2009) Well-done meat intake, heterocyclic amine exposure, and cancer risk. Nutr Cancer 61:437–446

    PubMed  CAS  Google Scholar 

  7. Khan N, Afaq F, Mukhtar H (2010) Lifestyle as risk factor for cancer: evidence from human studies. Cancer Lett 293:133–143

    PubMed  CAS  Google Scholar 

  8. Saini S, Majid S, Dahiya R (2010) Diet, microRNAs and prostate cancer. Pharm Res 27:1014–1026

    PubMed  CAS  Google Scholar 

  9. Khandrika L, Kumar B, Koul S, Maroni P, Koul HK (2009) Oxidative stress in prostate cancer. Cancer Lett 282:125–136

    PubMed  CAS  Google Scholar 

  10. Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K (2000) Environmental and heritable factors in the causation of cancer-analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343:78–85

    PubMed  CAS  Google Scholar 

  11. Dianat SS, Margreiter M, Eckersberger E, Finkelstein J, Kuehas F, Herwig R, Ayati M, Lepor H, Djavan B (2009) Gene polymorphisms and prostate cancer: the evidence. BJU Int 104:1560–1572

    PubMed  CAS  Google Scholar 

  12. Ostrander EA, Udler MS (2008) The role of the BRCA2 gene in susceptibility to prostate cancer revisited. Cancer Epidemiol Biomarkers Prev 17:1843–1848

    PubMed  CAS  Google Scholar 

  13. Berger AD, Satagopan J, Lee P, Taneja SS, Osman I (2006) Differences in clinicopathologic features of prostate cancer between black and white patients treated in the 1990s and 2000s. Urology 67:120–124

    PubMed  Google Scholar 

  14. Hatcher D, Daniels G, Osman I, Lee P (2009) Molecular mechanisms involving prostate cancer racial disparity. Am J Transl Res 1:235–248

    PubMed  CAS  Google Scholar 

  15. Tischkowitz M, Sabbaghian N, Ray AM, Lange EM, Foulkes WD, Cooney KA (2008) Analysis of the gene coding for the BRCA2-interacting protein PALB2 in hereditary prostate cancer. Prostate 68:675–678

    PubMed  Google Scholar 

  16. Lundwall A (1989) Characterization of the gene for prostate-specific antigen, a human glandular kallikrein. Biochem Biophys Res Commun 161:1151–1159

    PubMed  CAS  Google Scholar 

  17. Stephenson SA, Verity K, Ashworth LK, Clements JA (1999) Localization of a new prostate-specific antigen-related serine protease gene, KLK4, is evidence for an expanded human kallikrein gene family cluster on chromosome 19q13.3-13.4. J Biol Chem 274:23210–23214

    PubMed  CAS  Google Scholar 

  18. Yousef GM, Diamandis EP (2001) The new human tissue kallikrein gene family: structure, function, and association to disease. Endocr Rev 22:184–204

    PubMed  CAS  Google Scholar 

  19. Ung JO, Richie JP, Chen MH, Renshaw AA, D’Amico AV (2002) Evolution of the presentation and pathologic and biochemical outcomes after radical prostatectomy for patients with clinically localized prostate cancer diagnosed during the PSA era. Urology 60:458–463

    PubMed  Google Scholar 

  20. Scattoni V, Zlotta A, Montironi R, Schulman C, Rigatti P, Montorsi F (2007) Extended and saturation prostatic biopsy in the diagnosis and characterisation of prostate cancer: a critical analysis of the literature. Eur Urol 52:1309–1322

    PubMed  Google Scholar 

  21. Thompson IM, Goodman PJ, Tangen CM, Lucia MS, Miller GJ, Ford LG, Lieber MM, Cespedes RD, Atkins JN, Lippman SM, Carlin SM, Ryan A, Szczepanek CM, Crowley JJ, Coltman CA Jr (2003) The influence of finasteride on the development of prostate cancer. N Engl J Med 349:215–224

    PubMed  CAS  Google Scholar 

  22. http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=es63

  23. Carter HB, Ferrucci L, Kettermann A, Landis P, Wright EJ, Epstein JI, Trock BJ, Metter EJ (2006) Detection of life-threatening prostate cancer with prostate-specific antigen velocity during a window of curability. J Natl Cancer Inst 98:1521–1527

    PubMed  Google Scholar 

  24. Ng MK, Van As N, Thomas K, Woode-Amissah R, Horwich A, Huddart R, Khoo V, Thompson A, Dearnaley D, Parker C (2009) Prostate-specific antigen (PSA) kinetics in untreated, localized prostate cancer: PSA velocity vs PSA doubling time. BJU Int 103:872–876

    PubMed  CAS  Google Scholar 

  25. Uemura H, Nakamura M, Hasumi H, Sugiura S, Fujinami K, Miyoshi Y, Yao M, Kubota Y (2004) Effectiveness of percent free prostate specific antigen as a predictor of prostate cancer detection on repeat biopsy. Int J Urol 11:494–500

    PubMed  Google Scholar 

  26. Walz J, Haese A, Scattoni V, Steuber T, Chun FK, Briganti A, Montorsi F, Graefen M, Huland H, Karakiewicz PI (2008) Percent free prostate-specific antigen (PSA) is an accurate predictor of prostate cancer risk in men with serum PSA 2.5 ng/mL and lower. Cancer 113:2695–2703

    PubMed  CAS  Google Scholar 

  27. Mikolajczyk SD, Millar LS, Wang TJ, Rittenhouse HG, Wolfert RL, Marks LS, Song W, Wheeler TM, Slawin KM (2000) “BPSA,” a specific molecular form of free prostate-specific antigen, is found predominantly in the transition zone of patients with nodular benign prostatic hyperplasia. Urology 55:41–45

    PubMed  CAS  Google Scholar 

  28. Slawin KM, Shariat S, Canto E (2005) BPSA: a novel serum marker for benign prostatic hyperplasia. Rev Urol 7(Suppl 8):S52–S56

    PubMed  Google Scholar 

  29. Canto EI, Singh H, Shariat SF, Lamb DJ, Mikolajczyk SD, Linton HJ, Rittenhouse HG, Kadmon D, Miles BJ, Slawin KM (2004) Serum BPSA outperforms both total PSA and free PSA as a predictor of prostatic enlargement in men without prostate cancer. Urology 63:905–910

    PubMed  Google Scholar 

  30. Lilja H, Abrahamsson PA (1988) Three predominant proteins secreted by the human prostate gland. Prostate 12:29–38

    PubMed  CAS  Google Scholar 

  31. Dubé JY, Frenette G, Paquin R, Chapdelaine P, Tremblay J, Tremblay RR, Lazure C, Seidah N, Chrétien M (1987) Isolation from human seminal plasma of an abundant 16-kDa protein originating from the prostate, its identification with a 94-residue peptide originally described as beta-inhibin. J Androl 8:182–189

    PubMed  Google Scholar 

  32. Garde SV, Basrur VS, Li L, Finkelman MA, Krishan A, Wellham L, Ben-Josef E, Haddad M, Taylor JD, Porter AT, Tang DG (1999) Prostate secretory protein (PSP94) suppresses the growth of androgen-independent prostate cancer cell line (PC3) and xenografts by inducing apoptosis. Prostate 38:118–125

    PubMed  CAS  Google Scholar 

  33. Porter AT, F A C R O, Ben-Josef E (2001) Humoral mechanisms in prostate cancer: a role for FSH. Urol Oncol 6:131–138

    Google Scholar 

  34. Lamy S, Ruiz MT, Wisniewski J, Garde S, Rabbani SA, Panchal C, Wu JJ, Annabi B (2006) A prostate secretory protein94-derived synthetic peptide PCK3145 inhibits VEGF signaling in endothelial cells: implication in tumor angiogenesis. Int J Cancer 118:2350–2358

    PubMed  CAS  Google Scholar 

  35. Ulvsbäck M, Lindström C, Weiber H, Abrahamsson PA, Lilja H, Lundwall A (1989) Molecular cloning of a small prostate protein, known as beta-microsemenoprotein, PSP94 or beta-inhibin, and demonstration of transcripts in non-genital tissues. Biochem Biophys Res Commun 164:1310–1315

    PubMed  Google Scholar 

  36. Baijal-Gupta M, Clarke MW, Finkelman MA, McLachlin CM, Han VK (2000) Prostatic secretory protein (PSP94) expression in human female reproductive tissues, breast and in endometrial cancer cell lines. J Endocrinol 165:425–433

    PubMed  CAS  Google Scholar 

  37. Weiber H, Andersson C, Murne A, Rannevik G, Lindström C, Lilja H, Fernlund P (1990) Beta microseminoprotein is not a prostate-specific protein. Its identification in mucous glands and secretions. Am J Pathol 137:593–603

    PubMed  CAS  Google Scholar 

  38. Doctor VM, Sheth AR, Simha MM, Arbatti NJ, Aaveri JP, Sheth NA (1986) Studies on immunocytochemical localization of inhibin-like material in human prostatic tissue: comparison of its distribution in normal, benign and malignant prostates. Br J Cancer 53:547–554

    PubMed  CAS  Google Scholar 

  39. Imasato Y, Xuan JW, Sakai H, Izawa JI, Saito Y, Chin JL, Moussa M (2000) PSP94 expression after androgen deprivation therapy: a comparative study with prostate specific antigen in benign prostate and prostate cancer. J Urol 164:1819–1824

    PubMed  CAS  Google Scholar 

  40. Bjartell AS, Al-Ahmadie H, Serio AM, Eastham JA, Eggener SE, Fine SW, Udby L, Gerald WL, Vickers AJ, Lilja H, Reuter VE, Scardino PT (2007) Association of cysteine-rich secretory protein 3 and beta-microseminoprotein with outcome after radical prostatectomy. Clin Cancer Res 13:4130–4138

    PubMed  CAS  Google Scholar 

  41. Sakai H, Tsurusaki T, Kanda S, Koji T, Xuan JW, Saito Y (1999) Prognostic significance of beta-microseminoprotein mRNA expression in prostate cancer. Prostate 38:278–284

    PubMed  CAS  Google Scholar 

  42. Chan PS, Chan LW, Xuan JW, Chin JL, Choi HL, Chan FL (1999) In situ hybridization study of PSP94 (prostatic secretory protein of 94 amino acids) expression in human prostates. Prostate 41:99–109

    PubMed  CAS  Google Scholar 

  43. Hamdy FC, Dearnaley DP, Muir KR, Smith C, Bagnato M, Ardern-Jones AT, Hall AL, O'Brien LT, Gehr-Swain BN, Wilkinson RA, Cox A, Lewis S, Brown PM, Jhavar SG, Tymrakiewicz M, Lophatananon A, Bryant SL, Horwich A, Huddart RA, Khoo VS, Parker CC, Woodhouse CJ, Thompson A, Christmas T, Ogden C, Fisher C, Jamieson C, Cooper CS, English DR, Hopper JL, Neal DE, Easton DF, UK Genetic Prostate Cancer Study Collaborators; British Association of Urological Surgeons’ Section of Oncology, UK ProtecT Study Collaborators (2008) Multiple newly identified loci associated with prostate cancer susceptibility. Nat Genet 40:316–321

    PubMed  Google Scholar 

  44. Thomas G, Jacobs KB, Yeager M, Kraft P, Wacholder S, Orr N, Yu K, Chatterjee N, Welch R, Hutchinson A, Crenshaw A, Cancel-Tassin G, Staats BJ, Wang Z, Gonzalez-Bosquet J, Fang J, Deng X, Berndt SI, Calle EE, Feigelson HS, Thun MJ, Rodriguez C, Albanes D, Virtamo J, Weinstein S, Schumacher FR, Giovannucci E, Willett WC, Cussenot O, Valeri A, Andriole GL, Crawford ED, Tucker M, Gerhard DS, Fraumeni JF Jr, Hoover R, Hayes RB, Hunter DJ, Chanock SJ (2008) Multiple loci identified in a genome-wide association study of prostate cancer. Nat Genet 40:310–315

    PubMed  CAS  Google Scholar 

  45. Lou H, Yeager M, Li H, Bosquet JG, Hayes RB, Orr N, Yu K, Hutchinson A, Jacobs KB, Kraft P, Wacholder S, Chatterjee N, Feigelson HS, Thun MJ, Diver WR, Albanes D, Virtamo J, Weinstein S, Ma J, Gaziano JM, Stampfer M, Schumacher FR, Giovannucci E, Cancel-Tassin G, Cussenot O, Valeri A, Andriole GL, Crawford ED, Anderson SK, Tucker M, Hoover RN, Fraumeni JF Jr, Thomas G, Hunter DJ, Dean M, Chanock SJ (2009) Fine mapping and functional analysis of a common variant in MSMB on chromosome 10q11.2 associated with prostate cancer susceptibility. Proc Natl Acad Sci U S A 106:7933–7938

    PubMed  CAS  Google Scholar 

  46. Chang BL, Cramer SD, Wiklund F, Isaacs SD, Stevens VL, Sun J, Smith S, Pruett K, Romero LM, Wiley KE, Kim ST, Zhu Y, Zhang Z, Hsu FC, Turner AR, Adolfsson J, Liu W, Kim JW, Duggan D, Carpten J, Zheng SL, Rodriguez C, Isaacs WB, Grönberg H, Xu J (2009) Fine mapping association study and functional analysis implicate a SNP in MSMB at 10q11 as a causal variant for prostate cancer risk. Hum Mol Genet 18:1368–1375

    PubMed  CAS  Google Scholar 

  47. Kader AK, Sun J, Isaacs SD, Wiley KE, Yan G, Kim ST, Fedor H, DeMarzo AM, Epstein JI, Walsh PC, Partin AW, Trock B, Zheng SL, Xu J, Isaacs W (2009) Individual and cumulative effect of prostate cancer risk-associated variants on clinicopathologic variables in 5,895 prostate cancer patients. Prostate 69:1195–1205

    PubMed  CAS  Google Scholar 

  48. Whitaker HC, Kote-Jarai Z, Ross-Adams H, Warren AY, Burge J, George A, Bancroft E, Jhavar S, Leongamornlert D, Tymrakiewicz M, Saunders E, Page E, Mitra A, Mitchell G, Lindeman GJ, Evans DG, Blanco I, Mercer C, Rubinstein WS, Clowes V, Douglas F, Hodgson S, Walker L, Donaldson A, Izatt L, Dorkins H, Male A, Tucker K, Stapleton A, Lam J, Kirk J, Lilja H, Easton D; IMPACT Study Steering Committee; IMPACT Study Collaborators; UK GPCS Collaborators, Cooper C, Eeles R, Neal DE (2010) The rs10993994 risk allele for prostate cancer results in clinically relevant changes in microseminoprotein-beta expression in tissue and urine. PLoS One 5:e13363

    Google Scholar 

  49. Bussemakers MJ, van Bokhoven A, Verhaegh GW, Smit FP, Karthaus HF, Schalken JA, Debruyne FM, Ru N, Isaacs WB (1999) DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res 59:5975–5979

    PubMed  CAS  Google Scholar 

  50. Schalken JA, Hessels D, Verhaegh G (2003) New targets for therapy in prostate cancer: differential display code 3 (DD3(PCA3)), a highly prostate cancer-specific gene. Urology 62:34–43

    PubMed  Google Scholar 

  51. Clarke RA, Zhao Z, Guo AY, Roper K, Teng L, Fang ZM, Samaratunga H, Lavin MF, Gardiner RA (2009) New genomic structure for prostate cancer specific gene PCA3 within BMCC1: implications for prostate cancer detection and progression. PLoS One 4:e4995

    PubMed  Google Scholar 

  52. Hessels D, Klein Gunnewiek JM, van Oort I, Karthaus HF, van Leenders GJ, van Balken B, Kiemeney LA, Witjes JA, Schalken JA (2003) DD3(PCA3)-based molecular urine analysis for the diagnosis of prostate cancer. Eur Urol 44:8–15

    PubMed  CAS  Google Scholar 

  53. Meng FJ, Shan A, Jin L, Young CY (2002) The expression of a variant prostate-specific antigen in human prostate. Cancer Epidemiol Biomarkers Prev 11:305–309

    PubMed  CAS  Google Scholar 

  54. Magklara A, Scorilas A, Stephan C, Kristiansen GO, Hauptmann S, Jung K, Diamandis EP (2000) Decreased concentrations of prostate-specific antigen and human glandular kallikrein 2 in malignant versus nonmalignant prostatic tissue. Urology 56:527–532

    PubMed  CAS  Google Scholar 

  55. Groskopf J, Aubin SM, Deras IL, Blase A, Bodrug S, Clark C, Brentano S, Mathis J, Pham J, Meyer T, Cass M, Hodge P, Macairan ML, Marks LS, Rittenhouse H (2006) APTIMA PCA3 molecular urine test: development of a method to aid in the diagnosis of prostate cancer. Clin Chem 52:1089–1095

    PubMed  CAS  Google Scholar 

  56. Hayes DF, Smerage JB (2010) Circulating tumor cells. Prog Mol Biol Transl Sci 95:95–112

    PubMed  CAS  Google Scholar 

  57. Moreno JG, Miller MC, Gross S, Allard WJ, Gomella LG, Terstappen LW (2005) Circulating tumor cells predict survival in patients with metastatic prostate cancer. Urology 65:713–718

    PubMed  Google Scholar 

  58. Danila DC, Heller G, Gignac GA, Gonzalez-Espinoza R, Anand A, Tanaka E, Lilja H, Schwartz L, Larson S, Fleisher M, Scher HI (2007) Circulating tumor cell number and prognosis in progressive castration-resistant prostate cancer. Clin Cancer Res 13:7053–7058

    PubMed  CAS  Google Scholar 

  59. Garcia JA, Rosenberg JE, Weinberg V, Scott J, Frohlich M, Park JW, Small EJ (2007) Evaluation and significance of circulating epithelial cells in patients with hormone-refractory prostate cancer. BJU Int 99:519–524

    PubMed  Google Scholar 

  60. Morgan TM, Lange PH, Vessella RL (2007) Detection and characterization of circulating and disseminated prostate cancer cells. Front Biosci 12:3000–3009

    PubMed  CAS  Google Scholar 

  61. Jost M, Day JR, Slaughter R, Koreckij TD, Gonzales D, Kinnunen M, Groskopf J, Rittenhouse HG, Vessella RL, Reynolds MA (2010) Molecular assays for the detection of prostate tumor derived nucleic acids in peripheral blood. Mol Cancer 9:174

    PubMed  Google Scholar 

  62. Kumar-Sinha C, Tomlins SA, Chinnaiyan AM (2008) Recurrent gene fusions in prostate cancer. Nat Rev Cancer 8:497–511

    PubMed  CAS  Google Scholar 

  63. Tomlins SA, Bjartell A, Chinnaiyan AM, Jenster G, Nam RK, Rubin MA, Schalken JA (2009) ETS gene fusions in prostate cancer: from discovery to daily clinical practice. Eur Urol 56:275–286

    PubMed  CAS  Google Scholar 

  64. Tomlins SA, Laxman B, Varambally S, Cao X, Yu J, Helgeson BE, Cao Q, Prensner JR, Rubin MA, Shah RB, Mehra R, Chinnaiyan AM (2008) Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia 10:177–188

    PubMed  CAS  Google Scholar 

  65. Mehra R, Tomlins SA, Yu J, Cao X, Wang L, Menon A, Rubin MA, Pienta KJ, Shah RB, Chinnaiyan AM (2008) Characterization of TMPRSS2-ETS gene aberrations in androgen-independent metastatic prostate cancer. Cancer Res 68:3584–3590

    PubMed  CAS  Google Scholar 

  66. Cai C, Hsieh CL, Omwancha J, Zheng Z, Chen SY, Baert JL, Shemshedini L (2007) ETV1 is a novel androgen receptor-regulated gene that mediates prostate cancer cell invasion. Mol Endocrinol 21:1835–1846

    PubMed  CAS  Google Scholar 

  67. Perner S, Mosquera JM, Demichelis F, Hofer MD, Paris PL, Simko J, Collins C, Bismar TA, Chinnaiyan AM, De Marzo AM, Rubin MA (2007) TMPRSS2-ERG fusion prostate cancer: an early molecular event associated with invasion. Am J Surg Pathol 31:882–888

    PubMed  Google Scholar 

  68. Hessels D, Schalken JA (2009) The use of PCA3 in the diagnosis of prostate cancer. Nat Rev Urol 6:255–261

    PubMed  CAS  Google Scholar 

  69. Whitman EJ, Groskopf J, Ali A, Chen Y, Blase A, Furusato B, Petrovics G, Ibrahim M, Elsamanoudi S, Cullen J, Sesterhenn IA, Brassell S, Rittenhouse H, Srivastava S, McLeod DG (2008) PCA3 score before radical prostatectomy predicts extracapsular extension and tumor volume. J Urol 180:1975–1978

    PubMed  Google Scholar 

  70. Ruiz-Aragón J, Márquez-Peláez S (2010) Assessment of the PCA3 test for prostate cancer diagnosis: a systematic review and meta-analysis. Actas Urol Esp 34:346–355

    PubMed  Google Scholar 

  71. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, Varambally S, Cao X, Tchinda J, Kuefer R, Lee C, Montie JE, Shah RB, Pienta KJ, Rubin MA, Chinnaiyan AM (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310:644–648

    PubMed  CAS  Google Scholar 

  72. Wang J, Cai Y, Yu W, Ren C, Spencer DM, Ittmann M (2008) Pleiotropic biological activities of alternatively spliced TMPRSS2/ERG fusion gene transcripts. Cancer Res 68:8516–8524

    PubMed  CAS  Google Scholar 

  73. Barwick BG, Abramovitz M, Kodani M, Moreno CS, Nam R, Tang W, Bouzyk M, Seth A, Leyland-Jones B (2010) Prostate cancer genes associated with TMPRSS2-ERG gene fusion and prognostic of biochemical recurrence in multiple cohorts. Br J Cancer 102:570–576

    PubMed  CAS  Google Scholar 

  74. Magi-Galluzzi C, Tsusuki T, Elson P, Simmerman K, Lafargue C, Esgueva R, Klein E, Rubin MA, Zhou M (2011) TMPRSS2-ERG gene fusion prevalence and class are significantly different in prostate cancer of Caucasian, African-American and Japanese patients. Prostate 71(5):489–497

    PubMed  CAS  Google Scholar 

  75. Hsu T, Trojanowska M, Watson DK (2004) Ets proteins in biological control and cancer. J Cell Biochem 91:896–903

    PubMed  CAS  Google Scholar 

  76. Delattre O, Sevenet N (2002) Chromosome translocations in the Ewing family of tumors. Landes Bioscience, Austin

    Google Scholar 

  77. Clark J, Merson S, Jhavar S, Flohr P, Edwards S, Foster CS, Eeles R, Martin FL, Phillips DH, Crundwell M, Christmas T, Thompson A, Fisher C, Kovacs G, Cooper CS (2007) Diversity of TMPRSS2-ERG fusion transcripts in the human prostate. Oncogene 26:2667–2673

    PubMed  CAS  Google Scholar 

  78. Clark JP, Cooper CS (2009) ETS gene fusions in prostate cancer. Nat Rev Urol 6:429–439

    PubMed  CAS  Google Scholar 

  79. Soller MJ, Isaksson M, Elfving P, Soller W, Lundgren R, Panagopoulos I (2006) Confirmation of the high frequency of the TMPRSS2/ERG fusion gene in prostate cancer. Genes Chromosomes Cancer 45:717–719

    PubMed  CAS  Google Scholar 

  80. Petrovics G, Liu A, Shaheduzzaman S, Furusato B, Sun C, Chen Y, Nau M, Ravindranath L, Chen Y, Dobi A, Srikantan V, Sesterhenn IA, McLeod DG, Vahey M, Moul JW, Srivastava S (2005) Frequent overexpression of ETS-related gene-1 (ERG1) in prostate cancer transcriptome. Oncogene 24:3847–3852

    PubMed  CAS  Google Scholar 

  81. Winnes M, Lissbrant E, Damber JE, Stenman G (2007) Molecular genetic analyses of the TMPRSS2-ERG and TMPRSS2-ETV1 gene fusions in 50 cases of prostate cancer. Oncol Rep 17:1033–1036

    PubMed  CAS  Google Scholar 

  82. Saramäki OR, Harjula AE, Martikainen PM, Vessella RL, Tammela TL, Visakorpi T (2008) TMPRSS2:ERG fusion identifies a subgroup of prostate cancers with a favorable prognosis. Clin Cancer Res 14:3395–3400

    PubMed  Google Scholar 

  83. Hermans KG, Boormans JL, Gasi D, van Leenders GJ, Jenster G, Verhagen PC, Trapman J (2009) Overexpression of prostate-specific TMPRSS2(exon 0)-ERG fusion transcripts corresponds with favorable prognosis of prostate cancer. Clin Cancer Res 15:6398–6403

    PubMed  CAS  Google Scholar 

  84. Rostad K, Hellwinkel OJ, Haukaas SA, Halvorsen OJ, Øyan AM, Haese A, Budäus L, Albrecht H, Akslen LA, Schlomm T, Kalland KH (2009) TMPRSS2:ERG fusion transcripts in urine from prostate cancer patients correlate with a less favorable prognosis. APMIS 117:575–582

    PubMed  CAS  Google Scholar 

  85. Demichelis F, Fall K, Perner S, Andrén O, Schmidt F, Setlur SR, Hoshida Y, Mosquera JM, Pawitan Y, Lee C, Adami HO, Mucci LA, Kantoff PW, Andersson SO, Chinnaiyan AM, Johansson JE, Rubin MA (2007) TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort. Oncogene 26:4596–4599

    PubMed  CAS  Google Scholar 

  86. Perner S, Demichelis F, Beroukhim R, Schmidt FH, Mosquera JM, Setlur S, Tchinda J, Tomlins SA, Hofer MD, Pienta KG, Kuefer R, Vessella R, Sun XW, Meyerson M, Lee C, Sellers WR, Chinnaiyan AM, Rubin MA (2006) TMPRSS2:ERG fusion-associated deletions provide insight into the heterogeneity of prostate cancer. Cancer Res 66:8337–8341

    PubMed  CAS  Google Scholar 

  87. Gopalan A, Leversha MA, Satagopan JM, Zhou Q, Al-Ahmadie HA, Fine SW, Eastham JA, Scardino PT, Scher HI, Tickoo SK, Reuter VE, Gerald WL (2009) TMPRSS2-ERG gene fusion is not associated with outcome in patients treated by prostatectomy. Cancer Res 69:1400–1406

    PubMed  CAS  Google Scholar 

  88. Wang J, Cai Y, Ren C, Ittmann M (2006) Expression of variant TMPRSS2/ERG fusion messenger RNAs is associated with aggressive prostate cancer. Cancer Res 66:8347–8351

    PubMed  CAS  Google Scholar 

  89. Attard G, Clark J, Ambroisine L, Fisher G, Kovacs G, Flohr P, Berney D, Foster CS, Fletcher A, Gerald WL, Moller H, Reuter V, De Bono JS, Scardino P, Cuzick J, Cooper CS, Transatlantic Prostate Group (2008) Duplication of the fusion of TMPRSS2 to ERG sequences identifies fatal human prostate cancer. Oncogene 27:253–263

    PubMed  CAS  Google Scholar 

  90. Rajput AB, Miller MA, De Luca A, Boyd N, Leung S, Hurtado-Coll A, Fazli L, Jones EC, Palmer JB, Gleave ME, Cox ME, Huntsman DG (2007) Frequency of the TMPRSS2:ERG gene fusion is increased in moderate to poorly differentiated prostate cancers. J Clin Pathol 60:1238–1243

    PubMed  CAS  Google Scholar 

  91. Nam RK, Sugar L, Yang W, Srivastava S, Klotz LH, Yang LY, Stanimirovic A, Encioiu E, Neill M, Loblaw DA, Trachtenberg J, Narod SA, Seth A (2007) Expression of the TMPRSS2:ERG fusion gene predicts cancer recurrence after surgery for localised prostate cancer. Br J Cancer 97:1690–1695

    PubMed  CAS  Google Scholar 

  92. Fine SW, Gopalan A, Leversha MA, Al-Ahmadie HA, Tickoo SK, Zhou Q, Satagopan JM, Scardino PT, Gerald WL, Reuter VE (2010) TMPRSS2-ERG gene fusion is associated with low Gleason scores and not with high-grade morphological features. Mod Pathol 23:1325–1333

    PubMed  Google Scholar 

  93. Yoshimoto M, Joshua AM, Cunha IW, Coudry RA, Fonseca FP, Ludkovski O, Zielenska M, Soares FA, Squire JA (2008) Absence of TMPRSS2:ERG fusions and PTEN losses in prostate cancer is associated with a favorable outcome. Mod Pathol 21:1451–1460

    PubMed  CAS  Google Scholar 

  94. Bonaccorsi L, Nesi G, Nuti F, Paglierani M, Krausz C, Masieri L, Serni S, Proietti-Pannunzi L, Fang Y, Jhanwar SC, Orlando C, Carini M, Forti G, Baldi E, Luzzatto L (2009) Persistence of expression of the TMPRSS2:ERG fusion gene after pre-surgery androgen ablation may be associated with early prostate specific antigen relapse of prostate cancer: preliminary results. J Endocrinol Invest 32:590–596

    PubMed  CAS  Google Scholar 

  95. Lapointe J, Li C, Giacomini CP, Salari K, Huang S, Wang P, Ferrari M, Hernandez-Boussard T, Brooks JD, Pollack JR (2007) Genomic profiling reveals alternative genetic pathways of prostate tumorigenesis. Cancer Res 67:8504–8510

    PubMed  CAS  Google Scholar 

  96. Tu JJ, Rohan S, Kao J, Kitabayashi N, Mathew S, Chen YT (2007) Gene fusions between TMPRSS2 and ETS family genes in prostate cancer: frequency and transcript variant analysis by RT-PCR and FISH on paraffin-embedded tissues. Mod Pathol 20:921–928

    PubMed  CAS  Google Scholar 

  97. Furusato B, Gao CL, Ravindranath L, Chen Y, Cullen J, McLeod DG, Dobi A, Srivastava S, Petrovics G, Sesterhenn IA (2008) Mapping of TMPRSS2-ERG fusions in the context of multi-focal prostate cancer. Mod Pathol 21:67–75

    PubMed  CAS  Google Scholar 

  98. Yoshimoto M, Joshua AM, Chilton-Macneill S, Bayani J, Selvarajah S, Evans AJ, Zielenska M, Squire JA (2006) Three-color FISH analysis of TMPRSS2/ERG fusions in prostate cancer indicates that genomic microdeletion of chromosome 21 is associated with rearrangement. Neoplasia 8:465–469

    PubMed  CAS  Google Scholar 

  99. King JC, Xu J, Wongvipat J, Hieronymus H, Carver BS, Leung DH, Taylor BS, Sander C, Cardiff RD, Couto SS, Gerald WL, Sawyers CL (2009) Cooperativity of TMPRSS2-ERG with PI3-kinase pathway activation in prostate oncogenesis. Nat Genet 41:524–526

    PubMed  CAS  Google Scholar 

  100. Carver BS, Tran J, Gopalan A, Chen Z, Shaikh S, Carracedo A, Alimonti A, Nardella C, Varmeh S, Scardino PT, Cordon-Cardo C, Gerald W, Pandolfi PP (2009) Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat Genet 41:619–624

    PubMed  CAS  Google Scholar 

  101. Iljin K, Wolf M, Edgren H, Gupta S, Kilpinen S, Skotheim RI, Peltola M, Smit F, Verhaegh G, Schalken J, Nees M, Kallioniemi O (2006) TMPRSS2 fusions with oncogenic ETS factors in prostate cancer involve unbalanced genomic rearrangements and are associated with HDAC1 and epigenetic reprogramming. Cancer Res 66:10242–10246

    PubMed  CAS  Google Scholar 

  102. Attard G, Clark J, Ambroisine L, Mills IG, Fisher G, Flohr P, Reid A, Edwards S, Kovacs G, Berney D, Foster C, Massie CE, Fletcher A, De Bono JS, Scardino P, Cuzick J, Cooper CS (2008) Heterogeneity and clinical significance of ETV1 translocations in human prostate cancer. Br J Cancer 99:314–320

    PubMed  CAS  Google Scholar 

  103. Park K, Tomlins SA, Mudaliar KM, Chiu YL, Esgueva R, Mehra R, Suleman K, Varambally S, Brenner JC, MacDonald T, Srivastava A, Tewari AK, Sathyanarayana U, Nagy D, Pestano G, Kunju LP, Demichelis F, Chinnaiyan AM, Rubin MA (2010) Antibody-based detection of ERG rearrangement-positive prostate cancer. Neoplasia 12:590–598

    PubMed  CAS  Google Scholar 

  104. Tomlins SA, Rhodes DR, Yu J, Varambally S, Mehra R, Perner S, Demichelis F, Helgeson BE, Laxman B, Morris DS, Cao Q, Cao X, Andrén O, Fall K, Johnson L, Wei JT, Shah RB, Al-Ahmadie H, Eastham JA, Eggener SE, Fine SW, Hotakainen K, Stenman UH, Tsodikov A, Gerald WL, Lilja H, Reuter VE, Kantoff PW, Scardino PT, Rubin MA, Bjartell AS, Chinnaiyan AM (2008) The role of SPINK1 in ETS rearrangement-negative prostate cancers. Cancer Cell 13:519–528

    PubMed  CAS  Google Scholar 

  105. Shan L, Ambroisine L, Clark J, Yáñez-Muñoz RJ, Fisher G, Kudahetti SC, Yang J, Kia S, Mao X, Fletcher A, Flohr P, Edwards S, Attard G, De-Bono J, Young BD, Foster CS, Reuter V, Moller H, Oliver TD, Berney DM, Scardino P, Cuzick J, Cooper CS, Lu YJ, Transatlantic Prostate Group (2010) The identification of chromosomal translocation, t(4;6)(q22;q15), in prostate cancer. Prostate Cancer Prostatic Dis 13:117–125

    PubMed  CAS  Google Scholar 

  106. Lane TM, Strefford JC, Yáñez-Muñoz RJ, Purkis P, Forsythe E, Nia T, Hines J, Lu YJ, Oliver RT (2007) Identification of a recurrent t(4;6) chromosomal translocation in prostate cancer. J Urol 177:1907–1912

    PubMed  CAS  Google Scholar 

  107. Carew JS, Huang P (2002) Mitochondrial defects in cancer. Mol Cancer 1:9

    PubMed  Google Scholar 

  108. Parr RL, Dakubo GD, Crandall KA, Maki J, Reguly B, Aguirre A, Wittock R, Robinson K, Alexander JS, Birch-Machin MA, Abdel-Malak M, Froberg MK, Diamandis EP, Thayer RE (2006) Somatic mitochondrial DNA mutations in prostate cancer and normal appearing adjacent glands in comparison to age-matched prostate samples without malignant histology. J Mol Diagn 8:312–319

    PubMed  CAS  Google Scholar 

  109. Takahashi E, Hori T, O’Connell P, Leppert M, White R (1991) Mapping of the MYC gene to band 8q24.12–q24.13 by R-banding and distal to fra(8)(q24.11), FRA8E, by fluorescence in situ hybridization. Cytogenet Cell Genet 57:109–111

    PubMed  CAS  Google Scholar 

  110. Vita M, Henriksson M (2006) The Myc oncoprotein as a therapeutic target for human cancer. Semin Cancer Biol 16:318–330

    PubMed  CAS  Google Scholar 

  111. Fleming WH, Hamel A, MacDonald R, Ramsey E, Pettigrew NM, Johnston B, Dodd JG, Matusik RJ (1986) Expression of the c-myc protooncogene in human prostatic carcinoma and benign prostatic hyperplasia. Cancer Res 46:1535–1538

    PubMed  CAS  Google Scholar 

  112. Jenkins RB, Qian J, Lieber MM, Bostwick DG (1997) Detection of c-myc oncogene amplification and chromosomal anomalies in metastatic prostatic carcinoma by fluorescence in situ hybridization. Cancer Res 57:524–531

    PubMed  CAS  Google Scholar 

  113. Bubendorf L, Kononen J, Koivisto P, Schraml P, Moch H, Gasser TC, Willi N, Mihatsch MJ, Sauter G, Kallioniemi OP (1999) Survey of gene amplifications during prostate cancer progression by high-throughout fluorescence in situ hybridization on tissue microarrays. Cancer Res 59:803–806

    PubMed  CAS  Google Scholar 

  114. Sato H, Minei S, Hachiya T, Yoshida T, Takimoto Y (2006) Fluorescence in situ hybridization analysis of c-myc amplification in stage TNM prostate cancer in Japanese patients. Int J Urol 13:761–766

    PubMed  CAS  Google Scholar 

  115. Hawksworth D, Ravindranath L, Chen Y, Furusato B, Sesterhenn IA, McLeod DG, Srivastava S, Petrovics G (2010) Overexpression of C-MYC oncogene in prostate cancer predicts biochemical recurrence. Prostate Cancer Prostatic Dis 13:311–315

    PubMed  CAS  Google Scholar 

  116. Chaib H, Cockrell EK, Rubin MA, Macoska JA (2001) Profiling and verification of gene expression patterns in normal and malignant human prostate tissues by cDNA microarray analysis. Neoplasia 3:43–52

    PubMed  CAS  Google Scholar 

  117. Sun C, Dobi A, Mohamed A, Li H, Thangapazham RL, Furusato B, Shaheduzzaman S, Tan SH, Vaidyanathan G, Whitman E, Hawksworth DJ, Chen Y, Nau M, Patel V, Vahey M, Gutkind JS, Sreenath T, Petrovics G, Sesterhenn IA, McLeod DG, Srivastava S (2008) TMPRSS2-ERG fusion, a common genomic alteration in prostate cancer activates C-MYC and abrogates prostate epithelial differentiation. Oncogene 27:5348–5353

    PubMed  CAS  Google Scholar 

  118. Reed JC (1997) Double identity for proteins of the Bcl-2 family. Nature 387:773–776

    PubMed  CAS  Google Scholar 

  119. Lindsay J, Esposti MD, Gilmore AP (2011) Bcl-2 proteins and mitochondria-specificity in membrane targeting for death. Biochim Biophys Acta 1813(4):532–539

    PubMed  CAS  Google Scholar 

  120. Reed JC (1994) Bcl-2 and the regulation of programmed cell death. J Cell Biol 124:1–6

    PubMed  CAS  Google Scholar 

  121. McDonnell TJ, Troncoso P, Brisbay SM, Logothetis C, Chung LW, Hsieh JT, Tu SM, Campbell ML (1992) Expression of the protooncogene Bcl-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res 52:6940–6944

    PubMed  CAS  Google Scholar 

  122. Concato J, Jain D, Uchio E, Risch H, Li WW, Wells CK (2009) Molecular markers and death from prostate cancer. Ann Intern Med 150:595–603

    PubMed  Google Scholar 

  123. Bubendorf L, Sauter G, Moch H, Jordan P, Blöchlinger A, Gasser TC, Mihatsch MJ (1996) Prognostic significance of Bcl-2 in clinically localized prostate cancer. Am J Pathol 148:1557–1565

    PubMed  CAS  Google Scholar 

  124. Colombel M, Symmans F, Gil S, O’Toole KM, Chopin D, Benson M, Olsson CA, Korsmeyer S, Buttyan R (1993) Detection of the apoptosis-suppressing oncoprotein Bc1-2 in hormone-refractory human prostate cancers. Am J Pathol 143:390–400

    PubMed  CAS  Google Scholar 

  125. Grauer LS, Finlay JA, Mikolajczyk SD, Pusateri KD, Wolfert RL (1998) Detection of human glandular kallikrein, hK2, as its precursor form and in complex with protease inhibitors in prostate carcinomaserum. J Androl 19:407–411

    PubMed  CAS  Google Scholar 

  126. Piironen T, Lovgren J, Karp M, Eerola R, Lundwall A, Dowell B, Lövgren T, Lilja H, Pettersson K (1996) Immunofluorometric assay for sensitive and specific measurement of human prostatic glandular kallikrein (hK2) in serum. Clin Chem 42:1034–1041

    PubMed  CAS  Google Scholar 

  127. Becker C, Piironen T, Kiviniemi J, Lilja H, Pettersson K (2000) Sensitive and specific immunodetection of human glandular kallikrein 2 in serum. Clin Chem 46:198–206

    PubMed  CAS  Google Scholar 

  128. Schedlich LJ, Bennetts BH, Morris BJ (1987) Primary structure of a human glandular kallikrein gene. DNA 6:429–437

    PubMed  CAS  Google Scholar 

  129. Lovgren J, Airas K, Lilja H (1999) Enzymatic action of human glandular kallikrein 2 (hK2). Substrate specificity and regulation by Zn2_ and extracellular protease inhibitors. Eur J Biochem 262:781–789

    PubMed  CAS  Google Scholar 

  130. Lovgren J, Rajakoski K, Karp M, Lundwall A, Lilja H (1997) Activation of the zymogen form of prostate-specific antigen by human glandular kallikrein 2. Biochem Biophys Res Commun 238:549–555

    PubMed  CAS  Google Scholar 

  131. Darson MF, Pacelli A, Roche P, Rittenhouse HG, Wolfert RL, Young CY, Klee GG, Tindall DJ, Bostwick DG (1997) Human glandular kallikrein 2 (hK2) expression in prostatic intraepithelial neoplasia and adenocarcinoma: a novel prostate cancer marker. Urology 49:857–862

    PubMed  CAS  Google Scholar 

  132. Darson MF, Pacelli A, Roche P, Rittenhouse HG, Wolfert RL, Saeid MS, Klee GG, Tindall DJ, Bostwick DG (1999) Human glandular kallikrein 2 expression in prostate adenocarcinoma and lymph node metastases. Urology 53:939–944

    PubMed  CAS  Google Scholar 

  133. Frenette G, Deperthes D, Tremblay RR, Lazure C, Dube JY (1997) Purification of enzymatically active kallikrein hK2 from human seminal plasma. Biochim Biophys Acta 1334:109–115

    PubMed  CAS  Google Scholar 

  134. Heeb MJ, Espana F (1998) β2-Macroglobulin and C1-inactivator are plasma inhibitors of human glandular kallikrein. Blood Cells Mol Dis 24:412–419

    PubMed  CAS  Google Scholar 

  135. Mikolajczyk SD, Millar LS, Kumar A, Saedi MS (1999) Prostatic human kallikrein 2 inactivates and complexes with plasminogen activator inhibitor-1. Int J Cancer 81:438–442

    PubMed  CAS  Google Scholar 

  136. Deperthes D, Chapdelaine P, Tremblay RR, Brunet C, Berton J, Hebert J, Lazure C, Dubé JY (1995) Isolation of prostatic kallikrein hK2, also known as hGK-1, in human seminal plasma. Biochem Biophys Acta 1245:311–316

    PubMed  Google Scholar 

  137. Black MH, Magklara A, Obiezu CV, Melegos DN, Diamandis EP (1999) Development of an ultrasensitive immunoassay for human glandular kallikrein with no cross-reactivity from prostate-specific antigen. Clin Chem 45:790–799

    PubMed  CAS  Google Scholar 

  138. Saedi MS, Hill TM, Kuus-Reichel K, Kumar A, Payne J, Mikolajczyk SD, Wolfert RL, Rittenhouse HG (1998) The precursor form of the human kallikrein 2, a kallikrein homologous to prostate-specific antigen, is present in human sera and is increased in prostate cancer and benign prostatic hyperplasia. Clin Chem 44:2115–2119

    PubMed  CAS  Google Scholar 

  139. Vaisanen V, Eriksson S, Ivaska KK, Lilja H, Nurmi M, Pettersson K (2004) Development of sensitive immunoassays for free and total human glandular kallikrein 2. Clin Chem 50:91607–91617

    Google Scholar 

  140. Finlay JA, Evans CL, Day JR, Payne JK, Mikolajczyk SD, Millar LS, Kuus-Reichel K, Wolfert RL, Rittenhouse HG (1998) Development of monoclonal antibodies specific for human glandular kallikrein (hK2): development of a dual antibody immunoassay for hK2 with negligible prostate-specific antigen crossreactivity. Urology 51:804–809

    PubMed  CAS  Google Scholar 

  141. Finlay JA, Day JR, Evans CL, Carlson R, Kuus-Reichel K, Millar LS, Mikolajczyk SD, Goodmanson M, Klee GG, Rittenhouse HG (2001) Development of a dual monoclonal antibody immunoassay for total human kallikrein 2. Clin Chem 47:1218–1224

    PubMed  CAS  Google Scholar 

  142. Klee GG, Goodmanson MK, Jacobsen SJ, Young CY, Finlay JA, Rittenhouse HG, Wolfert RL, Tindall DJ (1999) Highly sensitive automated chemiluminometric assay for measuring free human glandular kallikrein-2. Clin Chem 45:800–806

    PubMed  CAS  Google Scholar 

  143. Kwiatkowski MK, Recker F, Piironen T, Pettersson K, Otto T, Wernli M, Tscholl R (1998) In prostatism patients the ratio of human glandular kallikrein to free PSA improves the discrimination between prostate cancer and benign hyperplasia within the diagnostic “gray zone” of total PSA 4 to 10 ng/mL. Urology 52:360–365

    PubMed  CAS  Google Scholar 

  144. Magklara A, Scorilas A, Catalona WJ, Diamandis EP (1999) The combination of human glandular kallikrein and free prostate-specific antigen (PSA) enhances discrimination between prostate cancer and benign prostatic hyperplasia in patients with moderately increased total PSA. Clin Chem 45:1956–1960

    Google Scholar 

  145. Partin AW, Catalona WJ, Finlay JA, Darte C, Tindall DJ, Young CY, Klee GG, Chan DW, Rittenhouse HG, Wolfert RL, Woodrum D (1999) Use of human glandular kallikrein 2 for the detection of prostate cancer: preliminary analysis. Urology 54:839–845

    PubMed  CAS  Google Scholar 

  146. Stephan C, Jung K, Soosaipillai A, Yousef GM, Cammann H, Meyer H, Xu C, Diamandis EP (2005) Clinical utility of human glandular kallikrein 2 within a neural network for prostate cancer detection. BJU Int 96:521–527

    PubMed  CAS  Google Scholar 

  147. Bangma CH, Wildhagen MF, Yurdakul G, Schroder FH, Blijenberg BG (2004) The value of (7, 5) pro-prostate-specific antigen and human kallikrein-2 as serum markers for grading prostate cancer. BJU Int 93:720–724

    PubMed  CAS  Google Scholar 

  148. Becker C, Piironen T, Pettersson K, Björk T, Wojno KJ, Oesterling JE, Lilja H (2000) Discrimination of men with prostate cancer from those with benign disease by measurements of human glandular kallikrein 2 (HK2) in serum. J Urol 163:311–316

    PubMed  CAS  Google Scholar 

  149. Becker C, Piironen T, Pettersson K, Hugosson J, Lilja H (2000) Clinical value of human glandular kallikrein 2 and free and total prostate-specific antigen in serum from a population of men with prostate-specific antigen levels 3.0 ng/mL or greater. Urology 55:694–699

    PubMed  CAS  Google Scholar 

  150. Nam RK, Diamandis EP, Toi A, Trachtenberg J, Magklara A, Scorilas A, Papnastasiou PA, Jewett MA, Narod SA (2000) Serum human glandular kallikrein-2 protease levels predict the presence of prostate cancer among men with elevated prostate-specific antigen. J Clin Oncol 18:1036–1042

    PubMed  CAS  Google Scholar 

  151. Recker F, Kwiatkowski MK, Piironen T, Pettersson K, Lümmen G, Wernli M, Wiefelspütz J, Graber SF, Goepel M, Huber A, Tscholl R (1998) The importance of human glandular kallikrein and its correlation with different prostate specific antigen serum forms in the detection of prostate carcinoma. Cancer 83:2540–2547

    PubMed  CAS  Google Scholar 

  152. Scorilas A, Plebani M, Mazza S, Basso D, Soosaipillai AR, Katsaros N, Pagano F, Diamandis EP (2003) Serum human glandular kallikrein (hK2) and insulin-like growth factor 1 (IGF-1) improve the discrimination between prostate cancer and benign prostatic hyperplasia in combination with total and %free PSA. Prostate 54:220–229

    PubMed  CAS  Google Scholar 

  153. Steuber T, Vickers A, Haese A, Kattan MW, Eastham JA, Scardino PT, Huland H, Lilja H (2007) Free PSA isoforms and intact and cleaved forms of urokinase plasminogen activator receptor in serum improve selection of patients for prostate cancer biopsy. Int J Cancer 120:1499–1504

    PubMed  CAS  Google Scholar 

  154. Vickers AJ, Ulmert D, Serio AM, Björk T, Scardino PT, Eastham JA, Berglund G, Lilja H (2007) The predictive value of prostate cancer biomarkers depends on age and time to diagnosis: towards a biologically-based screening strategy. Int J Cancer 121:2212–2217

    PubMed  CAS  Google Scholar 

  155. Haese A, Becker C, Noldus J, Graefen M, Huland E, Huland H, Lilja H (2000) Human glandular kallikrein 2: a potential serum marker for predicting the organ confined versus non-organ confined growth of prostate cancer. J Urol 163:1491–1497

    PubMed  CAS  Google Scholar 

  156. Haese A, Graefen M, Becker C, Noldus J, Katz J, Cagiannos I, Kattan M, Scardino PT, Huland E, Huland H, Lilja H (2003) The role of human glandular kallikrein 2 for prediction of pathologically organ confined prostate cancer. Prostate 54:181–186

    PubMed  CAS  Google Scholar 

  157. Haese A, Graefen M, Steuber T, Becker C, Pettersson K, Piironen T, Noldus J, Huland H, Lilja H (2001) Human glandular kallikrein 2 levels in serum for discrimination of pathologically organ-confined from locally-advanced prostate cancer in total PSA-levels below 10 ng/ml. Prostate 49:101–109

    PubMed  CAS  Google Scholar 

  158. Recker F, Kwiatkowski MK, Piironen T, Pettersson K, Huber A, Lümmen G, Tscholl R (2000) Human glandular kallikrein as a tool to improve discrimination of poorly differentiated and non-organ-confined prostate cancer compared with prostate-specific antigen. Urology 55:481–485

    PubMed  CAS  Google Scholar 

  159. Steuber T, Vickers AJ, Serio AM, Vaisanen V, Haese A, Pettersson K, Eastham JA, Scardino PT, Huland H, Lilja H (2007) Comparison of free and total forms of serum human kallikrein 2 and prostate specific antigen for prediction of locally advanced and recurrent prostate cancer. Clin Chem 53:233–240

    PubMed  CAS  Google Scholar 

  160. Stephan C, Jung K, Nakamura T, Yousef GM, Kristiansen G, Diamandis EP (2006) Serum human glandular kallikrein 2 (hK2) for distinguishing stage and grade of prostate cancer. Int J Urol 13:238–243

    PubMed  CAS  Google Scholar 

  161. Vaisanen V, Pettersson K, Alanen K, Viitanen T, Nurmi M (2006) Free and total human glandular kallikrein 2 in patients with prostate cancer. Urology 68:219–225

    PubMed  Google Scholar 

  162. Chapman HA, Wei Y (2001) Protease crosstalk with integrins: the urokinase receptor paradigm. Thromb Haemost 86:124–129

    PubMed  CAS  Google Scholar 

  163. Croucher D, Saunders DN, Ranson M (2006) The urokinase/PAI-2 complex: a new high affinity ligand for the endocytosis receptor low-density lipoprotein receptor-related protein. J Biol Chem 281:10206–10213

    PubMed  CAS  Google Scholar 

  164. Rao JS (2003) Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer 3:489–501

    PubMed  CAS  Google Scholar 

  165. Ma Z, Webb DJ, Fo M, Gonias SL (2001) Endogenously produced urokinase-type plasminogen activator is a major determinant of the basal level of activated ERK/MAK kinase and prevents apoptosis in MDA-MB-231 breast cancer cells. J Cell Sci 114:3387–3396

    PubMed  CAS  Google Scholar 

  166. Aguirre-Ghiso JA, Estrada Y, Liu D, Ossowski L (2003) ERK (MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38 (SAPK). Cancer Res 63:1684–1695

    PubMed  CAS  Google Scholar 

  167. Margheri F, D’Alessio S, Serrati S, Pucci M, Annunziato F, Cosmi L, Liotta F, Angeli R, Angelucci A, Gravina GL, Rucci N, Bologna M, Teti A, Monia B, Fibbi G, Del Rosso M (2005) Effects of blocking urokinase receptor signaling by antisense oligonucleotides in a mouse model of experimental prostate cancer bone metastases. Gene Ther 12(8):702–714

    PubMed  CAS  Google Scholar 

  168. Wilhelm OG, Wilhelm S, Escott GM, Lutz V, Magdolen V, Schmitt M, Rifkin DB, Wilson EL, Graeff H, Brunner G (1999) Cellular glycosylphosphatidylinositol-specific phospholipase D regulates urokinase receptor shedding and cell surface expression. J Cell Physiol 180:225–235

    PubMed  CAS  Google Scholar 

  169. Beaufort N, Leduc D, Rousselle JC, Magdolen V, Luther T, Namane A, Magdolen V, Luther T, Namane A, Chignard M, Pidard D (2004) Proteolytic regulation of the urokinase receptor/CD87 on monocytic cells by neutrophil elastase and cathepsin G. J Immunol 172:540–549

    PubMed  CAS  Google Scholar 

  170. Piironen T, Laursen B, Pass J, List K, Gardsvoll H, Ploug M, Danø K, Høyer-Hansen G (2004) Specific immunoassays for detection of intact and cleaved forms of the urokinase receptor. Clin Chem 50:2059–2068

    PubMed  CAS  Google Scholar 

  171. Piironen T, Haese A, Huland H, Steuber T, Christensen IJ, Brunner N, Danø K, Høyer-Hansen G, Lilja H (2006) Enhanced discrimination of benign from malignant prostatic disease by selective measurements of cleaved forms of urokinase receptor in serum. Clin Chem 52:838–844

    PubMed  CAS  Google Scholar 

  172. Miyake H, Hara I, Yamanaka K, Arakawa S, Kamidono S (1999) Elevation of urokinase-type plasminogen activator and its receptor densities as new predictors of disease progression and prognosis in men with prostate cancer. Int J Oncol 14:535–541

    PubMed  CAS  Google Scholar 

  173. Pulukuri SM, Estes N, Patel J, Rao JS (2007) Demethylation-linked activation of urokinase plasminogen activator is involved in progression of prostate cancer. Cancer Res 67:930–939

    PubMed  CAS  Google Scholar 

  174. Van Veldhuizen PJ, Sadasivan R, Cherian R, Wyatt A (1996) Urokinasetype plasminogen activator expression in human prostate carcinomas. Am J Med Sci 312:8–11

    PubMed  Google Scholar 

  175. Gavrilov D, Kenzior O, Evans M, Calaluce R, Folk WR (2001) Expression of urokinase plasminogen activator and receptor in conjunction with the ETS family and AP-1 complex transcription factors in high grade prostate cancers. Eur J Cancer 37:1033–1040

    PubMed  CAS  Google Scholar 

  176. Linja MJ, Savinainen KJ, Saramaki OR, Tammela TLJ, Vessella T, Visakorpi T (2001) Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res 61:3550–3555

    PubMed  CAS  Google Scholar 

  177. Cozzi PJ, Wang J, Delprado W, Madigan MC, Fairy S, Russell PJ, Li Y (2006) Evaluation of urokinase plasminogen activator and its receptor in different grades of human prostate cancer. Hum Pathol 37(11):1442–1451

    PubMed  CAS  Google Scholar 

  178. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev 2(3):161–174

    CAS  Google Scholar 

  179. Quax PH, de Bart AC, Schalken JA, Verheijen JH (1997) Plasminogen activator and matrix metalloproteinase production and extracellular matrix degradation by rat prostate cancer cells in vitro: correlation with metastatic behavior in vivo. Prostate 32(3):196–204

    PubMed  CAS  Google Scholar 

  180. Rabbani SA (1998) Metalloproteases and urokinase in angiogenesis and tumor progression. In Vivo 12:135–142

    PubMed  CAS  Google Scholar 

  181. Festuccia C, Giunciuglio D, Guerra F, Villanova I, Angelucci A, Manduca P, Teti A, Albini A, Bologna M (1999) Osteoblasts modulate secretion of urokinasetype plasminogen activator (uPA) and matrix metalloproteinase-9 (MMP-9) in human prostate cancer cells promoting migration and matrigel invasion. Oncol Res 11:17–31

    PubMed  CAS  Google Scholar 

  182. Skogseth H, Larsson E, Halgunset J (2005) Inhibitors of tyrosine kinase inhibit the production of urokinase plasminogen activator in human prostatic cancer cells. APMIS 113:332–339

    PubMed  CAS  Google Scholar 

  183. Skogseth H, Larsson E, Halgunset J (2006) The invasive behaviour of prostatic cancer cells is suppressed by inhibitors of tyrosinekinase. APMIS 114:61–66

    PubMed  CAS  Google Scholar 

  184. Skogseth H, Larsson E, Halgunset J (2006) Urokinase plasminogen activator receptor (uPAR) expression is reduced by tyrosinekinase inhibitors. APMIS 114:307–313

    PubMed  CAS  Google Scholar 

  185. Skogseth H, Larsson E, Halgunset J (2006) Transcription levels of invasion-related genes in prostate cancer cells are modified by inhibitors of tyrosine kinase. APMIS 114:364–371

    PubMed  Google Scholar 

  186. Li Y, Rizvi SM, Ranson M, Allen BJ (2002) 213Bi-PAI2 conjugate selectively induces apoptosis in PC3 metastatic prostate cancer cell line and shows anti-cancer activity in a xenograft animal model. Br J Cancer 86:1197–1203

    PubMed  CAS  Google Scholar 

  187. Li Y, Abbas Rizvi SM, Blair nee Brown JM, Cozzi PJ, Qu CF, Ow KT, Tam PN, Perkins AC, Russell PJ, Allen BJ (2004) Antigenic expression of human metastatic prostate cancer cell lines for in vitro multiple-targeted alpha-therapy with 213Bi-conjugates. Int J Radiat Oncol Biol Phys 60:896–908

    PubMed  CAS  Google Scholar 

  188. Wang J, Abbas Rizvi SM, Madigan MC, Cozzi PJ, Power CA, Qu CF, Morgenstern A, Apostolidis C, Russell PJ, Allen BJ, Li Y (2006) Control of prostate cancer spheroid growth using 213Bi-labeled multiple targeted alpha radioimmunoconjugates. Prostate 66:1753–1767

    PubMed  CAS  Google Scholar 

  189. Pulukuri SM, Gondi CS, Lakka SS, Jutla A, Estes N, Gujrati M, Rao J (2005) RNA interference-directed knockdown of urokinase plasminogen activator and urokinase plasminogen activator receptor inhibits prostate cancer cell invasion, survival, and tumorigenicity in vivo. J Biol Chem 280:36529–36540

    PubMed  CAS  Google Scholar 

  190. Josephy PD (2010) Genetic variations in human glutathione transferase enzymes: significance for pharmacology and toxicology. Hum Genomics Proteomics 2010:876940

    PubMed  Google Scholar 

  191. Armstrong RN (1997) Structure, catalytic mechanism, and evolution of the glutathione transferases. Chem Res Toxicol 10:2–18

    PubMed  CAS  Google Scholar 

  192. Villafania A, Anwar K, Amar S, Chie L, Way D, Chung DL, Adler V, Ronai Z, Brandt-Rauf PW, Yamaizumii Z, Kung HF, Pincus MR (2000) Glutathione-S-Transferase as a selective inhibitor of oncogenic ras-p21-induced mitogenic signaling through blockade of activation of jun by jun-N-terminal kinase. Ann Clin Lab Sci 30:57–64

    PubMed  CAS  Google Scholar 

  193. Zöchbauer-Müller S, Fong KM, Virmani AK, Geradts J, Gazdar AF, Minna JD (2001) Aberrant promoter methylation of multiple genes in non-small cell lung cancers. Cancer Res 61:249–255

    PubMed  Google Scholar 

  194. He Y, Zhou GQ, Li X, Dong XJ, Chai XQ, Yao KT (2009) Correlation of polymorphism of the coding region of glutathione S-transferase M1 to susceptibility of nasopharyngeal carcinoma in South China population. Ai Zheng 28:5–7

    PubMed  Google Scholar 

  195. Stephen JK, Chen KM, Raitanen M, Grénman S, Worsham MJ (2009) DNA hypermethylation profiles in squamous cell carcinoma of the vulva. Int J Gynecol Pathol 28:63–75

    PubMed  Google Scholar 

  196. Lee WH, Isaacs WB, Bova GS, Nelson WG (1997) CG island methylation changes near the GSTP1 gene in prostatic carcinoma cells detected using the polymerase chain reaction: a new prostate cancer biomarker. Cancer Epidemiol Biomarkers Prev 6:443–450

    PubMed  CAS  Google Scholar 

  197. Goessl C, Müller M, Miller K (2000) Methylation-specific PCR (MSP) for detection of tumour DNA in the blood plasma and serum of patients with prostate cancer. Prostate Cancer Prostatic Dis 3:S17

    PubMed  Google Scholar 

  198. Herman JG, Graff JR, Myöhänen S, Nelkin BD, Baylin SB (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A 93:9821–9826

    PubMed  CAS  Google Scholar 

  199. Esteller M, Corn PG, Urena JM, Gabrielson E, Baylin SB, Herman JG (1998) Inactivation of glutathione S-transferase P1 gene by promoter hypermethylation in human neoplasia. Cancer Res 58:4515–4518

    PubMed  CAS  Google Scholar 

  200. Cairns P, Esteller M, Herman JG, Schoenberg M, Jeronimo C, Sanchez-Cespedes M, Chow NH, Grasso M, Wu L, Westra WB, Sidransky D (2001) Molecular detection of prostate cancer in urine by GSTP1 hypermethylation. Clin Cancer Res 7:2727–2730

    PubMed  CAS  Google Scholar 

  201. Schmitz W, Fingerhut R, Conzelmann E (1994) Purification and properties of an alpha-methylacyl-CoA racemase from rat liver. Eur J Biochem 222:313–323

    PubMed  CAS  Google Scholar 

  202. Schmitz W, Albers C, Fingerhut R, Conzelmann E (1995) Purification and characterization of an alpha-methylacyl-CoA racemase from human liver. Eur J Biochem 231:815–822

    PubMed  CAS  Google Scholar 

  203. Ferdinandusse S, Denis S, IJ Ist L, Dacremont G, Waterham HR, Wanders RJ (2000) Subcellular localization and physiological role of alpha-methylacyl-CoA racemase. J Lipid Res 41:1890–1896

    PubMed  CAS  Google Scholar 

  204. Jiang Z, Woda BA, Rock KL, Xu Y, Savas L, Khan A, Pihan G, Cai F, Babcook JS, Rathanaswami P, Reed SG, Xu J, Fanger GR (2001) P504S: a new molecular marker for the detection of prostate carcinoma. Am J Surg Pathol 25:1397–1404

    PubMed  CAS  Google Scholar 

  205. Luo J, Zha S, Gage WR, Dunn TA, Hicks JL, Bennett CJ, Ewing CM, Platz EA, Ferdinandusse S, Wanders RJ, Trent JM, Isaacs WB, De Marzo AM (2002) Alpha-methylacyl-CoA racemase: a new molecular marker for prostate cancer. Cancer Res 62:2220–2226

    PubMed  CAS  Google Scholar 

  206. Rubin MA, Zhou M, Dhanasekaran SM, Varambally S, Barrette TR, Sanda MG, Pienta KJ, Ghosh D, Chinnaiyan AM (2002) Alpha-Methylacyl coenzyme A racemase as a tissue biomarker for prostate cancer. JAMA 287:1662–1670

    PubMed  CAS  Google Scholar 

  207. Olgac S, Hutchinson B, Tickoo SK, Reuter VE (2006) Alpha-methylacyl-CoA racemase as a marker in the differential diagnosis of metanephric adenoma. Mod Pathol 19:218–224

    PubMed  CAS  Google Scholar 

  208. Higgins JP, Shinghal R, Gill H, Reese JH, Terris M, Cohen RJ, Fero M, Pollack JR, van de Rijn M, Brooks JD (2003) Gene expression patterns in renal cell carcinoma assessed by complementary DNA microarray. Am J Pathol 162:925–932

    PubMed  CAS  Google Scholar 

  209. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    PubMed  CAS  Google Scholar 

  210. Xie X, Lu J, Kulbokas EJ, Golub TR, Mootha V, Lindblad-Toh K, Lander ES, Kellis M (2005) Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 434:338–345

    PubMed  CAS  Google Scholar 

  211. Shyu AB, Wilkinson MF, van Hoof A (2008) Messenger RNA regulation: to translate or to degrade. EMBO J 27:471–481

    PubMed  CAS  Google Scholar 

  212. Vrba L, Jensen TJ, Garbe JC, Heimark RL, Cress AE, Dickinson S, Stampfer MR, Futscher BW (2010) Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells. PLoS One 5:e8697

    PubMed  Google Scholar 

  213. Li T, Li D, Sha J, Sun P, Huang Y (2009) MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem Biophys Res Commun 383:280–285

    PubMed  CAS  Google Scholar 

  214. Sun R, Fu X, Li Y, Xie Y, Mao Y (2009) Global gene expression analysis reveals reduced abundance of putative microRNA targets in human prostate tumours. BMC Genomics 10:93

    PubMed  Google Scholar 

  215. Saini S, Majid S, Yamamura S, Tabatabai ZL, Suh SO, Shahryari V, Chen Y, Deng G, Tanaka Y, Dahiya R (2011) Regulatory role of miR-203 in prostate cancer progression and metastasis. Clin Cancer Res 17:5287–5298

    PubMed  CAS  Google Scholar 

  216. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    PubMed  CAS  Google Scholar 

  217. Synder M, Du J, Gerstein M (2010) Personal genome sequencing: current approaches and challenges. Genes Dev 24:423–431

    Google Scholar 

  218. Bachert C, Fimmel C, Linstedt A (2007) Endosomal trafficking and proprotein convertase cleavage of cis Golgi protein GP73 produces marker for hepatocellular carcinoma. Traffic 8:1415–1423

    PubMed  CAS  Google Scholar 

  219. Kladney RD, Cui X, Bulla GA, Brunt EM, Fimmel CJ (2002) Expression of GP73, a resident Golgi membrane protein, in viral and nonviral liver disease. Hepatology 35:1431–1440

    PubMed  CAS  Google Scholar 

  220. Iftikhar R, Kladney RD, Havlioglu N, Schmitt-Graff A, Gusmirovic I, Solomon H, Luxon BA, Bacon BR, Fimmel CJ (2004) Disease- and cell-specific expression of GP73 in human liver disease. Am J Gastroenterol 99:1087–1095

    PubMed  CAS  Google Scholar 

  221. Marrero JA, Romano PR, Nikolaeva O, Steel L, Mehta A, Fimmel CJ, Comunale MA, D’Amelio A, Lok AS, Block TM (2005) GP73, a resident Golgi glycoprotein, is a novel serum marker for hepatocellular carcinoma. J Hepatol 43:1007–1012

    PubMed  CAS  Google Scholar 

  222. Laxman B, Morris DS, Yu J, Siddiqui J, Cao J, Mehra R, Lonigro RJ, Tsodikov A, Wei JT, Tomlins SA, Chinnaiyan AM (2008) A first-generation multiplex biomarker analysis of urine for the early detection of prostate cancer. Cancer Res 68:645–649

    PubMed  CAS  Google Scholar 

  223. Kristiansen G, Fritzsche FR, Wassermann K, Jäger C, Tölls A, Lein M, Stephan C, Jung K, Pilarsky C, Dietel M, Moch H (2008) GOLPH2 protein expression as a novel tissue biomarker for prostate cancer: implications for tissue-based diagnostics. Br J Cancer 99:939–948

    PubMed  CAS  Google Scholar 

  224. Wei S, Dunn TA, Isaacs WB, De Marzo AM, Luo J (2008) GOLPH2 and MYO6: putative prostate cancer markers localized to the Golgi apparatus. Prostate 68:1387–1395

    PubMed  CAS  Google Scholar 

  225. Vener T, Derecho C, Baden J, Wang H, Rajpurohit Y, Skelton J, Mehrotra J, Varde S, Chowdary D, Stallings W, Leibovich B, Robin H, Pelzer A, Schäfer G, Auprich M, Mannweiler S, Amersdorfer P, Mazumder A (2008) Development of a multiplexed urine assay for prostate cancer diagnosis. Clin Chem 54:874–882

    PubMed  CAS  Google Scholar 

  226. Albertsen PC, Hanley JA, Fine J (2005) 20-year outcomes following conservative management of clinically localized prostate cancer. JAMA 293:2095–2101

    PubMed  CAS  Google Scholar 

  227. Johansson JE, Holmberg L, Johansson S, Bergström R, Adami HO (1997) 15-year survival in prostate cancer. A prospective, population-based study in Sweden. JAMA 277:467–471

    PubMed  CAS  Google Scholar 

  228. Halabi S, Small EJ, Kantoff PW, Kattan MW, Kaplan EB, Dawson NA, Levine EG, Blumenstein BA, Vogelzang NJ (2003) Prognostic model for predicting survival in men with hormone-refractory metastatic prostate cancer. J Clin Oncol 21:1232–1237

    PubMed  Google Scholar 

  229. Amundadottir LT et al (2006) A common variant associated with prostate cancer in European and African populations. Nat Genet 38(6):652–658

    PubMed  CAS  Google Scholar 

  230. Freedman ML et al (2006) Admixture mapping identifies 8q24 as a prostate cancer risk locus in African-American men. Proc Natl Acad Sci U S A 103(38):14068–14073

    PubMed  CAS  Google Scholar 

  231. Severi G et al (2007) The common variant rs1447295 on chromosome 8q24 and prostate cancer risk: results from an Australian population-based case-control study. Cancer Epidemiol Biomarkers Prev 16(3):610–612

    PubMed  CAS  Google Scholar 

  232. Yeager M et al (2007) Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet 39(5):645–649

    PubMed  CAS  Google Scholar 

  233. Gudmundsson J (2007) Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat Genet 39(5):631–637

    PubMed  CAS  Google Scholar 

  234. Wang L et al (2007) Two common chromosome 8q24 variants are associated with increased risk for prostate cancer. Cancer Res 67(7):2944–2950

    PubMed  CAS  Google Scholar 

  235. Schumacher FR et al (2007) A common 8q24 variant in prostate and breast cancer from a large nested case-control study. Cancer Res 67(7):2951–2956

    PubMed  CAS  Google Scholar 

  236. Suuriniemi M et al (2007) Confirmation of a positive association between prostate cancer risk and a locus at chromosome 8q24. Cancer Epidemiol Biomarkers Prev 16(4):809–814

    PubMed  CAS  Google Scholar 

  237. Cheng I et al (2008) 8q24 and prostate cancer: association with advanced disease and meta-analysis. Eur J Hum Genet 16(4):496–505

    PubMed  CAS  Google Scholar 

  238. Zheng SL et al (2008) Cumulative association of five genetic variants with prostate cancer. New Engl J Med 358(9):910–919

    PubMed  CAS  Google Scholar 

  239. Luo J, Zha S, Gage WR, Dunn TA, Hicks JL, Bennett CJ, Ewing CM, Platz EA, Ferdinandusse S, Wanders RJ, Trent JM, Isaacs WB, De Marzo AM (2002) α-methylacyl-CoA racemase: a new molecular marker for prostate cancer. Cancer Res 62:2220–2226

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shang-Tian Chuang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shackelford, R.E., Trimaldi, J., Spiess, P.E., Sexton, W.J., Abdelbaqi, M.Q., Chuang, ST. (2014). Molecular Pathology and Diagnostics of Prostate Cancer. In: Coppola, D. (eds) Molecular Pathology and Diagnostics of Cancer. Cancer Growth and Progression, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7192-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7192-5_9

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7191-8

  • Online ISBN: 978-94-007-7192-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics